SMA与Sup沥青混合料性能指标对比
- 格式:docx
- 大小:20.32 KB
- 文档页数:5
AC,SMA,OGFC三种沥青砼性能比较报告AC,SMA,OGFC均采用改性沥青配制,同时设计采用高黏度改性沥青配制OGFC,改善其路用性能,SMA和OGFC中添加0.3%的聚酯纤维以保证其结构稳定。
高黏度、改性沥的性能指标如下表所示。
高黏度改性沥的性能指标:3种沥青混合料的矿料级配及沥青用量见下表。
试验中沥青混合料的矿料级配2.路用性能A.耐久性和抗滑性能比较采用室内试验检测AC、SMA和OGFC的路用性能,同时应用现在OGFC制备中普遍使用的高黏度改性沥青改善其路用性能。
试验检测结果见表2。
表2:沥青混合料的路用性能采用室内试验检测AC、SMA和OGFC路面的路用性能。
试验结果表明,采用SBS改性沥青制备的3种沥青混合料中,AC的动稳定度和构造深度较低,抗车辙性能和抗滑性能不足;SMA和OGFC的抗滑性能明显优于AC,SMA和OGFC的浸水残留稳定度和冻融劈裂强度比均在80%以上,抗稳定性和抗冻融劈裂强度良好,但是IGFC的动稳定度和飞散损失都不够理想。
这与OGFC沥青混合料开级配设计的大空袭有关。
采用高黏度改性沥青配制的OGFC,不但水稳定性和抗冻性良好,均达到了90%,而且动稳定度达到了7000次/mm,飞散损失也降低了50%以上。
可见就耐久性和抗滑性能方面考虑,应选用SMA和高黏度改性沥青配制的OGFC沥青混合料。
B.阻燃性能比较①.试验方法模拟燃烧试验选用30cm*30cm*50cm的标准轮碾车辙试验(见图1),放扎起钢制挡板上,分别以50g 、100g90#乙醇汽油作为燃烧物。
温度变化采集点为试件表面中心和试件正上方30cm 处。
试件的表面温度利用红外线温度感应器测定,试件上方环境温度采用K 型热电偶温度测试器测定。
燃烧时间采用秒表记录。
从点火开始计时,看不到明火为终止时间。
并分别在燃烧试件前后称取试件的质量,计算逃逸汽油量。
采用燃烧时间、逃逸汽油量、温度变化综合评价AC 、SMA 和OGFC 的防火性能。
两种沥青混合料性能比较作者:纪国亮,王丽丽来源:《科技传播》2011年第23期摘要 SMA-13沥青玛蹄脂碎石混合料和ARHM13(W)沥青混合料适用于高等级沥青路面,具有很好的路用效果。
对比这两种沥青混合料各项性能指标,高温稳定性和低温抗裂性能相差不多,都能满足规范要求,考虑经济性性能ARHM13(W)则更能体现出优势。
关键词沥青胶结料;合成级配;验证试验;经济效益中图分类号TU5 文献标识码A 文章编号 1674-6708(2011)56-0142-020 引言橡胶沥青混合料是采用干拌或湿拌工艺生产的沥青混合料。
干拌工艺是将废胎胶粉与沥青、矿料一起投放到拌和楼里拌和;湿拌工艺是将废胎胶粉和沥青加工形成橡胶沥青后,再与矿料拌和。
橡胶沥青混合料主要类型有:ARHM(W)湿拌法橡胶沥青混凝土密级配(《橡胶沥青及混合料设计施工技术指南》);AR-AC13湿拌法富沥青断级配橡胶沥青混合料。
SMA是由沥青、纤维稳定剂、矿粉及少量细集料组成沥青玛蹄脂碎石结合料填充间断级配的粗骨料骨架间隙而组成的沥青混合料。
SMA材料结构特点为“三多一少”——粗集料多、矿粉多、沥青多、细集料少。
SMA路面结构不仅具有高温重载条件下很好的抗车辙性能,而且低温性能良好。
1 SMA-13和ARHM13(W)的比较本文就SMA-13沥青玛蹄脂碎石混合料和ARHM13(W)沥青混合料从材料选择、合成级配、最佳沥青用量、验证试验、经济效益五个方面论证的加以比较。
1.1 材料选择选择材料是生产优质沥青混合料的关键步骤。
沥青混合料的原材料包括沥青和矿料。
SMA-13选用符合规范[1]要求的SBS改性沥青;ARHM13(W)选择符合规范[1]规定70号沥青掺入20%橡胶粉。
试验指标满足技术要求。
矿料是沥青混合料的关键材料之一,其力学性能、颗粒形状直接关系到沥青混合料的抗车辙能力。
两种沥青混合料对于矿料的选择基本相同,都必须符合规范[1]各项指标要求。
0引言随着我国高速公路的蓬勃发展,沥青路面作为主要的铺装形式得到大面积推广。
由于我国交通运输量不断增加,在环境因素和持续重交通荷载量的作用下,沥青路面往往过早出现松散脱粒、车辙、水损害、开裂等病害现象,而沥青混合料掺入纤维材料后可有效提升其各项性能、防止路面病害的发生,该结论已得到相关文献的证实[1-3]。
纤维材料主要应用于SMA 沥青混合料中,起到减少路面破坏、延长道路使用年限的作用。
目前,纤维材料在SMA 沥青混合料中应用较多的主要是木质素纤维和玄武岩纤维。
刘福军[4]对比分析玄武岩纤维、木质素纤维、聚酯纤维改善AC-16C 、SMA-13两种沥青混合料性能的效果,得出结论:玄武岩纤维改善沥青混合料性能方面优于木质素纤维和聚酯纤维。
对于聚合物化学纤维的研究,也有大量的结论可供参考[5]。
矿物纤维和聚合物化学纤维造价成本较高,木质素纤维大部分取自原木,生长周期慢,并且为积极响应国家退耕还林及绿色生态环境环保的政策,应尽量采用绿色环保材料。
我国具有丰富的竹资源[6],竹纤维是一种天然环保的有机纤维,具有良好的强度、韧性[7]、较高的耐磨性和良好的染色性。
鉴于竹纤维SMA 沥青混合料路用性能的研究较少,本文以包括竹纤维在内的3种纤维对SMA-13沥青混合料综合性能的影响进行对比分析,优选纤维种类,为工程实践的选择提供参考依据。
1原材料及配合比1.1沥青本文采用SBS 改性沥青作为胶结料,沥青为国产品牌,相关技术指标见表1。
表1SBS 改性沥青技术指标项目指标针入度(25℃,100g ,5s )/(0.1mm )软化点(℃)5℃延度(cm )135℃运动黏度/(Pa·s )25℃弹性恢复(%)闪点(℃)溶解度(%)密度/(g/cm³)TFOT 加热试验后质量损失(%)针入度比(%)5℃延度(cm )试验结果5169281.58326099.61.0300.26920规范要求40~60≥60≥20≤3≥75≥230≥99实测±1≥65≥151.2矿料采用的集料来自广西来宾市某石场,粗集料为辉绿岩、细集料为石灰石石屑,矿粉为磨细石灰石粉,性能均满足《公路沥青路面施工技术规范》(JTGF40—2004)的要求。
浅谈改性沥青混合料SMA的应用SMA全称沥青玛蹄脂碎石混合料,StoneMasic(Matrix)Asphalt的缩写,是20世纪60年代中期,德国道路工作者为提高路面的抗滑能力,抵抗带钉轮胎对路面破坏而开发的新技术,它能显著地提高沥青混凝土的路用性能,特别适用于重交通道路,本文是根据本地区一些工程项目实际应用进行的理解和分析。
1. SMA性能介绍1.1SMA组成。
沥青玛蹄脂(Mastic)是由沥青、矿粉、纤维及少量细集料组成的混合物。
SMA路面是按照内摩擦角最大的原则配置间断级配的粗集料,使其形成相互嵌挤锁结的骨架,然后用足量的沥青玛蹄脂(细集料、矿粉、沥青和纤维稳定剂组成)填充其骨架空隙的一种路面结构。
(1)5mm以上的粗集料,用量高达70%~80%。
(2)矿粉填料用量达8%~13%,粉胶比(矿粉同沥青比)远远超出通常1.2的限制。
(3)沥青结合料用量多,高达6.5%~7.0%。
(4)细集料:一般0.075mm筛孔的通过率高达10%。
(5)纤维稳定剂占混合料总重的0.3%~0.4%,用来吸附过量的沥青。
1.2强度组成机理。
1.2.1高温稳定性。
SMA的高温稳定性主要取决于内摩擦角φ值,φ值主要取决于矿质骨料的尺寸均匀度、颗粒形状及表面粗糙度。
SMA作为一种间断级配混合料,4.75mm~9.5mm之间的粗集料总量的40%左右,远高于普通密级配混合料,且矿质颗粒粗大、均匀,同时SMA对集料的扁平或细长颗粒有严格的限制,某些情况下对磨光值也有严格的要求。
这样,SMA混合料骨料有棱角且表面粗糙,故内摩擦角φ值大。
即使在高温条件下,由于粗集料颗粒之间相互良好的嵌挤作用,混合料仍有较好的抗变能力。
1.2.2低温抗裂性。
在低温条件下,混合料收缩变形使集料受拉时,集料之间填充的沥青玛蹄脂(Mastic)可以发挥其良好的粘结作用。
此时SMA的抗拉能力主要取决于沥青胶结料的粘聚力c值。
由高含量的矿粉、纤维和沥青组成的Mastic具有远高于普通密级配混合料的粘结作用,从而使混合料具有良好的低温抗裂性能。
橡胶沥青混合料与SMA的对比分析刘伟;粱乃兴;焦建华【摘要】沥青玛蹄脂碎石混合料(SMA)以其优良的路用性能而被广泛用于高速公路面层结构中,但是它使路面造价更加高昂,而使用橡胶沥青作为胶结料可大大降低路面造价.文中通过对比橡胶沥青和SMA混合料路用性能试验结果,发现两种混合料均能达到较好的路面使用效果,特别是在超薄层结构中橡胶沥青和SMA一样能够显著改善路面使用质量,具有较高的应用价值.【期刊名称】《公路与汽运》【年(卷),期】2011(000)004【总页数】4页(P100-103)【关键词】公路;沥青玛蹄脂碎石混合料(SMA);橡胶沥青混合料;路用性能【作者】刘伟;粱乃兴;焦建华【作者单位】重庆交通大学土木建筑学院,重庆400074;重庆交通大学土木建筑学院,重庆400074;重庆交通大学土木建筑学院,重庆400074【正文语种】中文【中图分类】U416.217中国的高等级公路绝大部分采用半刚性基层沥青路面结构,沥青面层不是主要承重层,而主要起到功能层作用。
近年来,随着中国道路交通事业的高速发展,重交通和重载现象日趋严重,沥青路面的各种表面功能都衰减很快,直接影响到汽车的行驶安全和舒适性。
为此,如何改善已建高等级公路路面的使用功能成为公路养护的重要课题之一。
鉴于此,近年来,超薄沥青砼在中国开始应用,它能够延长路面寿命、改善行驶质量、校正表面缺陷、提高安全特性(包括抗滑与排水)、减小噪音、增加路面强度等。
该文从经济角度考虑,分别采用橡胶沥青和SBS改性沥青作为结合料进行超薄沥青砼SMA-10路用性能研究。
1 试验材料1.1 沥青结合料用于超薄磨耗层的结合料,应根据当地气候条件与交通状况而定。
由于超薄磨耗层主要采用间断级配,粗集料含量比较高,因此结合料含量低则容易松散,采用较大的沥青含量则可能出现析漏问题。
为避免析漏,宜采用相对较粘的沥青,为延长寿命普遍采用SBS改性沥青。
所用SBS改性沥青的主要技术指标见表1。
几种典型沥青混合料性能的比较几十年来,为了提高沥青路面的使用性能,延长使用寿命,克服车辙、水损坏等常见的沥青路面损坏现象,人们对沥青混合料组成采取了各种措施,控制孔隙率、采取S形级配,使用改性沥青,添加纤维是近年来最常见的方法。
而改性沥青、纤维的广泛使用,使得从混合料结构组成来判断路面使用性能是很有必要的。
标签:沥青混合料;组成结构;S形级配空隙率1 几种典型沥青混合料依据沥青混合料组成结构理论,沥青混合料组成结构类型可主要分为悬浮密实结构、骨架密实结构、骨架空隙结构三种类型。
这三种结构类型在现今被人们所熟知的有:AC、SMA、SAC、Superpave混合料、OGFC、ATB、AK、ATPB等等。
几种混合料的级配见表1。
(1)AC是传统连续密级配沥青混凝土,在《公路沥青路面设计规范》(JTJ 014-97)中属于悬浮密实结构。
在《公路沥青路面施工技术规范》(JTG F40-2004)中这种沥青混合料舍弃了原来II型级配混合料,通过对关键筛孔通过率的控制分为粗型和细型。
粗型实际上是AK系列A型的调整型,加强压实度的控制,减小空隙率,级配向骨架密实型靠近。
(2)SMA在我国被称为沥青玛蹄脂碎石混合料,属于骨架密实结构。
它由大比例碎石构成坚固的骨架结构,并由丰富的沥青玛蹄脂填充骨架空隙进行稳定。
(3)SAC为我国自主开发的沥青混合料结构类型,因SAC-16矿料中大于4.75mm的颗粒含量为59%(范围中值),比《公路沥青路面设计规范》(JTJ 014-97)的AC-16I矿料中大于4.75mm的颗粒含量42.5%多16.5%,故命名为多碎石沥青混凝土。
4.75mm以上碎石含量小于60%的SAC,属于悬浮密实结构;4.75mm以上碎石含量在70%左右,属于骨架密实结构。
(4)Superpave是一种沥青混合料设计法,是美国为寻找一个新的设计体系来克服马歇尔和维姆设计体系造成路面存在的车辙和裂缝这一普遍问题而提出的公路研究计划(SHRP)的一个重要成果。
沥青SMA混合料的性能分析作者:索娜来源:《装饰装修天地》2017年第05期摘要:于我国高速公路建设高速发展,高速公路沥青路面的交通量大`车辆轴载重荷载作用间隙时间短`车速快的情况.因此,对高速公路路面的各项指标要求也越来越高,所以只有不断地改善原材料和沥青砼的类型,进一步优化沥青砼的配合比,改进施工工艺,才能跟上高速发展步伐;本人就改性沥青SMA混合料的性能做了分析研究。
关键词:沥青;性能1 SMA性能介绍1.1SMA组成沥青玛蹄脂(Mastic)是由沥青、矿粉、纤维及少量细集料组成的混合物。
SMA路面是按照内摩擦角最大的原则配置间断级配的粗集料,使其形成相互嵌挤锁结的骨架,然后用足量的沥青玛蹄脂(细集料、矿粉、沥青和纤维稳定剂组成)填充其骨架空隙的一种路面结构。
(1)5mm以上的粗集料,用量高达70%~80%。
(2)矿粉填料用量达8%~13%,粉胶比(矿粉同沥青比)远远超出通常1.2的限制。
(3)沥青结合料用量多,高达6.5%~7.0%。
(4)细集料:一般0.075mm筛孔的通过率高达10%。
(5)纤维稳定剂占混合料总重的0.3%~0.4%,用来吸附过量的沥青。
1.2强度组成机理1.2.1高温稳定性SMA的高温稳定性主要取决于内摩擦角φ值,φ值主要取决于矿质骨料的尺寸均匀度、颗粒形状及表面粗糙度。
SMA作为一种间断级配混合料,4.75mm~9.5mm之间的粗集料总量的40%左右,远高于普通密级配混合料,且矿质颗粒粗大、均匀,同时SMA对集料的扁平或细长颗粒有严格的限制,某些情况下对磨光值也有严格的要求。
这样,SMA混合料骨料有棱角且表面粗糙,故内摩擦角φ值大。
即使在高温条件下,由于粗集料颗粒之间相互良好的嵌挤作用,混合料仍有较好的抗变能力。
1.2.2低温抗裂性在低温条件下,混合料收缩变形使集料受拉时,集料之间填充的沥青玛蹄脂(Mastic)可以发挥其良好的粘结作用。
此时SMA的抗拉能力主要取决于沥青胶结料的粘聚力c值。