逻辑函数的卡图化简法
- 格式:ppt
- 大小:76.50 KB
- 文档页数:5
逻辑函数的图形化简法一、最小项1.最小项的特点(以三变量A,B,C为例)每项都只有三个因子(A,B,C);每个变量都是它的一个因子;每一变量或以原变量(A,B,C)形式消失,或以非变量(A非,B非,C非)形式消失;每个乘积项的组合仅消失一次,且取值为1;最小项可以编码。
2.最小项表达式及书写形式:最小项表达式是由若干个最小项相加的与—或表达式。
任何一个规律表达式都可以化成最小项表达式。
2.一个规律函数,假如有n个变量,则有2n个最小项。
最小项的基本性质:a.只有一组取值使之为“1” b.任二最小项乘积与“0” c.所的最小项之和为“1”例:3变量A,B,C,有23=8个最小项,其形式为:二、卡诺图(Karnaugh Map)1.卡诺图画法:三变量卡诺图:说明:三变量卡诺图由8个最小项m0—m7组成,每个最小项占一个方格;AB组合中左数位代表A变量,右数位代表B变量。
沿横向从一个方格进行到下一个方格时,两个数位只变化一个;原变量与非变量各占4格。
四变量卡诺图:说明:四变量卡诺图由16个最小项m0—m15组成,每个最小项占一个方格;纵向方向因有两个变量CD,增加了8个方格,CD变化规律同AB;原变量与非变量各占8格。
2.相邻的概念二小格相邻组合:例如:卡诺图中,有F(A,B,C,D)=∑m(2,3,8,10,12)(m8、m12)、(m2、m3)几何相邻,(m2、m10)规律相邻四小格相邻组合:四小格相邻时,4个最小项可合并成1项,且可消去两个变量。
八方格相邻组合:八方格相邻时,8个最小项可合并成1项,且可消去三个变量。
三、用卡诺图简化规律函数1.用卡诺图化简规律函数基本步骤:2.几个留意点:必需使每个方格(最小项)至少被包含一次;使每个组合包含尽可能多的方格;全部的方格包含在尽可能少的不同组合中。
未用最小项表示的规律函数的简化:规律函数未用(最小项)表示照样可以化简。
(/版权全部)假如F采纳与—或表达式,在填入卡诺图过程中先把函数绽开成标准与--或式,再填入卡诺图中进行化简。
逻辑函数的卡诺图化简法逻辑函数的卡诺图化简法由前面的学习得知,利用代数法可以使逻辑函数变成较简单的形式。
但要求熟练掌握逻辑代数的基本定律,而且需要一些技巧,特别是经化简后得到的逻辑表达式是否是最简式较难确定。
运用卡诺图法可以较简便的方法得到最简表达式。
但首先需要了解最小项的概念。
一、最小项的定义及其性质1.最小项的基本概念由A、B、C三个逻辑变量构成的许多乘积项中有八个被称为A、B、C的最小项的乘积项,它们的特点是1. 每项都只有三个因子2. 每个变量都是它的一个因子3. 每一变量或以原变量(A、B、C)的形式出现,或以反(非)变量(A、B、C)的形式出现,各出现一次一般情况下,对n个变量来说,最小项共有2n个,如n =3时,最小项有23=8个2.最小项的性质为了分析最小项的性质,以下列出3个变量的所有最小项的真值表。
由此可见,最小项具有下列性质:(1)对于任意一个最小项,只有一组变量取值使得它的值为1,而在变量取其他各组值时,这个最小项的值都是0。
(2)不同的最小项,使它的值为1的那一组变量取值也不同。
(3)对于变量的任一组取值,任意两个最小项的乘积为0。
(4)对于变量的任一组取值,全体最小项之和为1。
3.最小项的编号最小项通常用mi表示,下标i即最小项编号,用十进制数表示。
以ABC为例,因为它和011相对应,所以就称ABC是和变量取值011相对应的最小项,而011相当于十进制中的3,所以把ABC记为m3按此原则,3个变量的最小项二、逻辑函数的最小项表达式利用逻辑代数的基本公式,可以把任一个逻辑函数化成一种典型的表达式,这种典型的表达式是一组最小项之和,称为最小项表达式。
下面举例说明把逻辑表达式展开为最小项表达式的方法。
例如,要将化成最小项表达式,这时可利用的基本运算关系,将逻辑函数中的每一项都化成包含所有变量A、B、C的项,然后再用最小项下标编号来代表最小项,即又如,要将化成最小项表达式,可经下列几步:(1)多次利用摩根定律去掉非号,直至最后得到一个只在单个变量上有非号的表达式;(2)利用分配律除去括号,直至得到一个与或表达式;(3)在以上第5个等式中,有一项AB不是最小项(缺少变量C),可用乘此项,正如第6个等式所示。
第十章数字逻辑基础补充:逻辑函数的卡诺图化简法1.图形图象法:用卡诺图化简逻辑函数,求最简与或表达式的方法。
卡诺图是按一定规则画出来的方框图。
优点:有比较明确的步骤可以遵循,结果是否最简,判断起来比较容易。
缺点:当变量超过六个以上,就没有什么实用价值了。
公式化简法优点:变量个数不受限制缺点:结果是否最简有时不易判断。
2.最小项(1)定义:是一个包括所有变量的乘积项,每个变量均以原变量或反变量的形式出现一次。
注意:每项都有包括所有变量,每个乘积它中每个变量出现且仅出项 1 次。
如:Y=F(A,B)(2 个变量共有4 个最小项AB AB AB AB )Y=F(A,B,C)(3 个变量共有 8 个最小项ABC ABC ABC ABC ABC ABC ABC ABC )结论: n 变量共有 2n个最小项。
三变量最小项真值表(2)最小项的性质①任一最小项,只有一组对应变量取值使其值为 1:②任意两个最小项的乘种为零;③全体最小项之和为 1。
(3)最小项的编号:把与最小项对应的变量取值当成二进制数,与之相应的十进制数,就是该最小项的编号,用 mi表示。
3.最小项表达式——标准与或式任何逻辑函数都可以表示为最小项之和的形式——标准与或式。
而且这种形式是惟一的,即一个逻辑函数只有一种最小项表达式。
例 1.写出下列函数的标准与或式:Y=F(A,B,C)=AB+BC+CA解:Y=AB( C +C)+BC( A +A)+CA( B +B)= ABC +ABC +ABC +ABC +ABC +ABC= ABC +ABC +ABC +ABC= m7 +m6+m5+m3例 2.写出下列函数的标准与或式:Y =AB +AD +BC解:Y =(A +B)( A +D)(B +C)= ( A +BD)(B +C)=AB +AB +AC +BCD=ABC +ABC +ABC +ABCD +ABCD=ABCD + _ ABCD +ABCD +ABCD +ABCD +ABCD +ABCD=m7 +m6+m5+m4+m1+m+m8=∑m(0,1,4,5,6,7,8)列真值表写最小项表达式。