植树问题封闭图形的植树问题1
- 格式:ppt
- 大小:3.63 MB
- 文档页数:49
第七单元 植树问题(1)两端都种:棵数=间隔数+1(2)两端不种:棵数 = 间隔数-1(4)封闭图形:棵树 = 间隔数(3)一端种一端不种:棵数 =间隔数知识点一:两端都栽的植树问题植树问题基本解决思路:间隔数=总长÷间隔距离两端都栽:棵数=间隔数+1知识点二:两端都不栽的植树问题两端不栽:棵数=间隔数-1知识点三:封闭图形的植树问题一端栽一端不栽:棵数=间隔数在一条首尾相接的封闭曲线上植树,所需棵数与间隔数“一一对应”,相当于线段上一端栽一端不栽的情况。
【易错典例1】在一条长300米的公路两边种树,每隔5米种一棵(两端都种).一共种()棵树.A.61B.121C.122【思路引导】利用植树问题公式:如果植树路线的两边与两端都植树,那么植树的棵数应比要分的段数多1,再乘2,即:棵数=(段数+1)×2.根据植树棵数先求段数:300÷5=60(段),然后求植树棵数:(60+1)×2计算即可.【完整解答】解:(300÷5+1)×2=(60+1)×2=61×2=122(棵)答:一共种树122棵.故选:C.【考察注意点】本题主要考查植树问题,关键是分清段数和植树棵数的关系做题.【易错典例2】(•红安县期末)一个圆形水池的周长为150米,沿池边每隔37.5米安盏观景灯,一共要安装4盏观景灯.【思路引导】根据题意,在圆形上植树,植树的棵数与间隔数相等,直接用150除以37.5即可.【完整解答】解:根据题意可得:150÷37.5=4(盏)答:一共需要装4盏灯.故答案为:4.【考察注意点】在封闭线路上植树,棵数与间隔数相等,即:棵数=间隔数.【易错典例3】操场上等距离放了8张课桌,把相邻的两张课桌用一段绳子连接起来,一共要准备7段绳子.【思路引导】根据题意相当于两端都不植树的问题,用课桌的张数减去1,就是一共要准备的绳子的段数.【完整解答】解:8﹣1=7(段)答:一共要准备7段绳子.【考察注意点】如果植树线路的两端都不植树,那么植树的棵数比要分的段数少1,即:棵数=间隔数﹣1.【易错典例4】为庆祝“六一“儿童节,学校在48米长的走廊两边摆鲜花,现在从走廊的一头开始,每隔4米摆一盆鲜花,直至走廊另一头,一共要摆多少盆鲜花?【思路引导】先看一边,据题意可知,走廊长48米,每隔4米摆一盆花,也就是48米被平均分成4米长的若干小段,花摆在分点上;所以间隔数是48÷4=12个;又因为两端都摆花,所以盆数等于段数加1;然后再乘2就可求出两边的花盆数.【完整解答】解:(48÷4+1)×2=13×2=26(盆)答:一共要摆26盆鲜花.【考察注意点】此题属于植树问题.解答此类题(两端都植树)的关键要知道:植树的棵数应比要分的段数多1,即:棵数=间隔数+1.一.选择题1.(•眉山月考)一条马路长440米,在路的两旁每隔8米植一颗树,两端都要植,共植了()棵。
五年级上7.2封闭图形的植树问题《五年级上 72 封闭图形的植树问题》在我们的日常生活中,植树是一项非常有意义的活动。
而在数学世界里,植树问题也是一个有趣且实用的知识领域。
今天,让我们一起来探索五年级上册 72 节中封闭图形的植树问题。
首先,我们来明确一下什么是封闭图形。
封闭图形就像是一个圆圈,或者是一个长方形、正方形等,它们的首尾是相连的,没有开口。
比如说,一个圆形的花坛,一个正方形的池塘四周,这都属于封闭图形。
那么在封闭图形中植树,又有什么规律和特点呢?我们先来看一个简单的例子。
假设有一个圆形的花坛,周长是 20 米,每隔 5 米种一棵树,那么一共能种多少棵树呢?我们来算一算。
因为是在封闭图形上植树,所以树的数量和间隔的数量是相等的。
这个圆形花坛的周长是 20 米,每隔 5 米一个间隔,那么间隔数就是 20÷5 = 4(个),所以树的数量也是 4 棵。
再比如一个正方形的池塘,边长是 12 米,每隔 3 米种一棵树,四个角都种,一共要种多少棵树呢?我们先算出每条边的间隔数:12÷3 = 4(个)。
因为正方形有四条边,所以总间隔数就是 4×4 = 16(个)。
但是要注意,由于四个角的树都被重复计算了一次,所以实际上树的数量就是 16 4 = 12(棵)。
通过这两个例子,我们可以总结出封闭图形植树问题的公式:植树的棵数=间隔数。
那为什么在封闭图形中,植树的棵数会等于间隔数呢?这其实很好理解。
想象一下我们围着一个圆形的操场跑步,起点和终点是重合的。
在这种情况下,跑过的间隔数和经过的位置数是一样的。
植树也是同样的道理,在封闭图形上,树就相当于跑步时经过的位置,间隔就相当于跑过的距离。
掌握了封闭图形的植树问题,对我们的生活也有很大的帮助呢。
比如说,在规划一个公园的时候,如果要在湖边种一排树,知道了湖的周长和树的间隔距离,就能很快算出需要种多少棵树,从而合理安排预算和人力。
再比如,要在一个圆形的广场周围安装路灯,如果知道了广场的周长和路灯之间的间隔,也能轻松算出需要安装多少盏路灯,让广场在夜晚能够明亮又美观。
5-1-3.植树问题(一)教学目标1.封闭与非封闭植树路线的讲解及生活运用。
2.掌握空心方阵和实心方阵的变化规律.3.几何图形的设计与构造知识点拨一、植树问题分两种情况:(一)不封闭的植树路线.①若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距之间的关系就为:棵数=段数1+=全长÷株距1+全长=株距⨯(棵数1-)株距=全长÷(棵数1-)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长=株距⨯棵数;棵数=段数=全长÷株距;株距=全长÷棵数.③如果植树路线的两端都不植树,则棵数就比②中还少1棵.全长、棵数、株距之间的关系就为:棵数=段数1-=全长÷株距1-.株距=全长÷(棵数1+).全长=株距⨯(棵数+1)(二)封闭的植树路线.在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数. 全长、棵数、株距之间的关系就为:棵数=段数=周长÷株距.二、解植树问题的三要素(1)总路线长(2)间距(棵距)长(3)棵数,只要知道这三个要素中任意两个要素,就可以求出第三个.三、方阵问题(1)明确空心方阵和实心方阵的概念及区别.(2)每边的个数=总数÷41+”;(3)每向里一层每边棋子数减少2;(4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。
例题精讲【例 1】大头儿子的学校旁边的一条路长400米,在路的一边从头到尾每隔4米种一棵树,一共能种几棵树?【考点】直线上的植树问题【难度】1星【题型】解答【解析】从图上可以看出,每隔4米种一棵树,如果20米长的路的一边共种了6棵树,这是因为我们首先要在这条路的一端种上一棵,就是说种树的棵树要比间距的个数多1,所以列式为:400÷4+1=101(棵). 【答案】101棵【巩固】在一条长240米的水渠边上植树,每隔3米植1棵。
假期思维题: 类型一:植树问题植树问题要注意以下情况:1、两侧:两侧都种; 一侧种,另一侧不种。
2、两端的分类情况: 两端都种:棵树=空数+1一端种,另一端不种:棵数=空数两端都不种:棵数=空数-13、封闭图形:棵数=空数7月1日1、 马路的一侧种树,且两端都种。
若每隔5米种一棵树,马路长30米,一共能种多少棵树?2、 马路的两侧种树,且两端都种。
若每隔5米种一棵树,一共能种20棵树,马路长多少米?7月2日马路的一侧安路灯。
(1) 一端有路灯,另一端没有,若每隔4米安一盏灯,马路长40米,可以安多少盏灯?(2) 两端都没有路灯,若每隔6米安一盏灯,共安12盏灯,马路长多少米?7月3日学校有一个圆形水池。
(1) 水池外的周长是40米。
如果绕着水池每隔4米种一棵树,一共能种多少棵树?(2) 水池内的周长为30米。
如果绕着水池内共有10个换水孔,且相邻两个换水孔的距离相等,相邻的两个换水孔间的距离是多少米?7月4日有如图三条马路。
现在要在马路的一侧种树,且每条马路的两端都种树。
已知北路长40米,5米种一棵树,一共能种多少棵树?7月道路两侧插红旗,且两端都要插。
若每隔6米插一面,马路有24米,一共要插多少面红旗? 7月6日马路的两侧种树,且两端都不种。
若每隔3米种一棵树,马路有30米,一共要种多少棵树? 7月7日鸟巢外一周共有1000米,绕着鸟巢的一周有灯和树。
(1) 如果每两盏灯之间的距离是5米,鸟巢外一周有多少盏灯?(2) 如果鸟巢外共有250棵树,且相邻两棵树的距离相等,相邻两棵树之间的距离是多少米?7月8日在如图所示的两条马路的一侧安路灯,且每条马路的两端都不安路灯,若每隔9米安一盏路盏路灯,已知北路长81米,西路长多少米?。
封闭植树问题公式
封闭图形的植树问题的公式是棵数=间隔数、棵树=周长÷间距、棵树=长度÷间距+1(两端都栽)、棵树=长度÷间距-1(两端都不栽)、棵树=长度÷间距(一端栽、一端不栽)。
在封闭图形上进行植树,段数等于株数,满足的公式和直线型仅在路的一端植树是一样的:株数=段数=全长÷株距,全长=株距×株数,株距=全长÷株数。
解植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。
将封闭图形“化曲为直”后,发现封闭图形和在不封闭图形“一头种”中棵数和间隔数的关系是一样的,都是棵数等于间隔数。
请注意,在解答具体问题时,应结合题目的实际情况选择合适的公式进行计算。