表面等离子体受激辐射放大技术简介
- 格式:ppt
- 大小:4.92 MB
- 文档页数:48
大面积平面表面波等离子体的研究Ξ欧琼荣,梁荣庆(中科院等离子体物理研究所,安徽合肥 230031)摘 要:低温等离子体技术已被广泛应用于各高科技领域,并且应用范围仍然在迅速拓展,这对等离子体本身提出了更高的要求,平面大面积、高密度均匀等离子体源是目前最迫切的需求之一。
作者主要介绍表面波激发等离子体的原理,并在自行研制的一套平面大面积表面波等离子体源上,利用静电双探针测量了其Ar 气放电的角向、径向和轴向的电子密度和温度。
发现角向电子密度和温度均匀性与耦合天线及气压密切相关而与入射功率无关;径向电子密度和温度均匀性则与入射微波功率及气压密切相关而与耦合天线无关。
因此,通过优化耦合天线来获得径向参数的均匀性及微波耦合效率,并增大微波功率、选择适当的气压,可产生大面积平面高密度等离子体。
关键词:表面波;等离子体源;高密度等离子体中图分类号:O53 文献标识码:A 文章编号:1006-7086(2002)01-0028-06RESEARCHES ON LARGE AREA PLANAR PLASMA EXCITE D B Y SURFACE MICR OWAVEOU Q iong -rong ,L IANG R ong -qing(Institute of Plasma Physics ,Chinese Academy of Sciences ,H efei 230031,China)Abstract :Low temperature plasma technologies have been widely used in many high-tech fields today.The fieldsapplying plasma are still enlarged quickly.The higher demands have been arised for the plasma high density and the large area planar uniformed plasma was required as one of the most urgent demands now.The principles of surface mi 2crowave forming were introduced.Radial ,azimuthal and axial distribution of the electron density and temperature of Ar plasma in the plasma source excited by surface-microwave were measured with Langmuir probe.The relationship that the uniform degree of the electron density and the temperature distribution along radius and azimuth changes with the microwave power ,the gas pressure and the antenna shape was found that the power and the antenna shape is not impor 2tant for the azimuthal and radial uniform degree ,respectively.S o a conclusion reached that large area planar high density plasma could be produced by improving the antenna shape ,enhancing the microwave power and choosing the proper pressure.K ey w ords :surface wave ;plasma source ;high density plasma1 引 言随着半导体晶片超细微加工处理、平板显示器、太阳能电池生产、生物医学高分子薄膜改性及高聚物的表面改性等领域近年来的迅速发展,对作为这些领域的关键技术之一的等离子体源提出了新的挑战。
表面等离子体激元简介一.表面等离子体激元表面等离子体(Surface Plasmons)的出现提供了一种在纳米尺度下处理光的方式。
表面等离子体通常可以分成两大类——局域表面等离子体共振(Localized Surface Plasmon Resonance)和表面等离子体激元(Surface Plasmon Polaritons)。
局域表面等离子体共振专指电磁波与尺寸远小于波长的金属纳米粒子中的自由电子的相互耦合,这种等离子体只有集体共振行为,不能传播,但可以向四周环境辐射电磁波。
局域表面等离子体共振可以通过光直接照射产生。
表面等离子体激元指的是在金属和电介质分界面上传播的一种元激发Excitations),这种元激发源自电磁波和金属表面自由电子集体共振的相互耦合。
表面等离子体激元以指数衰减的形式束缚在垂直于传播的方向,由于它的传播波矢要大于光在自由空间中的波矢,电磁波被束缚在金属和电介质的分界面而不会向外辐射,也正是因为这种独特的波矢特性,表面等离子体激元的激发需要满足一定的波矢匹配条件。
二.SPPs的激发和仿真方法由于SPSs的波矢量大于光波的波矢量,或者说SPPs的动量与入射光子的动量不匹配,所以不可能直接用光波激发出表面等离子体波。
为了激励表面等离子体波,需要引入一些特殊的结构达到波矢匹配,常用的结构有以下几种:(1)棱镜耦合:棱镜耦合的方式包括两种,一种是Kretschmannt方式;另一种是Otto 方式。
(2)采用波导结构(3)采用衍射光栅耦合(4)采用强聚焦光束(5)采用近场激发。
目前主要的仿真方法有以下三种(1)时域有限差分法(finite difference time domain,FDTD):FDTD方法是把Maxwell方程式在时间和空间领域上进行差分模拟,利用蛙跳式(leaf flogalgorithm)空间领域内的电场和磁场进行交替计算,电磁场的变化通过时间领域上更新来模仿。
表面等离子共振技术2表面等离子波; 等离子体通常是指由密度相当高的自由正、负电荷构成的气体,其中正、负带电粒子数目几乎相等,内部不形成空间电荷。
假如把金属的价电子看成是均匀正电荷背景下运动的电子气体,这实际上也是一种等离子体。
当金属受到电磁干扰的时,金属中的电子密度分布就会变得不均匀。
设想在某一区域电子密度低于平均密度,那么就会形成局部的正电荷过剩。
这时由于库仑引力作用,会把近邻的电子吸引到该区域,而被吸引的电子由于获得附加的动量,又会使该区域聚集过多的负电荷,然而,由于电子间的排斥作用,使电子再度离开该区域,从而形成价电子相关于正电荷背景的起伏振荡。
由于库仑力的长程作用,这种局部的电子密度振荡将形成整个电子系统的纵向集体振荡,并以密度起伏的波的形式来表现。
可知,金属中的价电子相当于正离子背景的这种振荡与导电气体中的等离子振荡相似,故称之金属中的等离子振荡。
表面等离子振荡也是如此,我们能够看成其内部也有一定的电子振荡波的存在。
3当光线在棱镜与金属膜表面上发生全反射现象时,会在金属膜中产生消失波,消失波与表面等离子波发生共振时,检测到的反射光强会大幅度地减弱。
能量从光子转移到表面等离子,入射光的大部分能量被表面等离子波汲取,使得反射光的能量急剧减少。
因此,能够反射光强的响应曲线看到一个最小的尖峰,如今对应的入射光波长为共振波长,对应的入射角为共振角。
SPR角随金表面折射率变化而变化,而折射率的变化又与金表面结合的分子质量成正比。
这就是SPR 对物质结合检测的基本原理。
SPR传感系统通常是由光学系统,传统系统与检测系统这3部分构成的。
其中,光学系统包含光源与光路,用以产生合乎性能要求的入射光;传感系统利用上述原理将待测信息转换为敏感膜的折射率的变化,并通过光学耦合转换为共振角或者共振波长的变化;检测系统检测反射光的发光强度,记录共振汲取峰的位置,当入射波以某一角度或者某一波长入射,近场波矢K与SPW的波矢相等,发生谐振,入射光能量耦合到SPW波,反射光强度出现一个凹陷。
表面等离子共振技术(surface plasmon resonance technology, SPR)综述作者:刘闯等来源:北京大学单分子与纳米生物学实验室摘要:SPR技术作为检测,分析生物分子相互作用的有效工具,有些国家已经生产出成熟的商业化的SPR传感系统。
对SPR生物传感器的工作原理,应用领域,最新进展作出阐述,并对其在生物分子检测领域的应用和研究发展前景进行了讨论。
引言:表面等离子共振技术(surface plasmon resonance technology, SPR)是20世纪90年代发展起来的一种生物分子检测技术,是基于SPR检测生物传感芯片(biosensor chip)上配位体与分析物作用的一种前沿技术,在20世纪初,Wood观测到连续光谱的偏振光照射金属光栅时出现了反常的衍射现象,并且对这种现象进行了公开描述。
1941年,Fano用金属与空气界面的表面电磁波激发模型对这一现象给出了解释。
1957年,Ritchie发现,当电子穿过金属薄片时存在数量消失峰。
他将这种消失峰称之为“能量降低的”等离子模式,并指出了这种模式和薄膜边界的关系,第一次提出了用于描述金属内部电子密度纵向波动的“金属等离子体”的概念。
2年后,Powell和Swan用实验证实了Ritche的理论。
随后,Stem和Farrell 给出了这种等离子体模式的共振条件,并将其称为“表面等离子共振技术(surface plasmon resonance , SPR)”。
1968年,Otto和Kretschmann等人研究了金属和介质界面用光学方式激发SPR的问题。
并分别设计了两种棱镜耦合方式。
此后, SPR技术获得了长足的发展。
1990年,国际上第一台商业生产的生物传感器在瑞典的Biocore公司诞生。
实践证明,SPR传感器与传统检测手段比较,具有无需对样品进行标记,实时监测,灵敏度高等突出优点。
所以,在医学诊断,生物监测,生物技术,药品研制和食品安全检测等领域有广阔的应用前景。
表面等离子体激元
表面等离子体激元(surface plasmon polariton,SPP)是研究与复
杂光学、电磁和物理行为相关的材料和结构的有效载体,具有重要应
用价值。
它可以将光信号传输到固体的内部,并使光子显得更短,这
为传递信息提供了新的可能性。
表面等离子体激元描述了物理表面上发生的电磁激励现象。
它们类似
于传统的电磁波,但具有新的特性,包括在固体物质表面反射回来的
大量能量和短波长。
SPP由一个电磁波和一个等离子体波强相互作用而产生,这两种波抵消并形成一种新的组合波。
表面等离子体激元的特性给它带来了几个关键优势。
它们可以用来实
现高密度的电磁能量传输,并能够以最少的时间传输信号。
它们还可
以用来控制传输的方向,因此可以实现高度有效的光学传输。
此外,
它们还将光子的波长缩短,从而可以实现高信噪比的传输,在存储和
运输光信息中发挥重要作用。
表面等离子体激元在多个领域都发挥着关键作用,如通信、电子系统
设计和光学系统设计。
它们在激光打印、光学散射和拉曼分析(Raman scattering)等技术中也被广泛应用。
此外,它们还为光子学中的调
制器、衍射元件和其他器件发挥着重要作用。
表面等离子体激元现在已经成为光子学中不可或缺的研究对象,它们
可以实现更快、更精准的处理和传输信号,并在全球各个行业发挥巨
大的作用。
它们已经从研究阶段走向实践应用,且未来前景一片光明。
细说神奇的表面等离子体波光通信的新宠——表面等离子体波光纤是现在全世界最普遍使用的传递光信号的传播器件。
它巨大的容量使得科学研究人员对于它将来能够取代微处理器和电子计算机芯片中的各种电子器件充满信心。
但是很不幸的是,光纤的尺寸太大使得它和小巧的芯片接口无法匹配。
光电子器件大的原因在于其尺寸被衍射这一物理规律所制约。
空间中相聚很近的光之间会相互干涉叠加,这导致承载光信号的光纤的最小宽度是光波长的一半。
芯片上传播的光信号通常是1500nm波长的远红外光(这也是人类规定的一切通讯电磁波的波长)。
这样光纤的最小宽度会远大于我们目前正在使用的纳米电子器件(硅的集成芯片通常只有100nm的量级),使得光纤和芯片的接口无法匹配。
毫无疑问,人类对于这个衍射极限是无法突破的,因此一度陷入沮丧。
但是最近几十年来,人们发现了一种可以用做电子器件与光纤通信媒介的现象:plasmon (表面等离子体波在金属和介质表面的震动),使得整个研究方向重现曙光。
当电磁波在金属和介质表面传播的时候,会引起金属表面电子的共振。
电子振动的频率和电磁波是吻合的,但是却有着比电磁波小很多倍的波长(如上图所示)。
这意味着,这种表面plasmon振动的波长是被极大压缩了的,可以用来连接大尺度的光纤和纳米级的电子器件。
在金属和电介质表面可以看到,在光纤中同样频率电磁光的波长在meta-material(利用上述plasmon现象制作的材料)中被压缩了几十甚至上百倍(如上图所示),这样光纤和芯片接口尺寸不匹配的问题被解决了,我们只需要在中间加一个plasmonic的转换过渡(如下图所示)。
该器件的一个极大的优点就是低功耗。
或许有人会疑惑,因为人们对金属的第一印象就是电磁波会被金属所吸收转化成热量。
然而这种表面的plasmon的功耗极小,因为它只是在金属的表面振动,根本没有进入金属内部,所以自然耗散极小。
表面等离子体波的历史1)炼金术士的彩色酒杯炼金术士们在几千年前就已经不经意地参杂金属物质,通过plasmonics的效应来制作有颜色的酒杯。