第3章线性系统的时域分析习题答案
- 格式:doc
- 大小:1.04 MB
- 文档页数:9
第3章离散系统的时域分析3.1 复习笔记一、基本概念1.前向差分与后向差分一阶前向差分一阶后向差分2.差分方程包含未知序列及其各阶差分的方程式称为差分方程。
将差分展开为移位序列,得一般形式二、离散系统的时域分析与连续系统的时域分析类似,离散系统的时域分析也是分析求解系统响应的过程,全部在时间域里进行。
不同的是离散系统的数学模型是借助差分方程,求解系统响应常用两种方法:时域经典法与时域卷积和法。
1.经典解法与微分方程经典解类似,全解y(k)=齐次解y h(k)+特解y p(k)。
(1)齐次解y h(k)齐次解由齐次方程解出。
设差分方程的n个特征根为。
齐次解的形式取决于特征根,y h(k)又称自由响应。
①当特征根λ为单根时,齐次解y h(k)形式为:②当特征根λ为r重根时,齐次解y h(k)形式为:③有一对共轭复根,齐次解y h(k)形式为:,其中(2)特解y p(k)特解y p(k)的求解过程类同连续系统时求y p(t)的过程。
差分方程的齐次解又称为系统的自由响应,特解又称强迫响应。
2.卷积和法全响应y(k)=零输入响应y zi(k)+零状态响应y zs(k)其求解过程如下:①建立系统的差分方程;②特征值→求零输入响应y zi(k);③单位样值响应→利用卷积和求零状态响应y zs(k)=h(k)*f(k);④全响应y(k)=y zi(k)+y zs(k)。
三、零输入响应和零状态响应1.零输入响应y zi(k)激励为零时,仅由系统的初始状态引起的响应,若特征根为单根时,则零状态响应为起始条件代入上式求出。
2.零状态响应y zs(k)当系统的初始状态为零,仅由激励所产生的响应,若特征根为单根时,则零状态响应为y p(k)求法同经典解法一样。
由零状态条件用递推法导出,再代入上式求出。
系统的全响应既可以分解为自由响应和强迫响应,又可以分解为零输入响应和零状态响应。
四、单位序列响应和阶跃响应1.单位序列响应由单位序列δ(k)所引起的零状态响应,称为单位序列响应或单位样值响应或单位取样响应,或简称单位响应,记为h(k),即。
专业课习题解析课程西安电子科技大学844信号与系统专业课习题解析课程第1讲第一章信号与系统(一)专业课习题解析课程第2讲第一章信号与系统(二)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))(sin )(t r t f =(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε1-3 写出图1-3所示各波形的表达式。
第3章线性系统的时域分析与校正3.1 概述系统的数学模型建立后,便可对系统进行分析和校正。
分析和校正是自动控制原理课程的两大任务。
系统分析是由已知的系统模型确定系统的性能指标;校正是根据需要在系统中加入一些机构和装置并确定相应的参数,用以改善系统性能,使其满足所要求的性能指标。
系统分析的目的在于“认识”系统,系统校正的目的在于“改造”系统。
系统的分析校正方法一般有时域法、根轨迹法和频域法,本章介绍时域法。
3.1.1 时域法的作用和特点时域法是一种直接在时间域中对系统进行分析校正的方法,具有直观,准确的优点,它可以提供系统时间响应的全部信息,但在研究系统参数改变引起系统性能指标变化的趋势这一类问题,以及对系统进行校正设计时,时域法不是非常方便。
时域法是最基本的分析方法,该方法引出的概念、方法和结论是以后学习复域法、频域法等其他方法的基础。
3.1.2 时域法常用的典型输入信号要确定系统性能的优劣,就要在同样的输入条件激励下比较系统的行为。
为了在符合实际情况的基础上便于实现和分析计算,时域分析法中一般采用如表3-1中的典型输入信号。
3.1.3 系统的时域性能指标如第一章所述,对控制系统的一般要求归纳为稳、准、快。
工程上为了定量评价系统性能好坏,必须给出控制系统的性能指标的准确定义和定量计算方法。
稳定是控制系统正常运行的基本条件。
系统稳定,其响应过程才能收敛,研究系统的性能(包括动态性能和稳态性能)才有意义。
实际物理系统都存在惯性,输出量的改变是与系统所储有的能量有关的。
系统所储有的能量的改变需要有一个过程。
在外作用激励下系统从一种稳定状态转换到另一种稳定状态需要一定的时间。
一个稳定系统的典型阶跃响应如图3-1所示。
响应过程分为动态过程(也称为过渡过程)和稳态过程,系统的动态性能指标和稳态性能指标就是分别针对这两个阶段定义的。
表3-1 时域分析法中的典型输入信号名称)(tr时域关系时域图形)(sR复域关系例单位脉冲函数⎩⎨⎧≠=∞=)(tttδ⎰=1)(dttδdtd1s⨯撞击作用后坐力电脉冲单位阶跃函数⎩⎨⎧<≥=1)(1ttts1开关输入单位斜坡函数⎩⎨⎧<≤=)(ttttf21s等速跟踪信号单位加速度函数⎪⎩⎪⎨⎧<≥=21)(2ttttf31s1 动态性能系统动态性能是以系统阶跃响应为基础来衡量的。
第三章 线性系统的时域分析与校正习题及答案3-1 已知系统脉冲响应t 25.1e 0125.0)t (k -=,试求系统闭环传递函数)s (Φ。
解 [])25.1s /(0125.0)t (k L )s (+==Φ3-2 设某高阶系统可用下列一阶微分方程)t (r )t (r )t (c )t (c T +τ=+∙∙近似描述,其中,1)T (0<τ-<。
试求系统的调节时间s t 。
解 设单位阶跃输入ss R 1)(=当初始条件为0时有:1T s 1s )s (R )s (C ++τ= 1Ts T s 1s 11Ts 1s )s (C +τ--=⋅++τ=∴ T/t e T T 1)t (h )t (c -τ--== T )0(h τ=,1)(h =∞,20T T )]0(h )(h [05.0τ-=-∞=∆求 s tT/t s s e TT 1)0(h )]0(h )(h [95.0)t (h -τ--=+-∞= 3T 05.ln0T t s ==∴3-2 一阶系统结构如图所示。
要求单位阶跃输入时调节时间4.0t s ≤s (误差带为5%),稳态 输出为2,试确定参数21k ,k 的值。
解 由结构图写出闭环系统传递函数1k k sk 1k k s k sk k 1s k )s (212211211+=+=+=Φ闭环增益2k 1k 2==Φ, 得:5.0k 2= 令调节时间4.0k k 3T 3t 21s ≤==,得:15k 1≥。
3-4 在许多化学过程中,反应槽内的温度要保持恒定, 下图(a )和(b )分别为开环和闭环温度控制系统结构图,两种系统正常的K 值为1。
解 (1)对(a )系统: 1s 1011s 10K )s (G a +=+=, 时间常数 10T =632.0)T (h = (a )系统达到稳态温度值的63.2%需要10秒;对(b )系统:1s 10110101100101s 10100)s (b+=+=Φ, 时间常数 10110T = 632.0)T (h = (b )系统达到稳态温度值的63.2%需要0.099秒。
第3章线性系统的时域分析学习要点1控制系统时域响应的基本概念,典型输入信号及意义;2控制系统稳定性的概念、代数稳定判据及应用;3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算;4高阶系统时域分析中主导极点和主导极点法;5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。
思考与习题祥解题思考与总结下述问题。
(1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。
ω对二阶系统阶跃响应特性的影响规律。
(2)总结ξ和n(3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。
(4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响(5)系统误差与哪些因素有关试归纳减小或消除系统稳态误差的措施与方法。
(6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。
请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关答:(1)二阶系统特征根在复平面上分布情况如图所示。
图 二阶系统特征根在复平面上的分布当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。
当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是以n ω为半径的圆弧,如图中情况②。
当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。
当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。
(2)ξ和n ω是二阶系统的两个特征参量。
ξ是系统阻尼比,描述了系统的平稳性。
当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。
当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。
ξ越小,二阶系统振荡性越强,平稳性越差;ξ越大,二阶系统振荡性越弱,平稳性越好。
因此,二阶系统的时域性能指标超调量由ξ值唯一确定,即001_100%2⨯=-πξξσe。
《控制工程基础C》作业——适用于测控技术与仪器专业(48学时,含6学时实验)说明:以胡寿松主编《自动控制理论简明教程》为教材,习题的页码以该教材为准。
第一章自动控制概论(参考教材第一章控制系统导论)1-1(P14,1-1)图1-16是液位自动控制系统原理示意图。
在任意情况下,希望液面高度c维持不变,试说明系统工作原理并画出系统方块图。
图1-16 液位自动控制系统1-2(P16,1-5)图1-5是电炉温度控制系统原理示意图。
试分析系统保持电炉温度恒定的工作过程,指出系统的被控对象、被控量以及各部件的作用,最后画出系统方块图。
图1-5 温度控制系统的原理图第二章 控制系统的数学模型(参考教材第二章控制系统的数学模型) 2-1(P81,2-5)设弹簧特性由下式描述:F=12.65y 1.1,其中,F 是弹簧力;y 是变形位移。
若弹簧在形变位移0.25附近作微小变化,试推导Δy 的线性化方程。
2-2(P81,2-7)设系统传递函数为:2()2()32C s R s s s =++,且初始条件 (0)1(0)0c c =-=, 。
试求阶跃输入r (t )=1(t )时,系统的输出响应c (t )。
2-3(P81,2-8)如图,已知G(s)和H(s)两方框相对应的微分方程分别是:()610()20()dc t c t e t dt += ()205()10()db t b t c t dt+=且初始条件均为零,试求传递函数C(s)/R(s)及E(s)/R(s)。
2-4(P82,2-11(a )(b )(c ))已知控制系统结构图如图所示。
试通过结构图等效变换求系统传递函数C(s)/R(s)。
(a )(b )(c )2-5(p82,2-12(a ))试简化图中的系统结构图,并求系统传递函数C(s)/R(s)和C(s)/R(s)。
()N s2-6(p83,2-15(b )、(c ))试用梅森增益公式求图中各系统信号流图的传递函数C(s)/R(s)。
第三章 线性系统的时域分析与校正习题及答案3-1 已知系统脉冲响应t e t k 25.10125.0)(-=试求系统闭环传递函数)(s Φ。
解 Φ()()./(.)s L k t s ==+00125125 3-2 设某高阶系统可用下列一阶微分方程T c t c t r t r t ∙∙+=+()()()()τ近似描述,其中,1)(0<-<τT 。
试证系统的动态性能指标为 T T T t d ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=τln 693.0t T r =22. T T T t s ⎥⎦⎤⎢⎣⎡-+=)ln(3τ 解 设单位阶跃输入ss R 1)(=当初始条件为0时有:11)()(++=Ts s s R s C τ 11111)(+--=⋅++=∴Ts T s s Ts s s C ττC t h t T Te t T()()/==---1τ 1) 当 t t d = 时h t T Te t td ()./==---051τ12=--T T e t T d τ/ ; T t T T d -⎪⎭⎫ ⎝⎛-=-τln 2ln ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴T T T t d τln 2ln2) 求t r (即)(t c 从1.0到9.0所需时间)当 Tt e TT t h /219.0)(---==τ; t T T T 201=--[ln()ln .]τ 当 Tt e TT t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21090122ln ... 3) 求 t sTt s s e TT t h /195.0)(---==τ ]ln 3[]20ln [ln ]05.0ln [ln TT T T T T T T T t s τττ-+=+-=--=∴3-3 一阶系统结构图如图3-45所示。
要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。
第3章 控制系统的时域分析【基本要求】1. 掌握时域响应的基本概念,正确理解系统时域响应的五种主要性能指标;2. 掌握一阶系统的数学模型和典型时域响应的特点,并能熟练计算其性能指标和结构参数;3. 掌握二阶系统的数学模型和典型时域响应的特点,并能熟练计算其欠阻尼情况下的性能指标和结构参数;4. 掌握稳定性的定义以及线性定常系统稳定的充要条件,熟练应用劳斯判据判定系统稳定性;5. 正确理解稳态误差的定义,并掌握系统稳态误差、扰动稳态误差的计算方法。
微分方程和传递函数是控制系统的常用数学模型,在确定了控制系统的数学模型后,就可以对已知的控制系统进行性能分析,从而得出改进系统性能的方法。
对于线性定常系统,常用的分析方法有时域分析法、根轨迹分析法和频域分析法。
本章研究时域分析方法,包括简单系统的动态性能和稳态性能分析、稳定性分析、稳态误差分析以及高阶系统运动特性的近似分析等。
根轨迹分析法和频域分析法将分别在本书的第四章和第五章进行学习。
这里先引入时域分析法的基本概念。
所谓控制系统时域分析方法,就是给控制系统施加一个特定的输入信号,通过分析控制系统的输出响应对系统的性能进行分析。
由于系统的输出变量一般是时间t 的函数,故称这种响应为时域响应,这种分析方法被称为时域分析法。
当然,不同的方法有不同的特点和适用范围,但比较而言,时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。
3.1 系统的时域响应及其性能指标为了对控制系统的性能进行评价,需要首先研究系统在典型输入信号作用下的时域响应过程及其性能指标。
下面先介绍常用的典型输入信号。
3.1.1 典型输入信号由于系统的动态响应既取决于系统本身的结构和参数,又与其输入信号的形式和大小有关,而控制系统的实际输入信号往往是未知的。
为了便于对系统进行分析和设计,同时也为了便于对各种控制系统的性能进行评价和比较,需要假定一些基本的输入函数形式,称之为典型输入信号。
第三章 线性系统的时域分析与校正习题及答案3-1 已知系统脉冲响应t e t k 25.10125.0)(-=试求系统闭环传递函数)(s Φ。
解 Φ()()./(.)s L k t s ==+00125125 3-2 设某高阶系统可用下列一阶微分方程T c t c t r t r t ••+=+()()()()τ近似描述,其中,1)(0<-<τT 。
试证系统的动态性能指标为 T T T t d ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=τln 693.0t T r =22. T T T t s ⎥⎦⎤⎢⎣⎡-+=)ln(3τ 解 设单位阶跃输入ss R 1)(= 当初始条件为0时有:11)()(++=Ts s s R s C τ 11111)(+--=⋅++=∴Ts T s s Ts s s C ττC t h t T Te t T()()/==---1τ 1) 当 t t d = 时h t T Te t td ()./==---051τ12=--T T e t T d τ/ ; Tt TT d-⎪⎭⎫ ⎝⎛-=-τln 2ln ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴T T T t d τln 2ln2) 求t r (即)(t c 从1.0到9.0所需时间)当 Tt eTT t h /219.0)(---==τ; t T T T 201=--[ln()ln .]τ 当 Tt eTT t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21090122ln ... 3) 求 t sTt s s eTT t h /195.0)(---==τ ]ln 3[]20ln [ln ]05.0ln [ln TT T T T T T T T t s τττ-+=+-=--=∴3-3 一阶系统结构图如图3-45所示。
要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。
第3章 线性系统的时域分析学习要点1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用;3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法;5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。
思考与习题祥解题 思考与总结下述问题。
(1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。
【(2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。
(3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。
(4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响(5)系统误差与哪些因素有关试归纳减小或消除系统稳态误差的措施与方法。
(6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。
请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关答:(1)二阶系统特征根在复平面上分布情况如图所示。
图 二阶系统特征根在复平面上的分布当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。
当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是以n ω为半径的圆弧,如图中情况②。
@当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。
当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。
(2)ξ和n ω是二阶系统的两个特征参量。
ξ是系统阻尼比,描述了系统的平稳性。
当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。
当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。
ξ越小,二阶系统振荡性越强,平稳性越差;ξ越大,二阶系统振荡性越弱,平稳性越好。
因此,二阶系统的时域性能指标超调量由ξ值唯一确定,即001_100%2⨯=-πξξσe 。
在工程设计中,对于恒值控制系统,一般取ξ=~;对于随动控制系统ξ=~。
n ω是系统无阻尼自然振荡频率,反映系统的快速性。
当ξ一定,二阶系统的时域性能指标调节时间与n ω值成反比,即34s nt ξω≈。
(3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。
所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。
(4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。
&(5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。
如果是扰动误差还与扰动作用点有关。
因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。
无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。
(6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。
若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。
这一点可以通过误差表达式分析得到。
题系统特征方程如下,试判断其稳定性。
(a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s!解:(a )稳定; (b )稳定; (c )不稳定。
题 系统结构如题图所示。
控制器)11()(sT K s G i p c +=,为使该系统稳定,控制器参数p K 、i T 应满足什么关系题图解:闭环系统特征方程为:025.0)25.01(152=+++p p i i K s K T s T 所以系统稳定的条件是⎩⎨⎧>>00pi K T ; ⎩⎨⎧<<-<040p i K T%题 设单位反馈系统的开环传递函数为()(10.2)(10.1)KG s s s s =++,要求闭环特征根的实部均小于-1,求K 值应取的范围。
解:系统特征方程为0)1.01)(2.0.1(=++K s s s要使系统特征根实部小于1-,可以把原虚轴向左平移一个单位,令1+=s w ,即 1-=w s ,代入原特征方程并整理得072.046.024.002.023=-+++K w w w 运用劳斯判据,最后得24.672.0<<K题 设单位反馈系统的开环传递函数为|12 )1()(23++++=s s s s K s G α若系统以2rad/s 频率持续振荡,试确定相应的K 和α值解:可以利用Routh 判据或其它方法解答。
系统的闭环传递函数()32(1)()2(1)K s s s as K s K +Φ=+++++闭环特征方程()322(1)0s as K s K +++++=利用Routh 判据。
作Routh 表如下: 3s 1 K +22s a K +1 1s [(2)1]/a K K a +-- 《s K +1 系统持续振荡的条件是1[(2)1]/02Ka K K a a K++--=→=+ 210410as K a K ++=→-++=所以2=K , 75.0=α题 单位反馈系统的开环传递函数)5(4)(+=s s s G ,求单位阶跃响应()c t 和调节时间t s 。
解:依题,系统闭环传递函数)1)(1(4)4)(1(4454)(212T s T s s s s s s ++=++=++=Φ,其中 121,0.25T T ==。
41)4)(1(4)()()(210++++=++=Φ=s C s C s C s s s s R s s C1)4)(1(4lim)()(lim 000=++=Φ=→→s s s R s s C s s 34)4(4lim)()()1(lim 011-=+=Φ+=→-→s s s R s s C s s 31)1(4lim)()()4(lim 042=+=Φ+=→-→s s s R s s C s s 单位阶跃响应441()133t t c t e e --=-+421=T T, ∴3.33.3111==⎪⎪⎭⎫ ⎝⎛=T T T t t s s 。
题机器人控制系统结构如题图所示。
试确定参数21,K K 值,使系统阶跃响应的峰值时间5.0=p t s ,超调量%2%=σ。
/题图解:依题,系统闭环传递函数为222121212112)1()1()1(1)1()(n n n s s K K s K K s K s s s K K s s K s ωξωωΦΦ++=+++=++++=由 ⎪⎩⎪⎨⎧=-=≤=--5.0102.0212np oo t e ωξπσξπξ 联立求解得⎩⎨⎧==1078.0nωξ 比较)(s Φ分母系数得⎪⎩⎪⎨⎧=-===146.0121001221K K K n n ξωω题 系统结构如题图所示。
(1) 当025,0f K K ==时,求系统的动态性能指标%σ和s t ; [(2) 若使系统0.5ξ=,单位速度误差0.1ss e =时,试确定0K 和f K 值。
题图解:按题思路合方法,可解得(1)%25.4%1.75ts σ==(2)0100,6f K K ==题 已知质量-弹簧-阻尼器系统如题 (a) 图所示,其中质量为m 公斤,弹簧系数为k 牛顿/米,阻尼器系数为μ牛顿秒/米,当物体受F = 10牛顿的恒力作用时,其位移y (t )的的变化如图(b)所示。
求m 、k 和μ的值。
F)t图(a) 图(b)(题图解:系统的微分方程为 :()()()()m y t y t ky t F t μ++=系统的传递函数为 :221()1()()Y s m G s kF s ms s k s s m mμμ===++++因此 221110(()()mG Y s F s k ms s k s s s m mμμ==⨯++++ 利用拉普拉斯终值定理及图上的稳态值可得:002110()lim ()lim 0.06s s m y sY s s k ss s m mμ→→∞==⨯=++所以 10/ k = ,从而求得k = N/m由系统得响应曲线可知,系统得超调量为0.02/0.0633.3%σ==,由二阶系统性能指标的计算公式100%33.3%e ξπσ-=⨯= 解得 0.33ξ=由响应曲线得,峰值时间为3s ,所以由~3p t ==解得 1.109/n rad s ω= 由系统特征方城22220n n ks s s s mmμξωω++=++= 可知2n mμξω=2nk mω= 所以22166.7135.51.109n km kg ω=== 220.33 1.109135.599.2/(/)n m N m s μξω==⨯⨯⨯=·题 已知一控制系统的结构如题图,1) 确定该系统在输入信号()1()r t t =下的时域性能指标:超调量%σ,调节时间s t 和峰值时间p t ;2) 当()21(),()4sin3r t t n t t =⋅=时,求系统的稳态误差。
题图解:1)系统的开环传递函数为:288()(4)(2)68G s s s s s ==++++系统的闭环传递函数为28()616G s s s =++比较 二阶系统的标准形式222()2nn n G s s s ωξωω=++,可得 4n ω=!而26n ξω=,所以0.75ξ=1.795p t s ==100% 2.8%e ξπσ-==31(5%)s nt s ξω==∆= 2)由题意知,该系统是个线性系统,满足叠加原理,故可以分别求取,()21()r t t =⋅和()4sin 3n t t =分别作用于系统时的稳态误差1ess 和2ess ,系统的稳态误差就等于12ess ess ess =+。
A ) ()21()r t t =⋅单独作用时,由系统的开环传递函数知,系统的开环增益1k K =,所以系统对()21()r t t =⋅的稳态误差1ess 为:11211kess K =⨯=+ B ) ()4sin 3n t t =单独作用时,系统的方块图为图。
图 题用图 系统的闭环传递函数为:28(4)()616e s W s s s +=++频率特性为:28(4)()616e j W j j ωωωω+=+-当系统作用为()4sin 3n t t =时,3ω=,所以28(34)3224(3) 2.0763163718e j jW j j j++===⨯+-+ 2418(3)arctan arctan -0.5564327e W j ∠=-=系统的输出为:24(3)sin(3(3))8.56sin(30.5564)e e ess W j t W j t =⨯+∠=-所以系统的误差为:18.56sin(30.5564)ess t =+-/题 已知一个n 阶闭环系统的微分方程为r b r b y a ya y a y a y a n n n n 0101)2(2)1(1)(+=+++++-- 其中r 为输入,y 为输出,所有系数均大于零。