局部应力应变法
- 格式:ppt
- 大小:4.36 MB
- 文档页数:37
疲劳强度设计对承受循环应力的零件和构件,根据疲劳强度理论和疲劳试验数据,决定其合理的结构和尺寸的机械设计方法。
机械零件和构件对疲劳破坏的抗力,称为零件和构件的疲劳强度。
疲劳强度由零件的局部应力状态和该处的材料性能确定,所以疲劳强度设计是以零件最弱区为依据的。
通过改进零件的形状以降低峰值应力,或在最弱区的表面层采用强化工艺,就能显著地提高其疲劳强度。
在材料的疲劳现象未被认识之前,机械设计只考虑静强度,而不考虑应力变化对零件寿命的影响。
这样设计出来的机械产品经常在运行一段时期后,经过一定次数的应力变化循环而产生疲劳,致使突然发生脆性断裂,造成灾难性事故。
应用疲劳强度设计能保证机械在给定的寿命内安全运行。
疲劳强度设计方法有常规疲劳强度设计、损伤容限设计和疲劳强度可靠性设计。
简史19 世纪40 年代,随着铁路的发展,机车车轴的疲劳破坏成为非常严重的问题。
1867年,德国A.沃勒在巴黎博览会上展出了他用旋转弯曲试验获得车轴疲劳试验结果,把疲劳与应力联系起来,提出了疲劳极限的概念,为常规疲劳设计奠定了基础。
20 世纪40 年代以前的常规疲劳强度设计只考虑无限寿命设计。
第二次世界大战中及战后,通过对当时发生的许多疲劳破坏事故的调查分析,逐渐形成了现代的常规疲劳强度设计,它非但提高了无限寿命设计的计算精确度, 而且可以按给定的有限寿命来设计零件,有限寿命设计的理论基础是线性损伤积累理论。
早在1924年,德国A.帕姆格伦在估算滚动轴承寿命时,曾假定轴承材料受到的疲劳损伤的积累与轴承转动次数(等于载荷的循环次数)成线性关系,即两者之间的关系可以用一次方程式来表示。
1945 年,美国M.A. 迈因纳根据更多的资料和数据,明确提出了线性损伤积累理论,也称帕姆格伦-迈因纳定理。
随着断裂力学的发展,美国 A.K. 黑德于1953 年提出了疲劳裂纹扩展的理论。
1957年,美国P.C.帕里斯提出了疲劳裂纹扩展速率的半经验公式。
1引言局部应力应变法是在缺口应变分析和低周疲劳基础上发展起来的一种疲劳寿命估算方法,因此,它特别适用于低周疲劳。
而推广应用于高周疲劳时,由于它没有考虑表面加工和尺寸等因素的影响(这些因素对低周疲劳无影响,而对高周疲劳的影响则是不可忽视的),就存在一些明显的不足,因此,本文对局部应力应变法应当如何考虑表面加工等因素的影响问题进行了专门研究。
另外,单轴载荷下的局部应力应变法已经比较成熟,而多轴应力下的局部应力应变法则研究较少,很不成熟。
为了能将局部应力应变法成功地应用于多轴疲劳,本文还对多轴应变下的局部应力应变法进行了研究。
2多轴应变下的局部应力应变法2.1对称循环对于结构钢,可使用单轴载荷下的方法,分别得出第一主应力方向、第二主应力方向和第三主应力方向的局部应变-时间历程和局部应力-时间历程,并对最大主应力用雨流法或有效系数法进行循环计数,判别出一系列封闭的滞回环。
再根据每个滞回环的三个主应变范围值,按第四强度理论或第三强度理论进行等效应变范围计算及寿命估算。
2.1.1按第四强度理论等效应变εq的表达式为:(1)式中:ε1、ε2、ε3——第1、第2和第3主应变;ν——泊松比。
将上式改写为应变范围的形式,可得:(2)令:(3)则得:(4)再将单轴载荷下的应变-寿命曲线中的Δε用等效应变范围Δεq取代,并与式(3)联立可得:(5)上式右侧第一项为弹性分量,其ν值等于0.3;而第二项为塑性分量,其ν值等于0.5。
这样便可以将第一项的ν值以0.3代入,第二项的ν值以0.5代入。
于是,上式可以变为:(6)由式(4)可知,Δε′q与ν值无关,因此就可以很方便地利用式(6)进行寿命估算,式(6)便是第四强度理论的多轴疲劳应变-寿命曲线。
在进行损伤计算时,需要使用Δεqp/Δεqe值,Δεqp为等效塑性应变范围,Δεqe为等效弹性应变范围,它们用下面方法算出:对峰谷点分别用下式计算等效应力范围Δσq:(7)则:(8)对于Δεqp,可以先由式(3)得:Δε′q=(1+ν)Δεq=1.3Δεqe+1.5Δεqp从而可得:(9)进行损伤计算的方法和所采用的损伤式均与单轴应力相同,只须在计算时以Δεqe代替Δεe,Δεqp代替Δεp,并以式(6)代替单轴载荷下的应变-寿命曲线。
本次毕业设计论文的内容是涡轮叶片高低周疲劳分析方法的总结与对比。
涡轮叶片是航空发动机工作环境最恶劣 ,结构最复杂的零件之一 ,也是发动机断裂故障多发件之一。
由于发动机工作时涡轮叶片始终在高温下承受复合载荷的作用,因此它的高周疲劳寿命和低周疲劳寿命的计算至关重要。
高周疲劳是指破坏循环数大于104~105的疲劳,高周疲劳的情况下,其应力水平低于弹性极限,没有明显的宏观塑性变形,应力与应变呈线性关系。
低周疲劳是指破坏循环数小于104~105的疲劳,低周疲劳的情况下,其应力水平高于弹性极限,有明显的宏观塑性变形,应力与应变呈非线性关系。
在《高周疲劳和低周疲劳统一的能量表征方法研究》一文中,对高周疲劳和低周疲劳预测模型进行了研究,提出了一种能够将高周疲劳和低周疲劳统一表征的能量形式参量。
用统一的能量形式表征参量对高温合金GH141的760摄氏度高周疲劳和低周疲劳数据进行处理,得到理想的能量-寿命方程。
用1Cr11Ni2W2MoV 钢500摄氏度和粉末盘材料FGH95d 600摄氏度高温低周疲劳和高周疲劳数据对统一表征方法进行验证,验证结果表明,用能量形式的表征参量能够得到理想的能量-寿命方程。
疲劳试验通常可以通过控制应变或控制应力来进行。
按照控制方式可以将疲劳分为应力疲劳和应变疲劳。
材料发生了塑性变形进入屈服阶段后,小的应力变化将引起大的变形,此时进行疲劳试验时多采用应变控制,材料的疲劳寿命一般比较短,因此通常也叫低周疲劳而当材料在没有进入屈服阶段前,采用应力和采用应变都可以进行疲劳试验,通常控制应力来进行疲劳实验,材料的疲劳寿命一般比较长,因此,通常也叫高周疲劳。
三参数幂函数能量方法寿命预测模型:采用应力控制的方式进行高周疲劳实验,用应力参量来表征高周疲劳的寿命特征;采用应变控制的方式进行低周疲劳实验,用应变参量或能量参量来表征低周疲劳的寿命特征。
如果能够用能量参量来表征高周疲劳的寿命特征,那就可以将高周疲劳和低周疲劳统一起来用一个表征参量进行表征,从而就不需将疲劳划分为高周疲劳和低周疲劳,但能量表征同时需要应力和应变参量。
局部应力应变分析法在静态方法中,常用的局部应力应变分析方法有三种:线弹性解法、非线性有限元法和局部拉伸演变法。
线弹性解法是指基于线弹性材料模型进行的应力应变分析。
该方法适用于线弹性材料,在局部区域内根据材料的线弹性特性,通过求解弹性力学方程得到应力和应变的分布情况。
非线性有限元法是指通过有限元分析方法,考虑材料的非线性特性进行的应力应变分析。
该方法适用于材料存在非线性行为的情况,可以更准确地描述材料的应力和应变分布。
局部拉伸演变法是指通过对材料进行局部拉伸或压缩,观察材料的应力应变行为,推断材料的局部应力应变分布。
该方法适用于对材料进行局部应变实验的情况,可以直接观测到材料的应力和应变的分布情况。
在动态方法中,常用的局部应力应变分析方法有高速摄影、应变计和激光光弹法。
高速摄影是指采用高速摄影技术对材料或结构进行快速动态观测,通过观察影像的变化来分析局部应力应变分布。
该方法适用于高速冲击或振动实验,可以直观地观察到材料或结构的应力和应变分布情况。
应变计是一种用于测量材料或结构应变的传感器。
通过将应变计安装在材料或结构的局部区域,可以测量该区域的应变,并根据线弹性理论求解应力分布。
该方法适用于对局部应变进行精确测量的情况,可以得到较准确的局部应力应变分布。
激光光弹法是一种利用激光照射材料或结构,通过测量激光的反射或散射来分析材料的应力应变分布的方法。
该方法适用于光学材料或结构,可以非接触地获取材料或结构的应力和应变分布情况。
综上所述,局部应力应变分析法是研究材料或结构在局部区域的应力和应变分布的一种方法。
通过静态方法和动态方法,可以使用不同的分析技术来研究局部应力应变分布。
这些方法在工程设计和材料研究中具有广泛的应用,可以帮助工程师和科学家更好地理解材料和结构的性能,并进行相应的设计和改进。
疲劳寿命分析方法摘要:本文简单介绍了在结构件疲劳寿命分析方法方面国内外的发展状况,重点讲解了结构件寿命疲劳分析方法中的名义应力法、局部应力应变法、应力应变场强度法四大方法的估算原理。
疲劳是一个既古老又年轻的研究分支,自Wohler将疲劳纳入科学研究的范畴至今,疲劳研究仍有方兴未艾之势,材料疲劳的真正机理与对其的科学描述尚未得到很好的解决。
疲劳寿命分析方法是疲分研究的主要内容之一,从疲劳研究史可以看到疲劳寿命分析方法的研究伴随着整个历史。
金属疲劳的最初研究是一位德国矿业工程帅风W.A.J.A1bert在1829年前后完成的。
他对用铁制作的矿山升降机链条进行了反复加载试验,以校验其可靠性。
1843年,英国铁路工程师W.J.M.Rankine对疲劳断裂的不同特征有了认识,并注意到机器部件存在应力集中的危险性。
1852年-1869年期间,Wohler对疲劳破坏进行了系统的研究。
他发现由钢制作的车轴在循环载荷作用下,其强度人大低于它们的静载强度,提出利用S-N 曲线来描述疲劳行为的方法,并是提出了疲劳“耐久极限”这个概念。
1874年,德国工程师H.Gerber开始研究疲劳设计方法,提出了考虑平均应力影响的疲劳寿命计算方法。
Goodman讨论了类似的问题。
1910年,O.H.Basquin提出了描述金属S-N曲线的经验规律,指出:应力对疲劳循环数的双对数图在很大的应力范围内表现为线性关系。
Bairstow通过多级循环试验和测量滞后回线,给出了有关形变滞后的研究结果,并指出形变滞后与疲劳破坏的关系。
1929年B.P.Haigh研究缺口敏感性。
1937年H.Neuber指出缺口根部区域内的平均应力比峰值应力更能代表受载的严重程度。
1945年M.A.Miner 在J.V.Palmgren工作的基础上提出疲劳线性累积损伤理论。
L.F.Coffin和S.S.Manson各自独立提出了塑性应变幅和疲劳寿命之间的经验关系,即Coffin—Manson公式,随后形成了局部应力应变法。
疲劳寿命预测方法很多。
按疲劳裂纹形成寿命预测的基本假定和控制参数,可分为名义应力法、局部应力一应变法、能量法、场强法等。
2.4.1.1名义应力法名义应力法是以结构的名义应力为试验和寿命估算的基础,采用雨流法取出一个个相互独立、互不相关的应力循环,结合材料的S -N曲线,按线性累积损伤理论估算结构疲劳寿命的一种方法。
基本假定:对任一构件(或结构细节或元件),只要应力集中系数K T相同,载荷谱相同,它们的寿命则相同。
此法中名义应力为控制参数。
该方法考虑到了载荷顺序和残余应力的影响,简单易行。
但该种方法有两个主要的不足之处:一是因其在弹性范围内研究疲劳问题,没有考虑缺口根部的局部塑性变形的影响,在计算有应力集中存在的结构疲劳寿命时,计算误差较大;二是标准试样和结构之间的等效关系的确定十分困难,这是由于这种关系与结构的几何形状、加载方式和结构的大小、材料等因素有关。
正是因为上述缺陷,使名义应力法预测疲劳裂纹的形成能力较低,且该种方法需求得在不同的应力比R和不同的应力集中因子K T下的S-N曲线,而获得这些材料数据需要大量的经费。
因而名义应力法只适用于计算应力水平较低的高周疲劳和无缺口结构的疲劳寿命。
近年来,名义应力法也在不断的发展中,相继出现了应力严重系数法(S. ST)、有效应力法、额定系数法(DRF)等。
2.1.2.2局部应力一应变法局部应力一应变法的基本思想是根据结构的名义应力历程,借助于局部应力-应变法分析缺口处的局部应力。
再根据缺口处的局部应力,结合构件的S-N曲线、材料的循环。
一曲线、E -N曲线及线性累积损伤理论,估算结构的疲劳寿命。
基本假定:若一个构件的危险部位(点)的应力一应变历程与一个光滑小试件的应力一应变历程相同,则寿命相同。
此法中局部应力一应变是控制参数。
局部应力一应变法主要用于解决高应变的低周疲劳和带缺口结构的疲劳寿命问题。
该方法的特点是可以通过一定的分析、计算将结构上的名义应力转化为缺口处的局部应力和应变。
航空飞行器用减压阀特性研究方法探析杨星1严洪英2(1.国营第570厂四川宜宾644000;2.海军装备部四川宜宾644000)摘要:复杂的航空环境对航空器用减压阀的特性、振动、噪声及疲劳寿命特性等提出了更高的要求。
本文针对目前国内外军用航空器用减压阀在设计和使用过程中的静、动态特性分析方法,以及振动、噪声和疲劳寿命设计等进行整理和分析,并针对我国目前航空器用减压阀疲劳寿命设计方法和疲劳损伤积累理论等进行综述。
综合国内外发展历程和发展现状,数值仿真和工程计算技术的发展使得目前特性研究方法已经日渐成熟。
关键词:航空器减压阀特性振动和噪声疲劳寿命中图分类号:V228文献标识码:A文章编号:1674-098X(2021)08(b)-0004-05Brief Analysis of Research Methods on the Characteristics of Pressure Reducing Valve for Aviation AircraftYANG Xing1YAN Hongying2(1.State Owned No.570Plant,Yibin,Sichuan Province,644000China;2.Equipment Department of People'sLiberation Army Navy,Yibin,Sichuan Province,644000China)Abstract:The complex aviation environment puts forward higher requirements on the characteristics,vibration, noise and fatigue life characteristics of aircraft pressure reducing valves.In this paper,the static and dynamic characteristic analysis methods,vibration,noise and fatigue life design of pressure reducing valves for military aircraft at home and abroad are sorted and analyzed,and the fatigue life design methods and fatigue damage accumulation theory of pressure reducing valves for aircraft in China are summarized.The development of numerical simulation and engineering calculation technology makes the characteristic research methods mature day by day.Key Words:Aviation aircraft;Pressure reducing valve;Characteristic;Vibration and noise;Fatigue life静态分析和动态分析是航空用减压阀特性分析的两个重要方面。
局部应力应变法传统的局部应力应变法以Manson 一Coffin 公式为材料疲劳性能曲线.以应力集中处的局部点应力作为衡量结构受载严重程度的参数.这一方法在大应变低寿命时与实际情况符合很好.但进人高周疲劳,由于Manson 一Coffin 公式与实验结果的差距逐渐增大,由于缺口根部塑性的消失而使应力梯度变大,致使传统的局部应力应变法过低地估计了结构的疲劳寿命.就实际工程结构而育,通常受到随机载荷的作用,在大多数情况下,载荷谱中的高载处于低周疲劳阶段,大多数的中低级载荷处于高周疲劳阶段,所以寻找一个同时适用于高周和低周疲劳寿命估算的方法是其有很大实际意义的。
( ε-f N ) 曲线是是重要的材料疲劳性能曲线,在局部应力应变法中,它是结构疲劳寿命估算的基本性能数据。
传统的局部应力应变法采用Manson-Coffin 公式来描述''(2)(2)f b c a f f f N N E σεε=+ (1)Manson-Coffin 公式虽然在工程上得到了广泛的应用,但也存在着一些严重的不足:①大多数金属材料按Manson-Coffin 分解后的塑性线不能很好地用直线来拟合,而是向下弯曲的曲线;②Manson-Coffin 公式仅适用于解决低周疲劳寿命的计算,而在高周疲劳时计算出的寿命与实验结果相差较大;③当(1)式中的 f N 趋于无穷时,ε趋于零,即Manson-Coffin 公式没有反映出的疲劳极限,这与实际情况不符。
文献[1]针对传统的局部应力应变法存在的这两个缺陷,提出解决这一问题的方法:用等效应变一寿命曲线或四参数应变一寿命曲线替换Manson 一Coffin 公式,用更合适的缺口疲劳系数或缺口场强度来描述缺口受载的严重程度,希望将传统的局部应力应变法推广到高周疲劳寿命的估算。
四参数(ε-f N )曲线:在中高疲劳区(1)式已不太适用,文献[2]提出了一个四参数的(ε-f N )曲线拟合公式2013lg(/)lg *ln{}lg(/)t f t A N A A A εε∆=+∆ (2) 式中:为四个回归参数。
第6章局部应力应变分析法局部应力应变分析法是一种常用于研究材料力学行为的方法。
它通过对材料局部区域的应力应变分布进行分析,可以揭示材料的应力集中、强化、局部损伤等性质。
在材料力学行为中,通过施加外力,材料会产生应力和应变。
当外力作用在材料的其中一个局部区域时,这个局部区域会发生应力集中现象。
应力集中会导致局部应变的增大,进而可能引起材料的局部破坏。
因此,研究局部应力应变分布对于了解局部区域的强度和稳定性至关重要。
局部应力应变分析法首先需要确定所研究的局部区域。
可以通过实验和数值模拟等方法,对材料在不同应力条件下的局部区域进行观测和测量。
在实验中,可以利用光学、电子显微镜等仪器对材料进行观察;在数值模拟中,可以利用有限元分析等方法进行模拟计算。
在确定了局部区域后,局部应力应变分析法可以通过测量和计算的方法来分析局部区域的应力应变分布。
在实验中,可以使用应力计、应变计等仪器来测量应力和应变的大小;在数值模拟中,可以通过有限元分析等方法来计算应力和应变的数值。
通过对局部应力应变分布的分析,可以得到一些重要的结论。
首先,可以了解材料在局部区域的应力集中程度。
应力集中的程度越大,材料的强度和稳定性越低,可能会发生局部破坏。
其次,可以了解材料在局部区域的应力强化情况。
材料的局部区域在受力作用下,可能会发生应力强化,增加材料的强度和稳定性。
最后,可以了解材料在局部区域的局部损伤情况。
材料在受到外力作用时,可能会发生局部破坏,通过分析应力应变分布可以得到这些破坏的位置和形态。
总之,局部应力应变分析法是一种重要的研究材料力学行为的方法。
通过对材料局部区域的应力应变分布进行分析,可以揭示材料的应力集中、强化、局部损伤等性质。
这些研究结果对于材料的设计和应用具有重要的指导意义。
抗疲劳制造原理与技术概论一、抗疲劳制造定义1964年国际标准化组织(ISO)在《金属疲劳试验的一般原理》中给疲劳下了一个描述性定义: 金属材料在应力或应变的反复作用下所发生的性能变化叫疲劳。
所谓的抗疲劳制造技术是指在不改变零件材料和截面尺寸的前提下,通过在制造工艺过程中改变材料的组织及应力分布状态来提高零部件疲劳寿命的制造技术。
这种技术的一个突出的特点是不改变零件的结构和材料,不增加材料重量,但能大幅度提高材料的疲劳寿命。
二、抗疲劳制造设计与制造的重要性在现代工业各个领域中,大约有50-90%以上的结构强度破坏都是由于疲劳破坏造成的,如轴、曲轴、连杆、齿轮、弹簧、螺栓、压力容器、海洋平台、汽轮机叶片和焊接结构等,很多机械零部件的结构件的主要破坏方式都是疲劳,而且遍布在工业、交通、军事等要害部门,给航空、造船、交通运输、动力机械、化工机械、工程机械等工业造成严重威胁[1-2] 。
因此,认识疲劳,了解疲劳破坏的机理,探求抗疲劳制造的方法并去指导现代工业技术的发展,已经成为现代工业生产中的重要课题。
三、抗疲劳制造技术的原理疲劳是一个非常复杂的过程,疲劳寿命受许多因素的影响,其中包括零件表面残余应力、表面显微组织、缺口效应、尺寸效应、表面效应、材料静强度以及腐蚀环境等多种因素。
一些对材料或构件的静态特性影响很小的因素,结构如构件和的表面状态、缺口形式等,在疲劳现象中却起到非常显著的作用。
因此,提高金属材料抗疲劳性能应主要从以下四方面来进行:(l)合理选材,注意零件的细节设计,提高加工精度和降低表面粗糙度,尽量减少形成应力集中的各种因素。
(2)在金属材料表层,特别是局部应力集中的薄弱部位引人高的残余压应力。
(3)细化材料的表层显微组织,细化亚晶粒,减少材料内部的非金属夹杂物,提高冶炼精度。
(4)在保证芯部具有足够强度的前提下,提高材料表层的硬度和强度,抑制在循环应力作用下表层产生局部塑性形变。
四、疲劳设计方法1、无限寿命设计法。