第_5_章_等离子体辐射测量(1):原理__29906322
- 格式:pdf
- 大小:1.41 MB
- 文档页数:37
第三章光通量及亮度的测量§3-1理想积分球原理及光通量标准灯理想积分球的条件:①积分球的内表面为一完整的几何球面,半径处处相等②球内壁是中性均匀漫射面,对各种波长的入射光线具有相同的漫反射比 ③球内没有任何物体,光源也看作只发光而没有实物的抽象光源理想积分球原理:1.积分球(光通球或球形光度计)结构: ①内部空的完整球壳,内壁涂白色的漫射层②球直径按待测灯尺寸和功率大小而定,直径D=1m 、2m 、3m 等 ③球壁上开一小窗口,其直径d ∝r(灯的尺寸)④球上开一个小门,或打开个口方便装取灯,有接线架、灯头、挡屏 2.积分球原理:设光源S 直接在球内任一点建立的照度E A ,在M 处的照度为E M A 处dS 发生第一次漫射出度为: 故由朗伯定律的特性知dS 面的光亮度为:A 处dS 发生漫射在M 处产生的二次照度为:a M E ρ=0/A L E ρπ=2222222(/2)cos ()()4L L ds AM L ds dE ds AM AM r r θ⋅⋅=⋅=⋅=上式代入得:整个球面发生一次漫射在M 处建立的二次照度为:222244AE dE E ds r r ρρφππ===⎰⎰类似分析为:二次漫射光线在M 处建立的照度为:23233222/44dE E ds r E dE E ds E r ρρπρπ=→===⎰⎰同理:2432E E E ρρ==235432E E E E ρρρ===⋅⋅⋅⋅⋅⋅则M 点的总照度E M 为:212312(1)M E E E E E E ρρ=+++⋅⋅⋅⋅⋅⋅=++++⋅⋅⋅⋅⋅⋅121121114M E E E E E E r ρρφρρπ→=+=+⋅=+--故用小挡屏挡住S 直接射向M 点的光线时,则E 1=0221414M E E r E r ρρρφρφπρπρ-→==⋅→=- 上式中r 、ρ均为常数,球壁上任何位置的E 与光源S 的总光通量Φ总成正比,因此可以通过测量球壁上开的小窗口的照度来计算光源的总光通量Φ总。
核辐射探测仪器基本原理及及指标1.光电效应探测:当γ射线入射到闪烁晶体或闪烁闪耀液体中时,会产生光电效应,即γ射线与物质相互作用,产生能量沉积,并使物质中的电子跃迁到高能级。
高能级的电子会向下跃迁,释放出能量,产生光子。
通过光电倍增管放大光信号,可以得到γ射线的能量和强度信息。
2.离子化室探测:当粒子入射到离子化室中时,会引起气体分子的电离,产生正离子和电子。
正离子在电场的作用下向阳极漂移,电子则向阴极漂移。
通过测量电离室中的电荷量,可以得到电离室中的粒子辐射强度。
3.闪烁探测:当粒子入射到闪烁晶体或液体中时,会产生能量沉积,激发晶体中的原子或分子。
激发态的原子或分子会向基态跃迁,释放出能量,产生光子。
通过光电倍增管或光电乘成功能,可以放大闪烁光信号,得到探测粒子的能量和强度信息。
1.探测效率:指探测器对入射辐射的探测能力。
即单位时间内探测器能探测到的辐射事件数与实际入射辐射事件数的比值。
探测效率高表示探测器对辐射事件的敏感度高。
2.清除时间:指探测器上的靶核或电子由高激发态跃迁回稳定态的时间,也即探测器释放出的光子停止闪烁的时间。
清除时间短表示探测器能快速恢复可探测状态。
3.能量分辨率:指探测器对不同能量辐射的分辨能力。
当辐射能量变化时,能量分辨率低会导致探测器无法准确测量。
4.阈值:指探测器开始探测辐射的最小能量。
低阈值可使探测器对低能辐射更敏感。
5.线性范围:指探测器能够准确测量的辐射强度范围。
超出线性范围可能导致读数不准确。
6.响应时间:指探测器从辐射入射到输出响应的时间。
响应时间短表示探测器对短脉冲辐射的探测能力强。
7.选择性:指探测器对不同类型辐射的选择能力。
选择性好意味着探测器能够区分不同类型的辐射。
综上所述,核辐射探测仪器的基本原理是根据辐射粒子与物质相互作用的方式来进行探测和测量,主要包括光电效应、离子化室和闪烁探测。
其指标主要有探测效率、清除时间、能量分辨率、阈值、线性范围、响应时间和选择性。
核辐射探测原理pdf全文共四篇示例,供读者参考第一篇示例:核辐射是一种高能辐射,常见的核辐射包括α、β、γ射线以及中子辐射。
核辐射对人体健康有较大危害,因此在核辐射探测方面起着非常重要的作用。
本文将探讨核辐射探测原理以及其在实际应用中的重要性。
一、核辐射探测原理核辐射探测原理是利用辐射入射到某些物质中,通过测量辐射对物质的作用产生的电离效应,来探测并测定核辐射的性质、强度和能量分布。
核辐射探测的基本原理可以分为以下几种方法:1. 光电探测技术光电探测技术是通过光电倍增管等光电器件,将入射的γ射线能量转化为光子,并经过电子乘法器件,使得原始的能量能够被测量出来。
光电探测技术具有高分辨率、高灵敏度和较好的线性响应等优点,是目前较为常用的核辐射探测方法之一。
2. 闪烁探测技术闪烁探测技术利用某些晶体或液闪材料,当核辐射入射到其表面时,会产生闪烁光,通过测量闪烁光的强度和时间等参数,来确定核辐射的性质。
闪烁探测技术具有高抗干扰能力和高能量分辨率等优点,被广泛应用于核辐射测量。
3. 半导体探测器技术二、核辐射探测在实际应用中的重要性核辐射探测在核工业、医疗诊断、环境监测等领域都有着重要应用。
下面将分别探讨核辐射探测在不同领域中的应用重要性:1. 核工业核工业是核能应用的主要领域之一,核辐射探测在核电站、核燃料生产及辐射监测等方面发挥着重要作用。
通过核辐射探测可以对核反应堆进行状态监测和辐射剂量测量,确保核电站的运转安全。
核辐射探测还可以用于核燃料的检测、测定和辐射保护等工作。
2. 医疗诊断核辐射在医疗领域的应用主要是核医学,如正电子发射断层扫描(PET)和单光子发射计算机断层摄影(SPECT)等。
核辐射探测可以用于医学显像和诊断,帮助医生准确判断患者的病情和疾病发展的情况,提高医疗治疗的准确性。
3. 环境监测核辐射探测在环境监测中的应用主要是通过辐射监测站测定环境中的核辐射水平,对环境的辐射水平进行监测和评估。
14.1 放射性测量统计规律14.2 核辐射探测器14.3能量测量与能量分辨14.4符合测量与时间分辨14.5辐射测量系统14.6主要技术指标14.1 放射性测量统计规律14.2 核辐射探测器人们必须借助于辐射探测器探测各种辐射,给出辐射的类型、强度、能量及时间等特性。
辐射探测器的定义:利用辐射在气体、液体或固体中引起的电离、激发效应及或其它物理、化学变化进行辐射探测的器件称为辐射探测器。
辐射探测的基本过程:1) 辐射粒子射入探测器的灵敏体积;2) 入射粒子通过电离、激发等效应而在探测器中沉积能量;3) 探测器通过各种机制将沉积能量转换成某种形式的输出信号。
辐射探测器按能量损失类型分类有基于核辐射在阻止介质中的电离效应构成最为庞大的电离型核辐射探测器,包括气体电离室、正比计数器、盖革—米勒计数管、半导体探测器、云室、火花室和径迹探侧器等;核辐射与物质相互作用使阻止介质的原于或分子激发,分解起着重要的作用,如闪烁探测器、核乳胶等。
探测器按其探测介质类型及作用机制主要分为气体探测器、闪烁探测器和半导体探测器三种。
1、气体探测器:气体探测器以气体为工作介质,由入射粒子在其中产生的电离效应引起输出信号的探测器。
气体探测器的突出优点:探测器灵敏体积大小和形状几乎不受限制,没有核辐射损伤或极易恢复以及运行经济可靠等。
气体探测器通常包括三类处于不同工作状态的探测器:电离室、正比空和雪崩室。
它们的共同特点是通过收集射线穿过工作气体时产生的电子—正离子对来获得核辐射的信息。
曲线显现五个不同区域:Ⅰ区:收集的离子对数目随收集电压而增加。
Ⅱ区:称饱和区或电离室区。
在Ⅱ区,收集电压实现了对射线粒子在工作气体中产生离离子对的完全收集,因而,在一定的电压变化范围内,收集离子对数目不随工作电压而变化,电离室就工作在这个区域。
带电粒子在气体中产生一离子对所需的平均能量w称为电离能。
对不同的气E,当其能量全部损失在气体介体,w大约在eV30上下。
核辐射检测测试原理
核辐射包括离子辐射和电磁辐射两种类型。
离子辐射包括α粒子、
β粒子和中子,电磁辐射包括γ射线和X射线。
核辐射的存在会对人体
和环境造成危害,因此需要进行核辐射检测来确保安全。
电离室是一种常用的核辐射探测器。
它由一个气体密封的空心金属容
器和电极组成。
当核辐射通过电离室时,会电离气体分子产生正、负电荷。
这些电荷在电场的作用下会分别移动到正、负电极上,产生电流。
通过测
量电流的大小,可以确定核辐射的强度。
比计数器是另一种常见的核辐射测量设备。
它由一个带有填充气体的
金属管和一个电路组成。
当核辐射通过填充气体时,会产生电离和激发。
电离和激发过程会产生光子,被光电倍增管吸收并产生电流。
通过测量电
流的大小,可以确定核辐射的水平。
闪烁体探测器通过材料吸收核辐射,将能量转化为可见光或可见光附
近的电磁辐射。
这种光在光电倍增管或光电二极管中产生电流或电荷,通
过测量电流或电荷的多少,可以确定核辐射的水平。
半导体探测器是一种基于半导体材料的核辐射检测技术。
它通过半导
体材料吸收核辐射,并在晶格中产生电离电子对。
通过应用电场,可以将
电离电子对分离,产生电流。
通过测量电流的大小,可以确定核辐射的水平。
在实际应用中,核辐射检测主要用于核电站和核工业中的辐射安全监测,医疗领域的放射医学设备监测,以及环境监测中的核辐射污染检测。
通过核辐射检测,可以确保辐射水平在安全范围内,从而保护人体健康和
环境安全。
第1章 光辐射探测的理论基础1-1 若取X 射线的波长为10-4μm ,分别计算X 射线和太赫兹波光子能量范围。
设想用太赫兹波进行人体透视检查,对人体有没有副作用?为什么?1-2* 用目视观察发射波长分别为435.8nm 和546.1nm 的两个发光体,它们的亮度相同,均为3cd /m 2。
如果在这两个发光体前分别加上透射比为10-4的光衰减器,问此时目视观察的亮度是否相同?为什么?(提示:利用图1-5分析)1-3 一支氦-氖激光器(波长为632.8nm)发出激光的功率为2mW 。
该激光束的平面发散角为1mrad ,激光器的放电毛细管直径为1mm 。
求该激光束的光亮度,并与太阳光在海平面的亮度比较。
1-4 一只白炽灯,假设各向发光均匀,悬挂在离地面1.5m 的高处,用照度计测得正下方地面上的照度为30lx ,求出该白炽灯的光通量。
、1-5* 试证明:N 型半导体受强光照射后突然停光,材料中的非平衡载流子随时间的变化关系为()()()1001p t p r p t ∆=∆∆+ 式中,()0p ∆为光照刚停时(t=0)的光生载流子浓度;r 为电子-空穴复合概率。
由此得到强注入条件下,载流子寿命为多少?它与弱注入条件时有何区别?1-6对于N 型半导体来说,以下说法正确的是( ): A 费米能级靠近于价带顶;B 空穴为多子;C 电子为少子;D 费米能级靠近导带底。
1-7 为什么量子效率一般小于1,而光电增益可以大于甚至远大于1?二者有何区别?1-8 PN 结加正向偏压,不利于结区光生电子-空穴对的分离,光电效应不明显,为什么?1-9 依据光照产生光电子是否逸出材料表面,光电效应可以分为内光电效应和外光电效应。
所学过的光电效应中,哪些属于内光电效应?哪些属于外光电效应?为什么外光电效应对应的截止波长比较短?1-10 何谓“白噪声” ? 何谓“1/f 噪声”?采用什么措施可降低电阻的热噪声和1/f 噪声?1-11 探测器的D *=1011cm·Hz 1/2·W -1,探测器光敏面的直径为0.5cm ,用于Δf = 5×103Hz 的光电仪器中,它能探测的最小辐射功率为多少?1-12 某一干涉测振仪的最高频率为20MHz ,选用探测器的时间常数应小于多少?1-13 某一金属光电发射体有2.5eV的逸出功,并且导带底在真空能级下7.5eV;试计算:(a)产生光电效应的长波限。
电感耦合等离子体发射光谱仪原理ICP电感耦合等离子体发射光谱仪-ICAP6300光谱仪工作原理:ICP(即电感耦合等离子体)是由高频电流经感应线圈产生高频电磁场,使工作气体(Ar)电离形成火焰状放电高温等离子体,等离子体的最高温度10000K。
试样溶液通过进样毛细管经蠕动泵作用进入雾化器雾化形成气溶胶,由载气引入高温等离子体,进行蒸发、原子化、激发、电离,并产生辐射,光源经过采光管进入狭缝、反光镜、棱镜、中阶梯光栅、准直镜形成二维光谱,谱线以光斑形式落在540×540个像素的CID检测器上,每个光斑覆盖几个像素,光谱仪通过测量落在像素上的光量子数来测量元素浓度。
光量子数信号通过电路转换为数字信号通过电脑显示和打印机打印出结果。
1、ICP-AES分析性能特点等离子体(Plasma)在近代物理学中是一个很普通的概念,是一种在一定程度上被电离(电离度大于0.1%)的气体,其中电子和阳离子的浓度处于平衡状态,宏观上呈电中性的物质。
电感耦合等离子体(ICP)是由高频电流经感应线圈产生高频电磁场,使工作气体形成等离子体,并呈现火焰状放电(等离子体焰炬),达到10000K的高温,是一个具有良好的蒸发-原子化-激发-电离性能的光谱光源。
而且由于这种等离子体焰炬呈环状结构,有利于从等离子体中心通道进样并维持火焰的稳定;较低的载气流速(低于1L/min)便可穿透ICP,使样品在中心通道停留时间达2~3ms,可完全蒸发、原子化;ICP环状结构的中心通道的高温,高于任何火焰或电弧火花的温度,是原子、离子的最佳激发温度,分析物在中心通道内被间接加热,对ICP放电性质影响小;ICP 光源又是一种光薄的光源,自吸现象小,且系无电极放电,无电极沾污。
这些特点使ICP光源具有优异的分析性能,符合于一个理想分析方法的要求。
一个理想的分析方法,应该是:可以多组分同时测定;测定范要围宽(低含量与高含量成分能同测定);具有高的灵敏度和好的精确度;可以适用于不同状态的样品的分析;操作要简便与易于掌握。
等离子体性质的测量王玉萌06300190034(复旦大学物理学系上海)【摘要】:通过DH2005型直流辉光等离子体试验装置进行对等离子体性质的测量,包括直流辉光伏安特性的测量、帕邢定律的验证以及郎缪尔双探针法测等离子体参数。
根据实验结果,讨论各种因素对等离子体性质的影响。
【关键词】:等离子体性质一、引言等离子体技术是一个关系国家能源、环境、国防安全的重要技术,在国内关于等离子体技术的研究和教学远远落后于等离子体技术在工程中的应用,具体体现在很多领域如微电子、光学镀膜等领域。
直流辉光等离子体教学实验装置在经典直流放电管的基础上加以改进,工作气体、工作气压、电极距离等参数均可单独或组合调控,从而利用该装置可以系统研究等离子体的激发原理和影响因素。
二、实验原理1、直流低压放电原理气体低压放电课分为三个阶段:暗放电、辉光放电和电弧放电。
其中各个阶段的放电在不同的应用领域有广泛的应用。
这三个阶段的划分从现象上来看是放电强度的不同,从内在因素来看是其放电电压和放电电流之间存在着显著差异。
经典的直流低气压放电在正常的辉光放电区示意图如图:从左至右,其唯象结果如下:阴极区:包括阴极,Aston暗区,阴极辉区和克洛克斯暗区。
负辉光区:整个放电管中最亮的区域。
其中电场相当低。
几乎全部电流由电子运载,电子在阴极区被加速产生电离,在负辉光区产生强爆发。
法拉第暗区:在这个区域里,由于在负辉光区里的电离和激发作用,电子能量很低。
净空间电荷很低,轴向电场也很小。
正电柱:正电柱是准中性的,电场很小,一般是1v/cm。
这种电场的大小刚好足以在它的阴极端保持所需的电离度。
空气中正电柱等离子体是粉红色至蓝色。
正电柱是一个长的均匀的辉光,是等离子体最均匀的部分,也是本实验中探针放置的位置。
阳极辉光区:阳极辉光区是在正电柱的阳极端的亮区,比正电柱稍亮一点,在各种低气压辉光放电中并不总有。
它是阳极鞘层的边界。
阳极暗区:阳极暗区在阳极辉光和阳极本身之间,他是阳极鞘层,他有一个负的空间电荷,是在电子从正电柱向阳极运动中引起的,其电场高于正电柱的电场。
等离子体光谱:等离子体光谱是指从等离子体内部发出的从红外到真空紫外波段的电磁辐射谱。
来源:它携带了大量有关等离子体复杂的原子过程的信息。
利用光谱学的原理和实验技术,并借助于等离子体的理论模型,测量分析等离子体光谱,对于等离子体的研究是有重要意义的。
包括:等离子体光谱主要是线状谱和连续谱。
线状谱是等离子体中的中性原子、离子等由其高能级的激发态跃迁到较低能级时所产生的,单个粒子发射的谱线强度主要决定于:①原子或离子的外层电子处于上能级的几率,②这种电子从上能级跃迁到下能级的跃迁几率,③光子在逸出等离子体之前被再吸收的几率。
但谱线的总强度与电子和离子的密度和温度有关,每条谱线有它自己的强度分布规律,因此从谱线强度的测量,结合理论模型和上述光谱中的原子数据,可以得到电子、离子的密度、温度等信息。
根据多普勒效应,从谱线波长的移动可确定等离子体的宏观运动速度。
连续谱是电子在其他粒子的势场中被加速或减速而产生的。
从连续光谱强度的测量,也可得到电子密度、温度等数据。
变化:随着等离子体温度的升高,如到达10度以上,原子的外层电子逐渐被剥落,形成各种离子态的离子,如CⅣ、CⅤ、OⅥ、NⅤ、FeⅪⅩ、TiⅪⅩ(Ⅰ为中性原子,Ⅱ、Ⅲ、Ⅳ、…为失去1、2、3、…个外层电子的离子)等。
这些高次电离的离子,其线状谱大都处在远紫外波段。
连续谱的情形,也是随着温度的升高,其发射强度的极大值往短波方向移动。
对于高温等离子体,如聚变高温等离子体,其工作物质是氢及其同位素氘和氚,但不可避免地会含有一些杂质,如C、O、Fe、Ti、Mo、W等元素,温度已达10度以上,这些杂质离子的光谱大部分是在真空紫外及X射线波段。
分析这些较重杂质的高次电离谱线的出现时间和位置,比较它们的强度,对这样高的温度的等离子体的参量测量、输运过程和等离子体的辐射损失等的研究都是很重要的。
尤其是对类氢、类氦离子的谱线强度的分析,更为有用,因为对于这些离子的原子数据较为完全。