典型局部应力
- 格式:ppt
- 大小:1.20 MB
- 文档页数:15
应力集中的概念及其避免措施现今社会,由于应力集中造成构件断裂,产生疲劳,对结构安全危害大。
了解应力集中,并找出其避免措施,对人们的生活具有重大的意义。
首先,先让我们了解一下应力与应力集中的概念,应力即受力物体截面上内力的集度,即单位面积上的内力。
公式记为σ=F/S(其中,σ表示应力;ΔFj表示在j 方向的施力;ΔAi表示在i 方向的受力面积)。
材料在交变应力作用下产生的破坏称为疲劳破坏。
通常材料承受的交变应力远小于其静载下的强度极限时,破坏可能发生。
另外材料会由于截面尺寸改变而引起应力的局部增大,这种现象称为应力集中。
对于由脆性材料制成的构件,应力集中现象将一直保持到最大局部应力到达强度极限之前。
因此,在设计脆性材料构件时,应考虑应力集中的影响。
对于由塑性材料制成的构件,应力集中对其在静载荷作用下的强度则几乎无影响。
所以,在研究塑性材料构件的静强度问题时,通常不考虑应力集中的影响。
承受轴向拉伸、压缩的构件,只有在寓加力区域稍远且横截面尺寸又无剧烈变化的区域内,横截面上的应力才是均匀分布的。
然而实际工程构件中,有些零件常存在切口、切槽、油孔、螺纹等,致使这些部位上的截面尺寸发生突然变化。
如开有圆孔和带有切口的板条,当其受轴向拉伸时,在圆孔和切口附近的局部区域内,应力的数值剧烈增加,而在离开这一区域稍远的地方,应力迅速降低而趋于均匀。
这时,横截面上的应力不再均匀分布,这已为理论和实验证实。
在静荷载作用下,各种材料对应力集中的敏感程度是不同的。
像低碳钢那样的塑性材料具有屈服阶段,当孔边附近的最大应力达到屈服极限时,该处材料首先屈服,应力暂时不再增大。
如外力继续增加,增加的应力就由截面上尚未屈服的材料所承担,是截面上其他点的应力相继增大到屈服极限,该截面上的应力逐渐趋于平均,如图2-32所示。
因此,用塑性材料制作的零件,在静载荷作用下可以不考虑应力集中的影响。
而对于组织均匀的脆性材料,因材料不存在屈服,当孔边最大应力的值达到材料的强度极限时,该处首先断裂。
应力的定义当材料在外力作用下不能产生位移时,它的几何形状和尺寸将发生变化,这种形变称为应变(Strain)。
材料发生形变时内部产生了大小相等但方向相反的反作用力抵抗外力,定义单位面积上的这种反作用力为应力(Stress)。
或物体由于外因(受力、湿度变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并力图使物体从变形后的位置回复到变形前的位置。
在所考察的截面某一点单位面积上的内力称为应力(Stress)。
按照应力和应变的方向关系,可以将应力分为正应力σ 和切应力τ,正应力的方向与应变方向平行,而切应力的方向与应变垂直。
按照载荷(Load)作用的形式不同,应力又可以分为拉伸压缩应力、弯曲应力和扭转应力。
应力的分类同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。
应力会随着外力的增加而增长,对于某一种材料,应力的增长是有限度的,超过这一限度,材料就要破坏。
对某种材料来说,应力可能达到的这个限度称为该种材料的极限应力。
极限应力值要通过材料的力学试验来测定。
将测定的极限应力作适当降低,规定出材料能安全工作的应力最大值,这就是许用应力。
材料要想安全使用,在使用时其内的应力应低于它的极限应力,否则材料就会在使用时发生破坏。
有些材料在工作时,其所受的外力不随时间而变化,这时其内部的应力大小不变,称为静应力;还有一些材料,其所受的外力随时间呈周期性变化,这时内部的应力也随时间呈周期性变化,称为交变应力。
材料在交变应力作用下发生的破坏称为疲劳破坏。
通常材料承受的交变应力远小于其静载下的强度极限时,破坏就可能发生。
另外材料会由于截面尺寸改变而引起应力的局部增大,这种现象称为应力集中。
对于组织均匀的脆性材料,应力集中将大大降低构件的强度,这在构件的设计时应特别注意。
物体受力产生变形时,体内各点处变形程度一般并不相同。
用以描述一点处变形的程度的力学量是该点的应变。
为此可在该点处到一单元体,比较变形前后单元体大小和形状的变化。
应力集中手册应力集中手册:为您解读和应对应力集中现象一、引言应力集中是材料工程中的重要概念,它指的是在结构中产生局部应力的现象。
应力集中会导致材料的破坏,影响结构的安全性和可靠性。
为了帮助工程师和研究人员更好地理解和解决应力集中问题,我们编写了这本应力集中手册。
二、什么是应力集中应力集中是指在结构中存在局部应力异常集中的现象。
通常,这种集中是由结构形状、应力加载方式、材料性质等因素造成的。
当应力集中超过材料的强度极限时,就会引发结构的破坏。
应力集中的常见表现形式包括孔洞、凹槽、棱角、接头等局部几何形状。
三、应力集中的危害应力集中会引起结构的局部断裂、裂纹扩展以及永久变形等问题。
这不仅降低了结构的强度和刚度,还可能导致结构的失效。
在工程实践中,应力集中是常见的结构失效原因之一。
四、应力集中的分析与计算为了准确评估和解决应力集中问题,我们需要进行应力分析和计算。
常用的方法包括有限元方法、应力集中系数法和应力分布法。
这些方法可以帮助我们定量地评估结构中的应力集中程度,并设计合适的改善措施。
五、应对应力集中问题的措施针对不同类型的应力集中问题,我们可以采取一系列的改善措施。
例如,可以通过增加结构的强度、改变结构的几何形状、优化材料的选择等方式来减轻应力集中的影响。
此外,合理的工艺控制和结构设计也可以有助于降低应力集中。
六、应力集中的实例分析本手册还包含了一些典型的应力集中实例分析,如孔洞、凹槽和接头等。
通过这些实例,读者可以更好地理解应力集中的原因、危害以及解决方法。
七、结语应力集中是一个复杂的问题,在工程实践中具有重要的意义。
这本应力集中手册旨在为工程师、设计师和研究人员提供一份全面的指南,帮助他们更好地理解和应对应力集中现象,提高结构的安全性和可靠性。
希望这本手册能为广大读者带来帮助,并在工程实践中发挥积极的作用。
1 内应力产生在注塑制品中,各处局部应力状态是不同的,制品变形程度将决定于应力分布。
如果制品在冷却时。
存在温度梯度,则这类应力会发展,所以这类应力又称为“成型应力”。
注塑制品的内应力包两种:一种是注塑制品成型应力,另一种是温度应力。
当熔体进入温度较低的模具时,靠近模腔壁的熔体讯速地冷却而固化,于是分子链段被“冻结”。
由于凝固的聚合物层,导热性很差,在制品厚度方向上产生较大的温度梯度。
制品心部凝固相当缓慢,以致于当浇口封闭时,制品中心的熔体单元还未凝固,这时注塑机又无法对冷却收缩进行补料。
这样制品内部收缩作用与硬皮层作用方向是相反的;心部处于静态拉伸而表层则处于静态压缩。
在熔体充模流动时,除了有体积收缩效应引起的应力外。
还有因流道,浇口出口的膨胀效应而引起的应力;前一种效应引起的应力与熔体流动方向有关,后者由于出口膨胀效应将引起在垂直于流动方向应力作用。
2 影响愉应力的工艺因素(1)向应力的影响在速冷条件下,取向会导致聚合物内应力的形成。
由于聚合物熔体的粘度高,内应力不能很快松驰,影响制品的物理性能和尺寸稳定性。
各参数对取向应力的影响a熔体温度,熔体温度高,粘度低,剪切应力降低取向度减小;另一方面由于熔体温度高会使应力松驰加快,促使解取向能力加强。
可是在不改变注塑机压力的情况下,模腔压力会增大,强剪切作用又导致取向应力的提高。
b在喷嘴封闭以前,延长保压时间,会导致取向应力增加。
c提高注射压力或保压压力,会增大取向应力,d模具温度高可保证制品缓慢冷却,起到解取向作用。
e增加制品厚度使取向应力降低,因为厚壁制品冷却时慢,粘度提高慢,应力松驰过程的时间长,所以取向应力小。
(2)对温度应力的影响如上所述由于在充模时熔体和型壁之间温度梯度很大,先凝固的外层熔体要助止后凝固的内层熔体的收缩,结果在外层产生压应力(收缩应力),内层产生拉应力(取向应力)。
如果充模后又在保压压力的作用下持续较长时间,聚合物熔体又补入模腔中,使模腔压力提高,此压力会改变由于温度不均而产生的内应力。
弹塑性⼒学应⼒应变关系应⼒应变都是物体受到外界载荷产⽣的响应。
物体由于受到外界载荷后,在物体内部各部分之间要产⽣互相之间的⼒的作⽤,由于受到⼒的作⽤就会产⽣相应的变形;或者由于变形引起相应的⼒的作⽤。
则⼀定材料的物体其产⽣的应⼒和应变也必然存在⼀定的关系。
在⼒学上由于平衡⽅程仅建⽴了⼒学参数(应⼒分量与外⼒分量)之间的关系,⽽⼏何⽅程也仅建⽴了运动学参数(位移分量与应变分量)之间的连系。
所以平衡⽅程与⼏何⽅程是两类完全相互独⽴的⽅程,它们之间还缺乏必要的联系,这种联系即应⼒和应变之间的关系。
有了可变形材料应⼒和应变之间关系和⼒学参数及运动学参数即可分析具体的⼒学问题。
由平衡⽅程和⼏何⽅程加上⼀组反映材料应⼒和应变之间关系的⽅程就可求解具体的⼒学问题。
这样的⼀组⽅程即所谓的本构⽅程。
讨论应⼒和应变之间的关系即可变为⼀定的材料建⽴合适的本构⽅程。
⼀.典型应⼒-应变关系图1-1 典型应⼒-应变曲线1)弹性阶段(OC段)该弹性阶段为初始弹性阶段OC(严格讲应该为CA’),包括:线性弹性分阶段OA段,⾮线性弹性阶段AB段和初始屈服阶段BC 段。
该阶段应⼒和应变满⾜线性关系,⽐例常数即弹性模量或杨⽒模量,记作:εσE =,即在应⼒-应变曲线的初始部分(⼩应变阶段),许多材料都服从全量型胡克定律。
2)塑性阶段(CDEF 段)CDE 段为强化阶段,在此阶段如图1中所⽰,应⼒超过屈服极限,应变超过⽐例极限后,要使应变再增加,所需的应⼒必须在超出⽐例极限后继续增加,这⼀现象称为应变硬化。
CDE 段的强化阶段在E 点达到应⼒的最⾼点,荷载达到最⼤值,相应的应⼒值称为材料的强度极限(ultimate strength ),并⽤σb 表⽰。
超过强度极限后应变变⼤应⼒却下降,直到最后试件断裂。
这⼀阶段试件截⾯积的减⼩不是在整个试件长度范围发⽣,⽽是试件的⼀个局部区域截⾯积急剧减⼩。
这⼀现象称为“颈缩”(necking )。
百度文库- 让每个人平等地提升自我东北石油大学课程综合实践(二)课程过程设备设计题目典型局部应力学院机械科学与工程学院专业班级装备12-2班学生姓名李早东学生学号指导教师林玉娟2014年5月11日目录第一章局部应力 (1)1.局部应力的计算方法与概述 (1)WRC方法 (1)介质压力引起的应力计算 (3)强度评定 (3)欧盟的压力容器标准EN13445 (4)有限元法 (4)第二章补强分析 (5)2.降低局部应力的方法与措施 (5)直立容器支承式支座处的强度校核 (5)支座处封头的局部载荷 (5)支座处封头截面上的应力 (6)支座处封头的强度校核条件 (9)补强措施 (10)第三章结束语 (12)第一章局部应力1.局部应力的计算方法与概述压力容器除了承受介质压力载荷外,常常还要受到附件传来的其他外载荷。
通过支座、托架、吊耳等附件传来的载荷,主要是设备的自重及其内部物料等静重;通过接管传来的载荷主要是管道和管系反力、重量以及由于受热膨胀引起的推力和力矩。
这些载荷对壳体的影响虽仅限于附件与壳体连接处附近的局部区域,但常会产生较高的局部应力。
除外载荷产生的局部应力外,介质压力载荷还将在附件与壳体连接区产生另外一些局部应力,如局部薄膜应力、弯曲应力,以及截面尺寸突变的转角处的应力集中。
外载荷应力和介质压力载荷应力的联合作用将会使附件和壳体连接区域成为压力容器发生破坏的主要根源。
因此,计算外载荷作用下附件和壳体中的局部应力就显得十分重要,但是由于问题的非对称性,对局部应力作完整的理论计算过于复杂,对于实际设计往往不便于应用。
目前,对于压力容器壳体上由接管外载荷引起的局部应力的计算,主要有以Bijlaard理论为基础的两种方法:一是美国焊接研究协会(WRC)第107公报和有关补充规定WRC第297公报介绍的方法;二是英国压力容器设计标准BS550附录G建议的方法。
随着压力容器向高参数化发展和分析设计方法的广泛采用,要求进行局部应力计算和采用分析设计法进行强度评定的压力容器会越来越多,故本文在对WRC107方法理解基础上,对一高压反应器底封头上由接管载荷引起的局部应力作了详细计算,并按分析设计原理对接管和封头连接区的应力进行了强度评定,以便对工程中同类结构的局部应力计算、强度评定及压力容器分析设计方法的应用提供一定的参考。
应力集中的实例-回复应力集中的实例是指在材料或结构中存在一些几何形状或载荷引起的应力集中现象。
当材料或结构遭受外部力作用时,应力会随着受力部位的几何形状的变化而产生集中现象。
这种集中现象会导致局部的应力增加,进而引发材料的破坏或结构的失效。
下面我将以“桥梁支座的应力集中”为例,详细解释应力集中的原理以及对结构的影响。
桥梁是人类重要的交通工程之一,而其中的支座是桥梁结构的重要组成部分。
支座的功能是传递桥梁自重和荷载至桥墩或台帽上,并且允许桥梁在温度变化下的伸缩或收缩。
然而,由于支座几何形状的特殊性,往往会导致应力集中的现象。
首先,支座的形状会对应力分布产生影响。
一般来说,传统的支座形状是矩形或梯形,其底部与桥梁接触,上部分别与桥墩或台帽连接。
这种形状会导致底部出现应力集中现象。
原因是支座的中心区域受到了来自桥梁的荷载,而边缘处受力较小。
这种不均匀的受力分布导致了应力集中,使得中心区域的应力值大大超过了边缘区域。
其次,支座的尺寸也会对应力分布产生影响。
一般来说,支座的尺寸越大,底部的应力集中现象越明显。
这是因为较大的支座会导致底部受力更加集中,使得应力值增加。
同时,支座底部的应力集中现象还可能导致局部的塑性变形,进而引发疲劳破坏。
当支座遭受到荷载作用时,应力集中现象会对结构产生影响。
首先,应力集中会导致支座的底部产生超过材料强度极限的应力,进而引发塑性变形或疲劳破坏。
这种破坏可能会导致支座的失效,使桥梁的稳定性受到威胁。
其次,应力集中会导致支座的变形增加,影响桥梁结构的整体稳定性。
当支座变形过大时,不仅会影响桥梁的正常使用,还可能会引起结构的严重破坏。
为了避免支座应力集中的问题,工程师们采取了一系列的措施。
首先,改变支座形状,例如采用圆形或椭圆形的支座。
这种形状可以更均匀地分布荷载,并减轻应力的集中程度。
其次,增加支座的尺寸。
通过增大支座的面积,可以分散荷载并减小应力集中的程度。
此外,还可以使用支座下方的弹性垫板来缓冲和分散荷载,从而减少应力集中的影响。
典型应力应变曲线各线段所表征的含义随着科学技术的不断进步,材料力学领域也得到了长足发展,其中应力应变曲线是材料力学中一个非常重要的概念。
在工程设计和材料选择过程中,了解典型应力应变曲线各线段所表征的含义对于确保材料的安全性和可靠性至关重要。
1. 弹性阶段:首先我们来看典型应力应变曲线的弹性阶段,这个阶段也被称为线性弹性阶段。
在这个阶段内,材料在承受外力的情况下会出现弹性变形,而不会发生永久性变形。
这是因为材料在这个阶段内表现出良好的弹性恢复性,即使受到外力的作用,一旦外力消失,材料会恢复原始形状。
这一阶段的特点是应变与应力成正比,即呈现出线性关系。
在这个阶段内,我们可以通过杨氏模量来评估材料的刚度和弹性。
而了解这一阶段的特性有助于我们在工程实践中选择合适的材料,以满足设计要求。
2. 屈服阶段:接下来是典型应力应变曲线的屈服阶段。
在这个阶段内,材料逐渐失去了弹性,并且开始出现塑性变形。
当外力作用到一定程度时,材料会出现显著的永久性变形。
这是因为材料在这一阶段内,开始出现晶体滑移和位错运动,从而导致材料的屈服。
了解材料的屈服特性有助于我们评估材料的可塑性和延展性,这在设计强度要求较高的工程结构时至关重要。
3. 颈缩阶段:随后是典型应力应变曲线的颈缩阶段。
在这个阶段内,材料的应力逐渐减小,而应变仍在不断增加。
这是因为材料内部出现了局部损伤和断裂,从而导致了截面减小和应力集中。
了解这一阶段的特性有助于我们评估材料的韧性和断裂特性,以确保工程结构在承受外力时不会出现过早的断裂。
4. 断裂阶段:最后是典型应力应变曲线的断裂阶段。
在这个阶段内,材料会突然失去承载能力,并出现明显的断裂现象。
这是因为材料的内部损伤和缺陷逐渐积累并扩大,从而导致了材料的突然断裂。
了解这一阶段的特性有助于我们预测材料的寿命和耐久性,以确保工程结构在使用过程中不会出现意外断裂。
对于以上几个阶段,我们可以通过典型应力应变曲线的形式和斜率来进行评估和分析。
应力集中的实例(原创版)目录1.应力集中的定义2.应力集中的实例3.应力集中的影响4.如何避免应力集中正文【应力集中的定义】应力集中是指在外力作用下,物体内部的应力分布出现局部集中的现象。
当外力作用于物体时,物体内部的应力会按照一定的规律分布,而在某些局部区域,应力的分布会明显集中,这种现象被称为应力集中。
【应力集中的实例】应力集中在许多实际应用中都有出现,以下是一些典型的应力集中实例:1.焊接接头:在焊接过程中,由于焊接工艺和材料的不均匀性,焊接接头处容易出现应力集中。
这会导致焊接接头处的强度降低,从而影响整个结构的安全性。
2.螺纹连接:在螺纹连接中,由于螺纹的牙距和角度不均匀,以及螺纹与螺母之间的配合不良,也会出现应力集中现象。
这可能导致螺纹连接处的松动和损坏,影响结构的稳定性。
3.裂纹扩展:在材料出现裂纹的情况下,如果裂纹尖端处的应力集中,会导致裂纹的快速扩展。
这种情况在工程结构和机械零部件中都是需要避免的。
【应力集中的影响】应力集中会对结构和零部件的性能产生不良影响,主要表现在以下几个方面:1.降低强度:应力集中会导致局部区域的应力值增大,从而降低该区域的强度,影响整个结构的承载能力。
2.引起疲劳:应力集中会使局部区域的应力周期性变化,从而引起疲劳破坏。
这种情况在机械零部件中尤为常见。
3.导致失效:严重的应力集中可能导致结构和零部件的失效,如断裂、脱落等,对工程安全构成威胁。
【如何避免应力集中】为了避免应力集中带来的不良影响,可以采取以下措施:1.优化设计:在设计阶段,通过合理的结构形式和材料选择,可以有效降低应力集中的程度。
2.改进工艺:在制造和加工过程中,采用适当的工艺方法和参数,可以减少应力集中的产生。
例如,在焊接过程中,采用适当的焊接顺序和电流参数,可以降低焊接接头的应力集中。
3.加强质量控制:通过对产品进行严格的质量检测,可以及时发现和消除应力集中的隐患。
总之,应力集中是一种普遍存在的现象,对工程结构和零部件的性能产生不利影响。
第6章局部应力应变分析法局部应力应变分析法是一种常用于研究材料力学行为的方法。
它通过对材料局部区域的应力应变分布进行分析,可以揭示材料的应力集中、强化、局部损伤等性质。
在材料力学行为中,通过施加外力,材料会产生应力和应变。
当外力作用在材料的其中一个局部区域时,这个局部区域会发生应力集中现象。
应力集中会导致局部应变的增大,进而可能引起材料的局部破坏。
因此,研究局部应力应变分布对于了解局部区域的强度和稳定性至关重要。
局部应力应变分析法首先需要确定所研究的局部区域。
可以通过实验和数值模拟等方法,对材料在不同应力条件下的局部区域进行观测和测量。
在实验中,可以利用光学、电子显微镜等仪器对材料进行观察;在数值模拟中,可以利用有限元分析等方法进行模拟计算。
在确定了局部区域后,局部应力应变分析法可以通过测量和计算的方法来分析局部区域的应力应变分布。
在实验中,可以使用应力计、应变计等仪器来测量应力和应变的大小;在数值模拟中,可以通过有限元分析等方法来计算应力和应变的数值。
通过对局部应力应变分布的分析,可以得到一些重要的结论。
首先,可以了解材料在局部区域的应力集中程度。
应力集中的程度越大,材料的强度和稳定性越低,可能会发生局部破坏。
其次,可以了解材料在局部区域的应力强化情况。
材料的局部区域在受力作用下,可能会发生应力强化,增加材料的强度和稳定性。
最后,可以了解材料在局部区域的局部损伤情况。
材料在受到外力作用时,可能会发生局部破坏,通过分析应力应变分布可以得到这些破坏的位置和形态。
总之,局部应力应变分析法是一种重要的研究材料力学行为的方法。
通过对材料局部区域的应力应变分布进行分析,可以揭示材料的应力集中、强化、局部损伤等性质。
这些研究结果对于材料的设计和应用具有重要的指导意义。
典型应力应变曲线各线段所表征的含义典型应力应变曲线是描述材料在受力过程中应力和应变关系的一种图形表示。
它可以揭示材料在不同受力阶段的行为特征,从而帮助工程师和科研人员了解材料的力学性能以及材料的破坏机制。
典型应力应变曲线可以分为五个主要的线段:弹性段、屈服段、硬化段、颈缩段和断裂段。
以下将对每个线段进行详细的解释。
1.弹性段:典型应力应变曲线的起始部分称为弹性段,它代表了材料在小应力范围内的弹性变形。
在这个阶段,应力与应变成正比,即满足胡克定律。
当受力停止时,材料会恢复到最初的形状,没有永久变形。
在弹性段,材料的应力应变曲线呈直线,斜率称为弹性模量,表示了材料的刚度。
2.屈服段:当材料受到持续的外力作用时,应力应变曲线会突然发生斜率的改变,进入屈服段。
在屈服段,材料开始发生塑性变形,由于材料内部的晶体滑移和位错运动等微观机制,导致材料的应力并不与应变成正比。
材料的屈服点应力称为屈服强度,它是材料开始塑性变形的标志。
屈服点之前的部分称为弹性极限,表示了材料在弹性阶段内能达到的最大应力值。
3.硬化段:在屈服强度之后,材料会逐渐加工硬化,进入硬化段。
在这个阶段,材料的应力随着应变的增加而增加。
硬化的机制包括晶体内的位错堆积、动晶界滑移和晶粒细化等。
硬化段的斜率比弹性段大,表示了材料的塑性变形能力的下降。
4.颈缩段:在材料经历硬化段后,应力应变曲线会出现颈缩现象,进入颈缩段。
在颈缩段中,材料的剩余截面积减小,导致应力集中于颈缩区域。
此时,材料开始发生局部变形,表现出明显的塑性变形。
颈缩段的斜率趋近于0,表示了材料的形变速度减慢。
5.断裂段:当颈缩区域的应力集中达到一定程度时,材料会发生断裂,进入断裂段。
在断裂段中,应力急剧下降,材料失去了耐力,导致材料的破坏。
断裂段的程度取决于材料的韧性,韧性越高,断裂段越长,反之亦然。
典型应力应变曲线的不同线段表征了材料在不同受力阶段的行为特征。
弹性段表明了材料的刚度和弹性变形能力,屈服段标志了材料开始塑性变形的点,硬化段和颈缩段揭示了材料的塑性变形过程以及塑性变形能力的下降,而断裂段则表征了材料的破坏特性。
(1)什么是局部载荷
2.5.1 概述
容器除了受内
压或外压外,在其
制造、安装和使用
过程中还受到许多
通过附件传来的其
他载荷。
这些附件
包括支座、托架、
吊耳和接管等。
这
些载荷称为局部载
荷。
(2)局部载荷的特点
局部载荷对壳件的影响通常仅限于附件与壳体连接处附近的局部地区,局部载荷将在壳体相接管等附件中产生较高的局部应力。
(3)局部载荷的计算方法
理论计算过于繁复,解决的范围较窄,而且结果与实际相差较大。
现在通常采用数值解与实验结合的方式,归纳整理出经验公式和大量的工程分析用图表。
本节仅以承受内压壳体与接管连接处局部应力的分析为例,介绍局部引力的求解方法。
2.5.2 内压壳体与接管连接处的局部应力
目前,工程上对局部应力的分析,主要采用的方法是应力集中系数法。
它是结合了理论分析、数值计算、实验测试等方法,归纳总结而成。
以下举二个实例来分析一下应力集中系数法的具体使用。
这二个实例是:①球形封头开孔接管应力分析;②圆柱壳开孔接管应力分析。
2.5 典型局部应力 2.5.3 降低局部应力的措施
2.5.3 降低局部应力的措施
(1)合理的结构设计
①减少两连接件的刚度差;②尽量采用圆弧过渡;
③局部区域补强;④选择合适的开孔方位。
(2)减少附件传递的局部载荷
(3)尽量减少结构中的缺陷。
材料力学应力状态分析和强度理论材料力学是一门研究物质内部各个部分之间的相互作用关系的科学。
在材料力学中,应力状态分析和强度理论是非常重要的概念和方法,用来描述和分析材料的力学行为和变形性能。
材料的应力状态是指在外力作用下,物体内部各个部分所受到的力的分布情况。
应力有三个分量:法向应力、剪应力和旋转应力。
法向应力是垂直于物体表面的作用力,剪应力是平行于物体表面的作用力,旋转应力则是物体受到扭转力产生的应力分量。
应力状态的描述可以用应力矢量来表示。
应力状态分析的目的是确定材料内部各个部分的应力分布情况,进而推导出物体的变形和破坏行为。
常用的应力状态分析方法有平面应力问题、平面应变问题和三维应力问题。
平面应力问题是指在一个平面上的应变为零,而垂直于该平面的应力不为零;平面应变问题是指在一个平面上的变形为零,而垂直于该平面的应力不为零;三维应力问题则是指在空间中3个方向的应力都不为零。
强度理论是指根据材料的内部应力状态来评估其抗拉强度、抗压强度和抗剪强度等,以判断材料是否能够承受外力而不发生破坏。
常见的强度理论有最大正应力理论、最大剪应力理论和最大扭转应力理论。
最大正应力理论是指在材料的任何一个点,其法向应力都不能超过材料的抗拉强度;最大剪应力理论则是指剪应力不能超过材料的抗剪强度;最大扭转应力理论则是指旋转应力不能超过材料的极限扭转强度。
实际应用中,强度理论通常与材料的断裂理论结合起来,以评估材料的破坏行为。
材料断裂的主要原因是应力超过了材料的强度极限,从而导致材料的破坏。
为了提高材料的强度和抗拉性能,可以通过选择合适的材料、改变材料的结构和制造工艺等方法来实现。
综上所述,材料力学应力状态分析和强度理论是描述和分析材料力学行为和变形性能的重要理论和方法。
通过深入研究应力状态、应力分析和强度理论,可以为材料的设计和制造提供指导和支持,从而提高材料的强度和抗拉性能。