第一部分 专题一 第三讲 分类讨论思想
- 格式:ppt
- 大小:1.21 MB
- 文档页数:33
思想方法第3讲分类讨论思想 思想概述分类讨论思想是当问题的对象不能进行统一研究时,需对研究的对象按某个标准进行分类,然后对每一类分别研究,给出每一类的结论,最终综合各类结果得到整个问题的解答.实质上分类讨论就是“化整为零,各个击破,再集零为整”的数学思想.方法一 由概念、公式、法则、计算性质引起的讨论 概念、定理分类整合即利用数学中的基本概念、定理对研究对象进行分类,如绝对值的定义、不等式的转化、等比数列{a n }的前n 项和公式等,然后分别对每类问题进行解决. 例1(1)(2022·滁州质检)已知过点P (0,1)的直线l 与圆x 2+y 2+2x -6y +6=0相交于A ,B 两点,则当|AB |=23时,直线l 的方程为( )A .x =0B .15x -8y -8=0C .3x -4y +4=0或x =0D .3x +4y -4=0或x =0________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________(2)已知数列{a n }满足a 1=-2,a 2=2,a n +2-2a n =1-(-1)n ,则下列选项不正确的是( )A .{a 2n -1}是等比数列B.∑i =15(a 2i -1+2)=-10C .{a 2n }是等比数列D.∑i =110a i =52________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________规律方法 解题时应准确把握数学概念的本质,根据需要对所有情形分类.本例中,设直线方程需分斜率存在和不存在两种情况,数列中含(-1)n 需分奇偶两种情况,要注意分类讨论要有理有据、不重不漏.方法二 由图形位置或形状引起的讨论图形位置、形状分类整合是指由几何图形的不确定性而引起的分类讨论,这种方法适用于对几何图形中点、线、面的位置关系以及解析几何中直线与圆锥曲线的位置关系的研究. 例2设F 1,F 2为椭圆x 29+y 24=1的两个焦点,点P 为椭圆上一点,已知点P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|=________. ________________________________________________________________________ ________________________________________________________________________规律方法 圆锥曲线的形状、焦点位置不确定时要分类讨论;立体几何中点、线、面的位置变化,三角形和平行四边形的不确定性都要进行分类讨论.方法三 由参数变化引起的分类讨论某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,需对参数进行讨论,如含参数的方程、不等式、函数等.解决这类问题要根据需要合理确定分类标准,讨论中做到不重不漏,结论整合要周全.例3 (2022·湖北七市(州)联考)已知函数f (x )=x +1x (x >0),若f (x )[f (x )]2+a的最大值为25,则正实数a =________.________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________规律方法 若遇到题目中含有参数的问题,常常结合参数的意义和对结果的影响进行分类讨论,此类题目为含参型,应全面分析参数变化引起的结论的变化情况,在分类讨论时要遵循分类的原则:一是分类的标准要一致,二是分类时要做到不重不漏,三是能不分类的要尽量避免分类,杜绝无原则的分类讨论.。
第三讲 分类讨论思想思想方法解读考点由概念、法则、公式引起的分类讨论典例1 (1)2015·福建高考]若函数f(x)=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x>2(a>0,且a ≠1)的值域是4,+∞),则实数a 的取值范围是________.解析]因为f(x)=⎩⎨⎧-x +6,x ≤2,3+log a x ,x>2,所以当x ≤2时,f(x)≥4;又函数f(x)的值域为4,+∞),所以⎩⎨⎧a>1,3+log a 2≥4.解得1<a ≤2,所以实数a 的取值范围为(1,2].答案] (1,2](2)已知各项均为正数的数列{a n },其前n 项和为S n ,且S n =(S n -1+a 1)2(n ≥2),若b n =a n +1a n+a na n +1,且数列{b n }的前n 项和为T n ,则T n =________.解析] 由题意可得,S n >0,因为S n =(S n -1+a 1)2(n ≥2),所以S n =S n -1+a 1,即数列{S n }是以S 1=a 1为首项,以a 1为公差的等差数列,所以S n =n a 1,所以S n =n 2a 1,所以当n ≥2时,a n =S n -S n -1=n 2a 1-(n -1)2a 1=(2n -1)a 1,当n =1时,适合上式,所以b n =a n +1a n +a n a n +1=2n +12n -1+2n -12n +1=1+22n -1+1-22n +1=2+2⎝ ⎛⎭⎪⎪⎫12n -1-12n +1, 所以T n =2n +2⎝ ⎛⎭⎪⎪⎫1-13+13-15+…+12n -1-12n +1=2n +2⎝ ⎛⎭⎪⎪⎫1-12n +1=2n +4n 2n +1=4n 2+6n 2n +1. 答案] 4n 2+6n2n +1四步解决由概念、法则、公式引起的分类讨论问题 第一步:确定需分类的目标与对象.即确定需要分类的目标,一般把需要用到公式、定理解决问题的对象作为分类目标.第二步:根据公式、定理确定分类标准.运用公式、定理对分类对象进行区分.第三步:分类解决“分目标”问题.对分类出来的“分目标”分别进行处理.第四步:汇总“分目标”.将“分目标”问题进行汇总,并作进一步处理.【针对训练1】 在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d<0,求|a 1|+|a 2|+|a 3|+…+|a n |. 解 (1)由题意得5a 3·a 1=(2a 2+2)2, 即5(a 1+2d)·a 1=(2a 1+2d +2)2 d 2-3d -4=0,解得d =-1或d =4, 所以a n =-n +11或a n =4n +6. (2)设数列{a n }前n 项和为S n ,因为d<0,所以d =-1,a n =-n +11,则 由a n ≥0,即-n +11≥0得n ≤11. 所以当n ≤11时,a n ≥0,n ≥12时,a n <0.所以n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n ; n ≥12时,|a 1|+|a 2|+…+|a 11|+|a 12|+…+|a n |=a 1+a 2+…+a 11-a 12-…-a n =S 11-(S n -S 11)=-S n +2S 11=12n 2-212n +110.综上所述,|a 1|+|a 2|+…+|a n | =⎩⎪⎨⎪⎧-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.考点由参数变化引起的分类讨论典例2 2015·江苏高考]已知函数f (x )=x 3+ax 2+b (a ,b ∈R ). (1)试讨论f (x )的单调性;(2)若b =c -a (实数c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞,求c 的值.解] (1)f ′(x )=3x 2+2ax ,令f ′(x )=0,解得x 1=0,x 2=-2a3. 当a =0时,因为f ′(x )=3x 2>0(x ≠0),所以函数f (x )在(-∞,+∞)上单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫-∞,-2a 3∪(0,+∞)时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫-2a 3,0时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减;当a <0时,x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫0,-2a 3时,f ′(x )<0,所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,-2a 3上单调递减.(2)由(1)知,函数f (x )的两个极值为f (0)=b ,f ⎝⎛⎭⎪⎫-2a 3=427a 3+b ,则函数f (x )有三个零点等价于f (0)·f ⎝ ⎛⎭⎪⎫-2a 3=b ⎝ ⎛⎭⎪⎫427a 3+b <0, 从而⎩⎪⎨⎪⎧a >0,-427a 3<b <0或⎩⎪⎨⎪⎧a <0,0<b <-427a 3.又b =c -a ,所以⎩⎪⎨⎪⎧a >0,427a 3-a +c >0或⎩⎪⎨⎪⎧a <0,427a 3-a +c <0.设g (a )=427a 3-a +c ,因为函数f (x )有三个零点时,a 的取值范围恰好是(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞,则在(-∞,-3)上g (a )<0,且在⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞上g (a )>0均恒成立,从而g (-3)=c -1≤0,且g ⎝ ⎛⎭⎪⎫32=c -1≥0,因此c =1.此时,f (x )=x 3+ax 2+1-a =(x +1)x 2+(a -1)x +1-a ], 因函数有三个零点,则x 2+(a -1)x +1-a =0有两个异于-1的不等实根,所以Δ=(a -1)2-4(1-a )=a 2+2a -3>0,且(-1)2-(a -1)+1-a ≠0,解得a ∈(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞. 综上c =1.1.变量或参数变化时常见的分类讨论(1)解含参数的不等式时,常按参数的取值不同分类讨论. (2)平面解析几何中,直线点斜式中按斜率k 存在和不存在,直线截距式中按截距b =0和b ≠0分类讨论.2.利用分类讨论思想的注意点(1)分类讨论要标准统一,层次分明,分类要做到“不重不漏”. (2)分类讨论时要根据题设条件确定讨论的级别,再确定每级讨论的对象与标准,每级讨论中所分类别应做到与前面所述不重不漏,最后将讨论结果归类合并,其中级别与级别之间有严格的先后顺序、类别和类别之间没有先后;最后整合时要注意是取交集、并集,还是既不取交集也不取并集只是分条列出.【针对训练2】 2016·四川高考]设函数f (x )=ax 2-a -ln x ,其中a ∈R .(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).解 (1)f ′(x )=2ax -1x =2ax 2-1x (x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0,有x =12a. 此时,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)令g (x )=1x -1e x -1,s (x )=e x -1-x .则s ′(x )=e x -1-1. 而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增. 又由s (1)=0,有s (x )>0, 从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a>1.由(1)有f ⎝ ⎛⎭⎪⎫12a <f (1)=0,而g ⎝ ⎛⎭⎪⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0. 因此,h (x )在区间(1,+∞)内单调递增.又h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞. 考点 根据图形位置或形状分类讨论典例3 2015·广东高考]已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.解] (1)圆C 1的标准方程为(x -3)2+y 2=4,圆心坐标为C 1(3,0). (2)由垂径定理知,C 1M ⊥AB ,故点M 在以OC 1为直径的圆上,即⎝⎛⎭⎪⎫x-322+y2=94.故线段AB的中点M的轨迹C的方程是⎝⎛⎭⎪⎫x-322+y2=94在圆C1:(x-3)2+y2=4内部的部分,设AB方程为y=k1x,当AB与圆C1相切时⎩⎨⎧y=k1xx2+y2-6x+5=0⇒(k21+1)x2-6x+5=0,由Δ=36-4×5×(k21+1)=0得k1=±255,代入方程组得x=53,因此x∈⎝⎛⎦⎥⎤53,3.即⎝⎛⎭⎪⎫x-322+y2=94⎝⎛⎭⎪⎫53<x≤3.(3)联立⎩⎪⎨⎪⎧x=53,⎝⎛⎭⎪⎫x-322+y2=94,解得⎩⎨⎧x=53,y=±253.不妨设其交点为P1⎝⎛⎭⎪⎫53,253,P2⎝⎛⎭⎪⎫53,-253,设直线L:y=k(x-4)所过定点为P(4,0),则kPP1=-257,kPP2=257.当直线L 与圆C 相切时,⎪⎪⎪⎪⎪⎪32k -4k k 2+1=32,解得k =±34.故当k ∈⎩⎨⎧⎭⎬⎫-34,34∪⎝⎛⎭⎪⎫-257,257时,直线L 与曲线C 只有一个交点.六类常见的由图形的位置或形状变化引起的分类讨论 (1)二次函数对称轴的变化;(2)函数问题中区间的变化;(3)函数图象形状的变化;(4)直线由斜率引起的位置变化;(5)圆锥曲线由焦点引起的位置变化或由离心率引起的形状变化;(6)立体几何中点、线、面的位置变化等.【针对训练3】 (1)设圆锥曲线C 的两个焦点分别为F 1,F 2,若曲线C 上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线C 的离心率等于( )A.12或32 B.23或2 C.12或2 D.23或32答案 A解析 不妨设|PF 1|=4t ,|F 1F 2|=3t ,|PF 2|=2t ,其中t ≠0,若该曲线为椭圆,则有|PF 1|+|PF 2|=6t =2a ,|F 1F 2|=3t =2c ,e =c a =2c 2a =3t6t =12.若该曲线为双曲线,则有|PF 1|-|PF 2|=2t =2a , |F 1F 2|=3t =2c ,e =c a =2c 2a =3t 2t =32.(2)已知变量x ,y 满足的不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的是一个直角三角形围成的平面区域,则实数k =( )A .-12 B.12 C .0 D .-12或0答案 D解析不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的可行域如图(阴影部分)所示,由图可知,若要使不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的平面区域是直角三角形,只有当直线y =kx +1与直线x =0或y =2x 垂直时才满足.结合图形可知斜率k 的值为0或-12.。
初中数学思想方法之分类讨论数学是一门既抽象又具体的学科,它需要学生具备一定的思维方法和思想能力。
在初中数学中,分类讨论是一种常用的思想方法,它可以帮助学生分析问题、归纳规律并解决问题。
本文将详细介绍初中数学中分类讨论的基本思想和具体步骤,并通过例题来说明如何运用这种方法。
一、分类讨论的基本思想分类讨论是指将问题进行细化,将其分解成几个易于分析和解决的小问题,并分别进行讨论和解决。
通过这种方法可以更好地理解问题的本质,找到解题的关键点,并最终得到问题的解决办法。
分类讨论的基本思想包括以下几点:1.具体问题具体分析。
将问题进行细化后,每个小问题都有其独特的特点和解决思路,需要根据具体情况展开分析。
2.归纳总结。
在分析过程中,要总结出各个小问题之间的共同点和规律,以便更好地理解问题,并找到解决办法。
3.统一思考。
将各个小问题的解决办法进行归纳和整合,形成对大问题的解决思路。
二、分类讨论的具体步骤分类讨论的具体步骤可以简单概括为以下几点:1.理解问题。
仔细阅读题目,了解问题的背景和要求,确定需要解决的具体问题。
2.分析问题。
将大问题分解成几个小问题,每个小问题都有明确的目标和限制条件。
在分析过程中,可以通过画图、列举数据等方式进行辅助分析。
3.解决小问题。
按照特定的思路和方法,分别解决各个小问题。
在解决过程中,可以运用已经学过的数学知识、规律和公式。
4.总结归纳。
在解决小问题的过程中,要总结各个小问题之间的共同点和规律,归纳出解决大问题的关键思路和方法。
5.整合答案。
将各个小问题的解答整合成对大问题的解答。
在整合过程中,要仔细检查各个小问题的解答是否符合大问题的要求,并进行必要的修正和调整。
三、分类讨论的具体例题下面以一些常见的初中数学题目为例,说明如何运用分类讨论的方法解决问题。
例题1:现有一些白球和红球,共18个。
白球的个数不超过红球的个数。
问,最少有多少个红球?解题思路:根据题目要求和条件,可以将问题进行分类讨论。
第3讲分类讨论思想在解析几何中的应用在解答某些数学问题时。
有时会遇到很多情况,需要对各种情况加以分类,并逐步求解,然后综合理解,这就是分类讨论法。
分类讨论是一种逻辑方法。
是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零,积零为整的思想,与归类整理的方法有关。
分类讨论思想在数学问题具有明显的。
逻辑性、综合性、探索性,能训练人的思维条理和概括性。
解析几何中的分类讨论思想涉及到直线的方程、圆与圆的位置关系,圆锥曲线的概念以及性质等问题。
也是高考常考查的知识点。
【应用一】分类讨论思想在直线、圆中的应用1、直线方程的几种形式2、圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).3、直线与圆的位置关系三种位置关系:相交、相切、相离.Δ<0 Δ>0 【例1.1】(2023四川南充高三模拟)过(2,2)P 作圆22:(1)1C x y -+=的切线,则其切线方程为____________. .【思维提升】涉及到直线的方程问题。
若设直线的点斜式、斜截式方程必须考虑直线的斜率是否存在,特别是直线与圆的位置关系是要验证斜率不存在的情况。
这种问题也是经常考查也是学生最容易丢分的问题。
【变式1.1】(2023·山西·统考一模)经过()2,0A ,()0,2B ,()2,4C 三点的圆与直线240kx y k -+-=的位置关系为( ) A .相交B .相切C .相交或相切D .无法确定【变式 1.2】(2022年重庆市第八中学高三模拟试卷)若直线1:480l ax y ++=与直线2:3(1)60l x a y ++-=平行,则a 的值为( )A. 4-B. 3C. 3或4-D. 3-或6【变式1.3】 (202江苏扬州中学期中)(多选题)已知圆1O :()22325x y +-=,圆2O :()()2261125x y -+-=,下列直线中,与圆1O ,2O 都相切的是( ) A .34370x y +-=B .34320x y ++=C .43160x y --=D .43340x y -+=【变式1.4】(2022·辽宁鞍山·高二期中)过点()2,4P 引圆()()22111x y -+-=的切线,则切线的方程为( ) A .2x =-或4340x y +-= B .4340x y -+= C .2x =或4340x y -+=D .4340x y +-=【应用二】分类讨论思想在圆锥曲线定义中的应用1、 椭圆的定义平面内与两个定点F 1,F 2的距离之和等于常数(大于||F 1F 2)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M |||MF 1+||MF 2=2a },||F 1F 2=2c ,其中a >0,c >0,且a ,c 为常数. (1)若a >c ,则集合P 为椭圆; (2)若a =c ,则集合P 为线段; (3)若a <c ,则集合P 为空集.2、 双曲线的定义平面内与两个定点F 1,F 2的距离之差的绝对值等于非零常数(小于||F 1F 2)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M||| ||MF 1-||MF 2=2a },||F 1F 2=2c ,其中a ,c 为常数,且a >0,c >0.(1)当a <c 时,点P 的轨迹是双曲线; (2)当a =c 时,点P 的轨迹是两条射线; (3)当a >c 时,点P 不存在. 3、抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.【例2.1】(四川省双流中学2022年高三上学期期中)设定点()10,3F -,()20,3F ,动点P 满足条件129PF PF t t+=+(t 为常数,且0t >),则点P 的轨迹是______.【思维提升】涉及到圆锥曲线的定义问题一定要考虑定义要满足的条件,否则轨迹就不一定是圆锥曲线,如椭圆中忽略条件就有可能轨迹是线段,或者不存在。
分类讨论思想第三讲分类讨论思想[思想方法解读]分类讨论思想是一种重要的数学思想方法,其基本思路是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.1.中学数学中可能引起分类讨论的因素:(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角等.(2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列{a n}的前n项和公式等. (3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、基本不等式等.(4)由图形的不确定性而引起的分类讨论:如二次函数图象、指数函数图象、对数函数图象等. (5)由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等.2.进行分类讨论要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论.其中最重要的一条是“不重不漏”.3.解答分类讨论问题时的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不重不漏、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论.常考题型精析题型一由概念、公式、法则、计算性质引起的分类讨论例1设集合A={x∈R|x2+4x=0},B={x∈R|x2+2(a+1)x+a2-1=0,a∈R},若B⊆A,求实数a的取值范围.点评对概念、公式、法则的内含及应用条件的准确把握是解题关键,在本题中,B⊆A,包括B =∅和B≠∅两种情况.解答时就应分两种情况讨论,在关于指数、对数的运算中,底数的取值范围是进行讨论时首先要考虑的因素.变式训练1若函数f(x)=a x (a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)x在[0,+∞)上是增函数,则a=________. 题型二分类讨论在含参函数中的应用例2已知函数f(x)=-x2+2ax+1-a在x∈[0,1]上有最大值2,求a的值.点评本题中函数的定义域是确定的,二次函数的对称轴是不确定的,二次函数的最值问题与对称轴息息相关,因此需要对对称轴进行讨论,分对称轴在区间内和对称轴在区间外,从而确定函数在给定区间上的单调性,即可表示函数的最大值,从而求出a 的值.变式训练2 (2015·江苏)已知函数f (x )=x 3+ax 2+b (a ,b ∈R).(1)试讨论f (x )的单调性;(2)若b =c -a (实数c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是(-∞,-3)∪⎝⎛⎭⎪⎪⎫1,32∪⎝ ⎛⎭⎪⎪⎫32,+∞,求c 的值.题型三 根据图形位置或形状分类讨论例3 在约束条件⎩⎪⎨⎪⎧ x ≥0,y ≥0,y +x ≤s ,y +2x ≤4下,当3≤s ≤5时,z =3x +2y 的最大值的变化范围是( ) A.[6,15]B.[7,15]C.[6,8]D.[7,8] 点评 几类常见的由图形的位置或形状变化引起的分类讨论 (1)二次函数对称轴的变化;(2)函数问题中区间的变化;(3)函数图象形状的变化;(4)直线由斜率引起的位置变化;(5)圆锥曲线由焦点引起的位置变化或由离心率引起的形状变化;(6)立体几何中点、线、面的位置变化等.变式训练3 设F 1、F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点,已知P 、F 1、F 2是一个直角三角形的三个顶点,且⎪⎪⎪⎪PF 1>⎪⎪⎪⎪PF 2,求⎪⎪⎪⎪PF 1⎪⎪⎪⎪PF 2的值.高考题型精练1.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有( )A.f (0)+f (2)<2f (1)B.f (0)+f (2)≤2f (1)C.f (0)+f (2)≥2f (1) D .f (0)+f (2)>2f (1)2.已知数列{a n }的前n 项和S n =p n -1(p 是常数),则数列{a n }是( )A.等差数列B.等比数列C.等差数列或等比数列D.以上都不对3.已知变量x ,y 满足的不等式组⎩⎪⎨⎪⎧ x ≥0,y ≥2x ,kx -y +1≥0表示的是一个直角三角形围成的平面区域,则实数k 等于( )A.-12B.12C.0D.-12或0 4.(2014·四川)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |+|PB |的取值范围是( ) A.[5,25] B.[10,25] C.[10,45] D.[25,45]5.(2015·大连模拟)抛物线y 2=4px (p >0)的焦点为F ,P 为其上的一点,O 为坐标原点,若△OPF 为等腰三角形,则这样的点P 的个数为( )A.2B.3C.4D.66.在等比数列{a n }中,已知a 3=32,S 3=92,则a 1=________.7.已知函数f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则a =________.8.(2014·浙江)若某程序框图如图所示,当输入50时,则该程序运行后输出的结果是________.9.(2015·南昌模拟)已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过A 作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线的方程;(2)以M为圆心,MB为半径作圆M,当K(m,0)是x轴上一动点时,讨论直线AK与圆M的位置关系.10.已知a是实数,函数f(x)=x(x-a).(1)求函数f(x)的单调区间;(2)设g(a)为f(x)在区间[0,2]上的最小值.①写出g(a)的表达式;②求a的取值范围,使得-6≤g(a)≤-2.答案精析第46练 分类讨论思想常考题型精析例1 解 ∵A ={0,-4},B ⊆A ,于是可分为以下几种情况.(1)当A =B 时,B ={0,-4},∴由根与系数的关系,得⎩⎨⎧-2(a +1)=-4,a 2-1=0,解得a =1.(2)当B A 时,又可分为两种情况. ①当B ≠∅时,即B ={0}或B ={-4}, 当x =0时,有a =±1; 当x =-4时,有a =7或a =1. 又由Δ=4(a +1)2-4(a 2-1)=0, 解得a =-1,此时B ={0}满足条件;②当B =∅时,Δ=4(a +1)2-4(a 2-1)<0,解得a <-1.综合(1)(2)知,所求实数a的取值范围为a≤-1或a=1.变式训练11 4解析若a>1,有a2=4,a-1=m,此时a=2,m=1 2,此时g(x)=-x在[0,+∞)上为减函数,不合题意.若0<a<1,有a-1=4,a2=m,此时a=14,m=116,检验知符合题意.例2解函数f(x)=-x2+2ax+1-a=-(x-a)2+a2-a+1,对称轴方程为x=a.(1)当a<0时,f(x)max=f(0)=1-a,∴1-a=2,∴a=-1.(2)当0≤a≤1时,f(x)max=f(a)=a2-a+1,∴a2-a+1=2,∴a2-a-1=0,∴a=1±52(舍).(3)当a >1时,f (x )max =f (1)=a ,∴a =2. 综上可知,a =-1或a =2.变式训练2 解 (1)f ′(x )=3x 2+2ax , 令f ′(x )=0,解得x 1=0,x 2=-2a3.当a =0时,因为f ′(x )=3x 2≥0, 所以函数f (x )在(-∞,+∞)上单调递增; 当a >0时,x ∈⎝⎛⎭⎪⎪⎫-∞,-2a 3∪(0,+∞)时,f ′(x )>0,x ∈⎝⎛⎭⎪⎪⎫-2a 3,0时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝⎛⎭⎪⎪⎫-2a3,0上单调递减; 当a <0时,x ∈(-∞,0)∪⎝⎛⎭⎪⎪⎫-2a3,+∞时,f ′(x )>0,x ∈⎝⎛⎭⎪⎪⎫0,-2a 3时,f ′(x )<0,所以函数f (x )在(-∞,0),⎝⎛⎭⎪⎪⎫-2a 3,+∞上单调递增,在⎝⎛⎭⎪⎪⎫0,-2a 3上单调递减. (2)由(1)知,函数f (x )的两个极值为f (0)=b , f ⎝⎛⎭⎪⎪⎫-2a 3=427a 3+b ,则函数f (x )有三个零点等价于f (0)·f ⎝⎛⎭⎪⎪⎫-2a 3=b ⎝ ⎛⎭⎪⎪⎫427a 3+b <0, 从而⎩⎨⎧ a >0,-427a 3<b <0或⎩⎨⎧a <0,0<b <-427a 3.又b =c -a ,所以当a >0时,427a 3-a +c >0或当a <0时,427a 3-a +c <0.设g (a )=427a 3-a +c ,因为函数f (x )有三个零点时,a 的取值范围恰好是(-∞,-3)∪⎝⎛⎭⎪⎪⎫1,32∪⎝⎛⎭⎪⎪⎫32,+∞,则在(-∞,-3)上g (a )<0,且在⎝⎛⎭⎪⎪⎫1,32∪⎝ ⎛⎭⎪⎪⎫32,+∞上g (a )>0均恒成立.从而g (-3)=c -1≤0,且g ⎝⎛⎭⎪⎪⎫32=c -1≥0,因此c =1.此时,f (x )=x 3+ax 2+1-a =(x +1)[x 2+(a -1)x+1-a ],因函数有三个零点,则x 2+(a -1)x +1-a =0有两个异于-1的不等实根,所以Δ=(a -1)2-4(1-a )=a 2+2a -3>0,且(-1)2-(a -1)+1-a ≠0,解得a ∈(-∞,-3)∪⎝⎛⎭⎪⎪⎫1,32∪⎝ ⎛⎭⎪⎪⎫32,+∞.综上c =1.例3 D [由⎩⎨⎧ x +y =s ,y +2x =4⇒⎩⎨⎧x =4-s ,y =2s -4,取点A (2,0),B (4-s,2s -4),C (0,s ),C ′(0,4). (1)当3≤s <4时,可行域是四边形OABC ,如图(1)所示,此时,7≤z <8.(2)当4≤s ≤5时,此时可行域是△OAC ′,如图(2)所示,z max =8.综上,z =3x +2y 最大值的变化范围是[7,8].]变式训练3 解 若∠PF 2F 1=90°,则⎪⎪⎪⎪PF 12=|PF 2|2+⎪⎪⎪⎪F 1F 22, 又∵⎪⎪⎪⎪PF 1+⎪⎪⎪⎪PF 2=6,⎪⎪⎪⎪F 1F 2=25, 解得⎪⎪⎪⎪PF 1=143,⎪⎪⎪⎪PF 2=43,∴⎪⎪⎪⎪PF 1⎪⎪⎪⎪PF 2=72. 若∠F 1PF 2=90°,则⎪⎪⎪⎪F 1F 22=⎪⎪⎪⎪PF 12+⎪⎪⎪⎪PF 22, ∴⎪⎪⎪⎪PF 12+(6-⎪⎪⎪⎪PF 1)2=20, 又|PF 1|>|PF 2|,∴⎪⎪⎪⎪PF 1=4,⎪⎪⎪⎪PF 2=2, ∴⎪⎪⎪⎪PF 1⎪⎪⎪⎪PF 2=2. 综上知,⎪⎪⎪⎪PF 1⎪⎪⎪⎪PF 2=72或2. 高考题型精练1.C [依题意,若任意函数f (x )为常函数时,则(x -1)f ′(x )=0在R 上恒成立;若任意函数f (x )不是常函数时,当x ≥1时,f ′(x )>0,函数f (x )在(1,+∞)上是增函数;当x <1时,f ′(x )<0,f (x )在(-∞,1)上是减函数,故f (x )当x =1时取得最小值,即有f (0)>f (1),f (2)>f (1),综上,则有f (0)+f (2)≥2f (1).]2.D [∵S n =p n -1,∴a 1=p -1,a n =S n -S n -1=(p -1)pn -1(n ≥2),当p ≠1且p ≠0时,{a n }是等比数列; 当p =1时,{a n }是等差数列;当p =0时,a 1=-1,a n =0(n ≥2),此时{a n }既不是等差数列也不是等比数列.]3.D [不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的可行域如图(阴影部分)所示,由图可知若不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的平面区域是直角三角形,只有直线y =kx +1与直线x =0垂直(如图①)或直线y =kx +1与直线y =2x 垂直(如图②)时,平面区域才是直角三角形.由图形可知斜率k 的值为0或-12.]4.B [由动直线x +my =0知定点A 的坐标为(0,0),由动直线mx -y -m +3=0知定点B 的坐标为(1,3),且两直线互相垂直,故点P 在以AB 为直径的圆上运动.故当点P 与点A 或点B 重合时,|PA |+|PB |取得最小值,(|PA |+|PB |)min =|AB |=10.当点P 与点A 或点B 不重合时,在Rt △PAB 中,有|PA |2+|PB |2=|AB |2=10.因为|PA |2+|PB |2≥2|PA ||PB |,所以2(|PA |2+|PB |2)≥(|PA |+|PB |)2,当且仅当|PA |=|PB |时取等号,所以|PA |+|PB |≤2|PA |2+|PB |2=2×10=25,所以10≤|PA |+|PB |≤25,所以|PA |+|PB |的取值范围是[10,25].]5.C [当|PO |=|PF |时,点P 在线段OF 的中垂线上,此时,点P 的位置有两个;当|OP |=|OF |时,点P 的位置也有两个;对|FO |=|FP |的情形,点P 不存在.事实上,F (p,0),若设P (x ,y ),则|FO |=p ,|FP |=(x -p )2+y 2,若(x -p )2+y 2=p ,则有x 2-2px +y 2=0,又∵y 2=4px ,∴x 2+2px =0,解得x =0或x =-2p ,当x =0时,不构成三角形.当x =-2p (p >0)时,与点P 在抛物线上矛盾.∴符合要求的点P 一共有4个.]6.32或6 解析 当q =1时,a 1=a 2=a 3=32,S 3=3a 1=92,显然成立;当q ≠1时,由题意,得⎩⎪⎨⎪⎧a 1q 2=a 3=32,a 1(1-q 3)1-q =S 3=92.所以⎩⎪⎨⎪⎧a 1q 2=32, ①a 1(1+q +q 2)=92, ②由①②,得1+q +q 2q 2=3,即2q 2-q -1=0, 所以q =-12或q =1(舍去).当q =-12时,a 1=a 3q 2=6.综上可知,a 1=32或a 1=6.7.4解析 若x =0,则不论a 取何值,f (x )≥0显然成立;当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3. 设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间⎝⎛⎦⎥⎥⎤0,12上单调递增,在区间⎣⎢⎢⎡⎦⎥⎥⎤12,1上单调递减,因此g (x )max =g ⎝⎛⎭⎪⎪⎫12=4,从而a ≥4; 当x <0即x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3, 令g (x )=3x 2-1x 3,g ′(x )=3(1-2x )x 4>0,g (x )在区间[-1,0)上单调递增,因此g (x )min =g (-1)=4,从而a ≤4,综上得a =4.8.6解析 输入n =50,由于i =1,S =0,所以S =2×0+1=1,i =2,此时不满足S >50; 当i =2时,S =2×1+2=4,i =3,此时不满足S>50;当i=3时,S=2×4+3=11,i=4,此时不满足S>50;当i=4时,S=2×11+4=26,i=5,此时不满足S>50;当i=5时,S=2×26+5=57,i=6,此时满足S>50,因此输出i=6.9.解(1)抛物线y2=2px的准线为x=-p 2,由题意得4+p2=5,所以p=2,所以抛物线的方程为y2=4x.(2)由题意知,圆M的圆心为点(0,2),半径为2. 当m=4时,直线AK的方程为x=4,此时,直线AK与圆M相离;当m≠4时,由(1)知A(4,4),则直线AK的方程为:y=44-m(x-m),即4x-(4-m)y-4m=0,圆心M (0,2)到直线AK 的距离d =|2m +8|16+(m -4)2, 令d >2,解得m >1.所以,当m >1时,直线AK 与圆M 相离; 当m =1时,直线AK 与圆M 相切; 当m <1时,直线AK 与圆M 相交.10.解 (1)函数的定义域为[0,+∞),f ′(x )=3x -a 2x(x >0). 若a ≤0,则f ′(x )>0,f (x )有单调递增区间[0,+∞).若a >0,令f ′(x )=0,得x =a 3, 当0<x <a 3时,f ′(x )<0, 当x >a 3时,f ′(x )>0. f (x )有单调递减区间[0,a 3],有单调递增区间(a 3,+∞). (2)①由(1)知,若a ≤0,f (x )在[0,2]上单调递增, 所以g (a )=f (0)=0.若0<a <6,f (x )在[0,a 3]上单调递减,在(a 3,2]上单调递增,所以g (a )=f (a 3)=-2a 3a 3. 若a ≥6,f (x )在[0,2]上单调递减,所以g (a )=f (2)=2(2-a ).综上所述,g (a )=⎩⎪⎨⎪⎧ 0,a ≤0,-2a 3a 3,0<a <6,2(2-a ),a ≥6.②令-6≤g (a )≤-2.若a ≤0,无解.若0<a <6,解得3≤a <6.若a ≥6,解得6≤a ≤2+3 2.故a 的取值范围为3≤a ≤2+3 2.。
整数分数{ 有理数 数学思想之旅——分类讨论思想-----------河南师大附中数学一级教师张凤霞 高级教师姚建新分类讨论思想是解答数学问题的一种重要思想方法和解题策略.所谓分类讨论,就是在研究和解决数学问题时,当问题所给对象不能进行统一研究,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的结论.在许多数学定义、公式、法则、性质、定理中都蕴含着分类讨论思想.七年级学生初次接触这种思想,因而在做题时屡屡因没有做到分类讨论而使解答不完整. 本文就七年级上册所涉及的分类讨论思想举例分析,希望对同学们有所帮助.一 、与有理数集相关的分类讨论有理数集合按照不同的标准会有不同的分类:七年级学生在把握第一种分类时容易发生遗漏0的情况,错误地认为以一个数不是正有理数就一定是负有理数,错误地认为非负有理数就是正有理数.二、与数轴相关的分类讨论.数轴上的点到原点的距离是非负的,但位置可能在原点的左侧或右侧,因此涉及到与距离有关的题目时应注意分类讨论。
例2 点A 在数轴上距原点2个单位,将A 点向右移动5个单位长度,再向左移动7个单位长度,此时A 点表示的数是 .分析:点A 可能在原点的右侧,也有可能在原点的左侧,因此有两种情况,应填0,4 两个数.部分学生往往只考虑点A 在原点右侧的一种情况,忽略另一种情况,原因是没有分类讨论的思想,或不习惯分类讨论.三、与绝对值相关的分类讨论.应用绝对值的代数意义去掉绝对值符号时,如果不知道绝对值内的式子(或数)的符号,一定要进行分类讨论。
例2 绝对值不大于10的整数有 个. 正有理数 零 负有理数 { 有理数分析:整数包括正整数、零、负整数,不大于10是指小于等于10,除了从0到10共11个整数的绝对值不大于10外,从10-到1-共10个整数的绝对值也不大于10,因而从10-到10的所有整数都符合要求,正确答案应是21. 部分学生只考虑正整数、零,而忘记负整数,因而答案错误,究其原因仍是不具备分类讨论的思想,考虑问题不全面.例3 如果a 、b 、c 是非零有理数,求cc b b a a ++的值 分析:要去掉绝对值符号,需要对a,b,c 的符号分别进行讨论:当a,b,c 全为正数时等于3;当a,b,c 两正一负时(包括三种情况)等于1;当a,b,c 两负一正时(包括三种情况)等于﹣1;当a,b,c 全为负数时等于﹣3,所以正确答案是﹣1,1,﹣3,3.一些学生容易忽略对a,b,c 进行讨论或讨论部全面.四、与乘方相关的分类讨论.在研究有理数的乘方时,引导学生按照正数,零和负数的分类进行讨论。