控制系统的时域分析_一二阶时间响应讲述
- 格式:ppt
- 大小:1.56 MB
- 文档页数:51
控制系统的时域分析_一二阶时间响应讲述时域分析是控制系统理论中的重要内容,主要用于分析系统的时间响应。
在时域分析中,我们会关注系统的输入和输出之间的关系,并研究系统在时间上的性能指标和特征。
本文将重点讲述一阶和二阶系统的时间响应。
一、一阶系统的时间响应一阶系统是指系统的传递函数中只有一个一阶多项式的系统,其传递函数形式为:G(s)=K/(Ts+1)其中,K是系统的增益,T是系统的时间常数。
一阶系统的单位阶跃响应是常用的时间响应之一,通过对系统施加一个单位阶跃输入,可以得到系统的响应曲线。
单位阶跃输入可以表示为:u(t)=1由于一阶系统的传递函数是一个一阶多项式,因此它的拉普拉斯变换可以通过部分分式展开得到:G(s)=K/(Ts+1)=A/(s+1/T)通过进行拉普拉斯逆变换,可以得到系统的单位阶跃响应函数y(t):y(t) = K(1 - exp(-t/T))其中,exp(-t/T)为底数为e的指数函数,表示系统的响应曲线在t时刻的衰减程度。
从单位阶跃响应函数可以看出,一阶系统的时间常数T决定了系统的响应速度和衰减程度。
时间常数越小,系统的响应越快速,衰减程度也越快。
二、二阶系统的时间响应二阶系统是指系统的传递函数中有一个二阶多项式的系统,通常可以表示为:G(s) = K / (s^2 + 2ξω_ns+ω_n^2)其中,K是系统的增益,ξ是系统的阻尼比,ω_n是系统的自然频率。
二阶系统的时间常数和质量阻尼比是描述系统性能的重要参数。
时间常数决定了系统响应的速度,质量阻尼比则影响了系统的稳定性和衰减程度。
对于二阶系统的单位阶跃响应,可以通过拉普拉斯逆变换得到响应函数y(t):y(t) = K*(1 - (1-ξ^2)^0.5 * exp(-ξω_nt) * cos((1-ξ^2)^0.5 * ω_nt + φ))其中,φ为相位角,由初始条件和变量确定。
从单位阶跃响应函数可以看出,二阶系统的阻尼比ξ决定了系统的过阻尼、临界阻尼和欠阻尼的响应形式。
一阶电路和二阶电路的时域分析一、一阶电路的时域分析:一阶电路指的是由一个电感或电容与线性电阻串联或并联而成的电路。
对于串联的一阶电路,其特征方程为:L di(t)/dt + Ri(t) = V(t) ---------- (1)其中,L是电感的感值,R是电阻的电阻值,i(t)是电路中的电流,V(t)是电路中的输入电压。
通过对上述方程进行求解可以得到电路中电流与时间的关系。
对于并联的一阶电路,其特征方程为:1/R C dq(t)/dt + q(t) = V(t) ---------- (2)其中,C是电容的电容值,q(t)是电路中电荷的变化,V(t)是电路中的输入电压。
同样,通过对上述方程进行求解可以得到电路中电荷与时间的关系。
一阶电路的响应可以分为自由响应和强迫响应两部分。
自由响应指的是由于电路中初始条件的存在,电流或电荷在没有外部输入电压的情况下的变化。
强迫响应指的是由于外部输入电压作用而产生的电流或电荷的变化。
对于一个初始处于稳定状态的电路,在有外部输入电压作用时,电路中电流或电荷会从初始值开始发生变化,最终趋于一个新的稳定状态。
这一过程可以由电流或电荷的指数递减或递增的形式表示。
在分析一阶电路的时域特性时,可以利用巴塞尔函数法或拉普拉斯变换法。
巴塞尔函数法主要是通过巴塞尔函数的表达式计算电压或电流的变化情况;拉普拉斯变换法则通过将时域的微分方程转化为复频域的代数方程,然后求解代数方程,最后再对求得的结果进行逆变换获得电流或电压的表达式。
二、二阶电路的时域分析:二阶电路是指由两个电感或电容与线性电阻串联或并联而成的电路。
对于串联的二阶电路,其特征方程为:L₁L₂ d²i(t)/dt² + (L₁R₁+L₂R₂+L₁R₂+L₂R₁) di(t)/dt + R₁R₂i(t) = V(t) ---------- (3)其中,L₁和L₂分别是两个电感的感值,R₁和R₂分别是两个电阻的电阻值,i(t)是电路中的电流,V(t)是电路中的输入电压。
自动控制实验一一阶系统的时域分析二阶系统的瞬态响应实验目的:1.了解一阶系统的时域分析方法。
2.掌握二阶系统的瞬态响应特性。
3.学习使用实验仪器进行实验操作。
实验仪器和材料:1.一台一阶系统实验装置。
2.一台二阶系统实验装置。
3.示波器、函数发生器等实验仪器。
实验原理:一阶系统的时域分析:一阶系统的传递函数形式为:G(s)=K/(Ts+1),其中K为增益,T为系统的时间常数。
一阶系统的单位阶跃响应可以用下式表示:y(t)=K(1-e^(-t/T)),其中t为时间。
通过绘制单位阶跃响应曲线的方法可以得到一阶系统的时域参数。
二阶系统的瞬态响应:二阶系统的传递函数形式一般为:G(s) = K/(s^2 + 2ξωns +ωn^2),其中K为增益,ξ为阻尼系数,ωn为自然频率。
二阶系统的单位阶跃响应可以用下式表示:y(t) = (1 - D)e^(-ξωnt)cos(ωnd(t - φ)),其中D为过渡过程的衰减因子,φ为过渡过程的相角。
实验步骤:一阶系统的时域分析:1.将一阶系统实验装置连接好,并接通电源。
2.设置函数发生器的输出信号为单位阶跃信号,并将函数发生器连接到一阶系统实验装置的输入端。
3.调节函数发生器的幅值和时间参数,使得单位阶跃信号满足实验要求。
4.将示波器的探头连接到一阶系统实验装置的输出端。
5.调节示波器的时间和幅值参数,观察并记录单位阶跃响应信号。
6.根据记录的单位阶跃响应信号,计算得到一阶系统的时域参数。
二阶系统的瞬态响应:1.将二阶系统实验装置连接好,并接通电源。
2.设置函数发生器的输出信号为单位阶跃信号,并将函数发生器连接到二阶系统实验装置的输入端。
3.调节函数发生器的幅值和时间参数,使得单位阶跃信号满足实验要求。
4.将示波器的探头连接到二阶系统实验装置的输出端。
5.调节示波器的时间和幅值参数,观察并记录单位阶跃响应信号。
6.根据记录的单位阶跃响应信号,计算得到二阶系统的瞬态响应特性,包括过渡过程的衰减因子和相角。
仿真实验一:控制系统的时域分析一、实验目的:1.观察控制系统的时域响应;2.记录单位阶跃响应曲线;3.掌握时间响应分析的一般方法;4.初步了解控制系统的调节过程。
二、实验步骤:1.开机进入Matlab7.1运行界面。
2.Matlab指令窗:"Command Window". 运行指令:con_sys; 进入本次实验主界面。
3.分别双击上图中的三个按键,依次完成实验内容。
4.本次实验的相关Matlab函数:tf([num],[den])可输入一传递函数。
step(G,t)在时间范围t秒内,画出阶跃响应图。
三、实验内容:1.观察一阶系统G=1/(T+s) 的时域响应:取不同的时间常数T,分别观察该系统的脉冲响应、阶跃响应、斜坡响应以及单位加速度响应。
实验操作:打开一阶系统的时域性能分析软件,调节时间常数大小,分别选择脉冲响应、阶跃响应、斜坡响应、加速度响应,则会得到相应响应的曲线。
T=2.5899sT=7.6259sT=12.0863s1、二阶系统的时域性能分析:(1)调节时间滑块,使阶跃响应最终出现稳定值。
操作过程:打开二阶系统性能分析软件,调节时间滑块,使阶跃响应最终出现稳定值,得到响应响应曲线。
固定阻尼比和响应时间,调节自然频率,观察零极点分布图和阶跃响应的变化。
固定自然频率和响应时间,调节阻尼比,观察零极点分布图和阶跃响应的变化。
根据要求,调节出符合上升时间、峰值时间、调解时间、超调量的阶跃响应,记录此时的自然频率、阻尼比、响应时间。
在一定的自然频率和阻尼比的情况下,通过调节相应时间,阶跃响应最终出现稳定值。
增大响应时间,可以使调节时间、峰值时间缩短。
1)阻尼比和响应时间一定的条件下,调节自然频率,对零极点分布的阶跃响应的影响:应的影响:(2)结合系统的零极点图,观察自然频率与阻尼比对极点位置的影响。
当阻尼比和响应时间一定的条件下,改变自然频率,对极点位置有一定的影响。
由图可以观察出,增大自然频率,角度不变,但极点的实部和虚部数值都同时增大。