自动控制原理线性系统的时域分析法二阶系统
- 格式:ppt
- 大小:2.02 MB
- 文档页数:1
实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。
二、基础知识及MATLAB 函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。
为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。
本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。
用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。
由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。
1.用MATLAB 求控制系统的瞬态响应1)阶跃响应 求系统阶跃响应的指令有:step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随即绘出step(num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10)[y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。
考虑下列系统:25425)()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s的降幂排列。
则MATLAB 的调用语句:num=[0 0 25]; %定义分子多项式 den=[1 4 25]; %定义分母多项式step(num,den) %调用阶跃响应函数求取单位阶跃响应曲线grid %画网格标度线 xlabel(‘t/s’),ylabel(‘c(t)’) %给坐标轴加上说明 title(‘Unit -step Respinse of G(s)=25/(s^2+4s+25)’) %给图形加上标题名 则该单位阶跃响应曲线如图2-1所示:为了在图形屏幕上书写文本,可以用text 命令在图上的任何位置加标注。
实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、实验内容1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为146473)(2342++++++=s s s s s s s G可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。
2.对典型二阶系统2222)(nn n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标ss s p r p e t t t ,,,,σ。
2)绘制出当ζ=0.25, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数nω对系统的影响。
3.单位负反馈系统的开环模型为)256)(4)(2()(2++++=s s s s Ks G试判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。
三、实验报告1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为146473)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。
1) 程序代码如下: >> num=[1 3 7];den=[1 4 6 4 1 0]; impulse(num,den) grid曲线如下:2) 程序代码如下:num=[1 3 7 0]; den=[1 4 6 4 1 0]; step(num,den) grid曲线如下:2.对典型二阶系统2222)(nn n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标ss s p r p e t t t ,,,,σ。
二阶系统的时域分析二阶系统是指系统的传递函数为二次多项式的系统。
在控制工程中,常常会遇到这样一类系统,例如惯性系统、机械系统等。
对于这些二阶系统,我们不仅可以通过频域分析来研究其特性,还可以通过时域分析来了解其动态特性。
在进行二阶系统的时域分析时,可分为稳态分析和暂态分析两个方面。
稳态分析主要关注系统的稳定性、稳定偏差以及稳态响应等问题。
稳定性是指系统在输入信号恒定时是否能够收敛到一些有限的值。
对于二阶系统来说,稳定性分为两种情况:一是欠阻尼情况下的稳定性,二是过阻尼情况下的稳定性。
在欠阻尼情况下,系统的特征根是共轭复根,且位于单位圆内。
此时,系统的稳定性与初始条件无关,即系统总是能够收敛到稳态。
而且系统的稳态响应的振幅会发生一定的振荡,并随着时间逐渐减小。
该振荡的周期与系统的倍率有关,即与特征根的幅值有关。
在过阻尼情况下,系统的特征根是两个实根,分别对应着减震时间常数的倒数,且位于负实轴上。
此时,系统的稳态响应不会有振荡的情况发生,而是指数衰减的趋势。
稳态响应的衰减速率与特征根的位置有关,即与特征根的实部大小有关。
对于稳态偏差问题,我们可以通过查表法或直接计算法来求解。
稳态偏差是指系统在输入信号恒定时的输出值与预期值之间的差距。
通过分析系统的传递函数,我们可以得到系统的静态增益,从而计算出稳态偏差。
在暂态分析中,我们主要关注系统的动态响应,即系统在输入信号改变时的响应情况。
对于二阶系统来说,主要有两种典型的暂态响应情况:一是阻尼振荡响应,二是临界阻尼响应。
阻尼振荡响应是指系统在欠阻尼情况下的响应。
在这种情况下,系统会产生一定幅值的振荡,振荡的周期与系统的阻尼比有关,即与特征根的实部大小有关。
临界阻尼响应是指系统在特征根位于负实轴上时的响应。
此时,系统的响应既没有振荡也没有超调现象,而是以较快的速度趋近于稳态响应。
在实际工程中,我们可以通过使用MATLAB等软件工具来进行二阶系统的时域分析。
通过绘制系统的单位阶跃响应曲线、脉冲响应曲线以及动态响应曲线,并结合特征根分析法,可以对系统的动态特性进行深入研究。