数值分析第三版课本知识题及答案解析
- 格式:doc
- 大小:1.50 MB
- 文档页数:68
第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
参考答案第1章一、选择题1. D2. C3. A4. B5. B二、填空题1. 函数题头 H1行 帮助信息 函数体 注释部分 函数题头2. nargin varargin3. A=rand(4)4. 单引号三、解答题1. for 语句和while 语句均可以实现循环执行的功能。
二者的区别在于,for 循环语句一般适用于已知道循环次数,而不知道循环运算的目标的问题,而while 循环语句则相反,一般适用于已知循环目标,而循环次数未知的问题。
2. 程序如下:function [highavg,weightavg]=avg_high_weight(varargin) n=length(varargin); highsum=0; weightsum=0; for i=1:n highsum=highsum+varargin{i}(1);weightsum=weightsum+varargin{i}(2);endhighavg=highsum/n; weightavg=weightsum/n;第2章一、选择题1. A2. B3. A4. C5. D二、填空题1. 1.7 1.73 1.7322. 3 13. 5%4. 3三、解答题1. 解:1*()()nn x nxx x ε-≈-1***()()n nr nxx x x x x nnxxε---≈=()0.02r ne x n ==2数值分析2. 解:*1 1.1021x =有五位有效数字;*20.031x =有两位有效数字;*3385.6x =有四位有效数字;*47 1.0x =⨯有一位有效数字。
3. 解:(1)*******124124()()()()x x x x x x εεεε++≤++433111101010222---=⨯+⨯+⨯3*1.0510ε-=⨯=(2)*********123231113()()x x x x x x x x x ε⋅⋅≈⋅-+⋅****221233()()x x x x x x -+⋅-*0.197ε≈=(3)******2242244**2441(/) |()()|()x x x x x x x xx ε≤---****2224**44|()()|r r x x x x xxεε=-***224*4||[|()||()|]r r x e x e x x≤+331110100.0312256.4800.03156.480--⎡⎤⨯⨯⎢⎥=+⎢⎥⎢⎥⎣⎦5*10ε-≤=4. 解:33**34433()43r R RV Rππεπ-=*2**2R R R R R RRR R-++=⋅*223R R R RR-≈⋅*3R R R-=⋅1%=故*1300R R R-=5. 解:设Y =*27.983Y =,*31102Y Y δ-=-≤⨯,028Y =,*028Y =,*0000Y Y δ=-=*111282827.983100Y Y ⎛⎛⎫-=---⨯ ⎪⎝⎝⎭1100δ≤,**22111127.983100100Y Y Y Y ⎛⎛⎫-=-⨯--⨯ ⎪⎝⎝⎭**111()()100Y Y Y Y =---112100100100δδδ≤+=仿此可得:*100n n n Y Y δ-≤则*31001001001101002Y Y δδ--≤==⨯即计算100Y 的误差界不超过31102-⨯参考答案 36. 解:解方程25610x x -+=得:28282x =±±由第5题知27.983具有五位有效数字,故可取:1282827.98355.983x =++=21280.0178655.983x =-≈=7. 解:设正方形的边长为x ,则其面积为2y x =。
习题一1、取3.14,3.15,722,113355作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。
解:14.31=x312110211021--⨯=⨯≤-x π 所以,1x 有三位有效数字绝对误差:14.3-=πe ,相对误差:ππ14.3-=r e 绝对误差限:21021-⨯≤ε,相对误差限:213106110321-+-⨯=⨯⨯=r ε21122105.0105.01084074.000840174.015.315.3---⨯=⨯≤⨯==-=πx所以,2x 有两位有效数字绝对误差:15.3-=πe ,相对误差:ππ15.3-=r e 绝对误差限:11021-⨯=ε,相对误差限:11061-⨯=r ε31222105.0105.01012645.00012645.0722722---⨯=⨯≤⨯==-=πx所以,3x 有三位有效数字绝对误差:722-=πe ,相对误差:ππ722-=r e绝对误差限:21021-⨯=ε,相对误差限:21061-⨯=r ε1133551=x 7166105.0105.01032.000000032.0113355---⨯=⨯≤⨯==-π 所以,4x 有七位有效数字 绝对误差:113355-=πe ,相对误差:ππ113355-=r e绝对误差限:61021-⨯=ε,相对误差限:61061-⨯=r ε3、下列各数都是对准确数四舍五入后得到的近似数,试分别指出它们的绝对误差限和相对误差限,有效数字的位数。
5000,50.31,3015.0,0315.04321====x x x x解:0315.01=x m=-13141*10211021---⨯=⨯≤-x x 所以,n=3,1x 有三位有效数字绝对误差限:41021-⨯=ε,相对误差:2110611021-+-=⨯=n r a ε3015.02=x m=04042*10211021--⨯=⨯≤-x x所以,n=4,1x 有四位有效数字绝对误差限:41021-⨯=ε,相对误差:3110611021-+-=⨯=n r a ε50.313=x m=24223*10211021--⨯=⨯≤-x x所以,n=4,1x 有四位有效数字绝对误差限:21021-⨯=ε,相对误差:3110611021-+-=⨯=n r a ε50004=x m=44404*10211021-⨯=⨯≤-x x所以,n=4,1x 有四位有效数字绝对误差限:5.010210=⨯=ε,相对误差:23110105211021--+-=⨯=⨯=n r a ε 4、计算10的近似值,使其相对误差不超过%1.0。
数学分析第三版答案下册数学分析第三版答案下册【篇一:2015年下学期数学分析(上)试卷a参考答案】> 一、填空题(每小题3分,共15分):1、126;2、2;3、1?x?x2xn?o(xn);4、arcsinx?c(或?arccosx?c);5、2.二、选择题(每小题3分,共15分)1、c;2、a;3、a;4、d;5、b三、求极限(每小题5分,共10分)1??1、lim1?2? 2、limxlnx ?n??x?0n?n1??lim?1?2?n??n??1nn2?1n1lnx(3分) ?lim?li??x?0x?0112xx(3分)(?x)?0 (2分)?lime?1(2分) ?lim?n??x?03n23 。
四、利用数列极限的??n定义证明:lim2(10分)n??n?3证明:当n?3时,有(1分)3n299(3分) ?3??22n?3n?3n993n2因此,对任给的??0,只要??,即n?便有2 ?3?? (3分)n?n?33n2x{3,},当n?n便有2故,对任给的??0,取n?ma(2 分) ?3??成立。
n?393n23(1分)即得证lim2n??n?3五、证明不等式:arctanb?arctana?b?a,其中a?b。
(10分)证明:设f(x)?arctanx,根据拉格朗日中值定理有(3分)f(b)?f(a)?f?(?)(b?a)?1(b?a),21??(ab) (3分)所以有 f(b)?f(a)?(b?a) (2分)bn?arctaan?b?a (2分)即 arcta六、求函数的一阶导数:y?xsinx。
(10分)解:两边取对数,有: lny?sinxlnx (4分)两边求一次导数,有:y??xsinx(cosxlnx?y?sinx(4分) ?cosxlnx?yxsinx)(2分) x七、求不定积分:?x2e?xdx。
(10分)解:2?x2?xxedx?xde = (2分) ??= ?x2e?x?2?xe?xdx (2分) = ?x2e?x?2?xde?x(2分)= ?x2e?x?2xe?x?2?e?xdx (2分)=?e?x(x2?2x?2)?c (2分)15八、求函数f(x)?|2x3?9x2?12x|在闭区间[?,]上的最大值与最小值。
习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。
分析:求绝对误差的方法是按定义直接计算。
求相对误差的一般方法是先求出绝对误差再按定义式计算。
注意,不应先求相对误差再求绝对误差。
有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。
有了定理2后,可以根据定理2更规范地解答。
根据定理2,首先要将数值转化为科学记数形式,然后解答。
解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。
相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。
而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。
(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。
相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。
而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。
(3)绝对误差:22() 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107==⨯,m=1。
《数值分析》练习题及答案解析一、单选题1. 以下误差公式不正确的是( D )A .()1212x x x x ∆-≈∆-∆B .()1212x x x x ∆+≈∆+∆C .()122112x x x x x x ∆≈∆+∆D .1122()x x x x ∆≈∆-∆ 2. 已知等距节点的插值型求积公式()()352kkk f x dx A f x =≈∑⎰,那么3kk A==∑( C )A .1 B. 2 C.3 D. 4 3.辛卜生公式的余项为( c )A .()()32880b a f η-''-B .()()312b a f η-''-C .()()()542880b a f η--D .()()()452880b a f η--4. 用紧凑格式对矩阵4222222312A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦进行的三角分解,则22r =( A ) A .1 B .12C .–1D .–25. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( D ) A .()00l x =0,()110l x = B . ()00l x =0,()111l x = C .()00l x =1,()111l x = D . ()00l x =1,()111l x =6. 用二分法求方程()0f x =在区间[],a b 上的根,若给定误差限ε,则计算二分次数的公式是n ≥( D )A .ln()ln 1ln 2b a ε-++ B. ln()ln 1ln 2b a ε-+-C.ln()ln 1ln 2b a ε--+ D. ln()ln 1ln 2b a ε--- 7.若用列主元消去法求解下列线性方程组,其主元必定在系数矩阵主对角线上的方程组是( B )A .123123123104025261x x x x x x x x x -+=⎧⎪-+=⎨⎪-+=-⎩ B 。
数值分析课后习题部分参考答案Chapter 1(P10) 5.求厲的近似值x*,使其相对误差不超过0.1%。
解:V2 = 1.4 ••- o设X*有"位有效数字,则le(x*)lV0.5xl0xl(T"。
,*““0.5x10-" 牛(x )1< ] 。
从而,丨<故,若0.5x10-" <0.1%,则满足要求。
解之得,M>4O %* =1.414 O(P10) 7.正方形的边长约100cm ,问测量边长时误差应多大,才能保证面积的误差不超过1 cm2 o解:设边长为a ,则a心100cm。
设测量边长时的绝对误差为e,由误差在数值计算的传播,这时得到的面积的绝对误差有如下估计:® 2xl00xe…按测量要求,l2xl00xel<l解得,lel< 0.5x10 2 oChapter 2(P47) 5.用三角分解法求下列矩阵的逆矩阵:‘1 1 -1]A = 2 1 0 。
J j 0丿解:设A1 =(«0 /)=分别求如下线性方程组:先求A的LU分解(利用分解的紧凑格式),气1)1 (1)1 (-D-(2)2(D-1(0)2、⑴1(-1)2 (0) —3,(1 0 0、 ri 1 -1] 即,厶=2 1 0 ,U =0-12 J 2 1丿<0 0-3经直接三角分解法的回代程,分别求解方程组,1 0Ly =0 和 Ua = v ,得,a = 0J3 2 3 1(P47) 6.分别用平方根法和改进平方根法求解方程组:(1 2 1 -3兀1)2 50 -5兀2 2 10 14 1 x 3 16 、一 -5 1 15丿3解:平方根法:先求系数矩阵4的Cholesky 分解(利用分解的紧凑格式),'(1)1、< 1 0 0 0、(2)2(5)1,即,L =2 1 0 0 (1)1 (0)-2 (14)3 1 -2 3 、(_3) _ 3 (-5)1 (1)2 (15<-31 2 b216 改进平方根Ly = 和 II x = y ,得,x = 先求系数矩阵A 的形如A = LDU 的分解,其中厶-(/y .)4x4为单位下二角矩阵,D = diag{d l ,d 2,d 3,d 4}为对角矩阵。
数值分析第三版课本知识题及答案解析第⼀章绪论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五⼊得到的近似数,即误差限不超过最后⼀位的半个单位,试指出它们是⼏位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====?4. 利⽤公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=-( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多⼤误差?7. 求⽅程25610x x -+=的两个根,使它⾄少具有四位有效数字27.982).8. 当N 充分⼤时,怎样求211Ndx x +∞+?9. 正⽅形的边长⼤约为100㎝,应怎样测量才能使其⾯积误差不超过1㎝210. 设212S gt =假定g 是准确的,⽽对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,⽽相对误差却减⼩.11. 序列{}n y 满⾜递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多⼤?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利⽤下列等式计算,哪⼀个得到的结果最好?3--()ln(f x x =,求f (30)的值.若开平⽅⽤六位函数表,问求对数时误差有多⼤?若改⽤另⼀等价公式ln(ln(x x =-计算,求对数时误差有多⼤?14. 试⽤消元法解⽅程组{101012121010;2.x x x x +=+=假定只⽤三位数计算,问结果是否可靠?15. 已知三⾓形⾯积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c 证明⾯积的误差s ?满⾜.s a b cs a b c ≤++第⼆章插值法1. 根据(2.2)定义的范德蒙⾏列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xxx ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的⼆次插值多项式.3. 给出f (x )=ln x 的数值表⽤线性插值及⼆次插值计算ln 0.54 的近似值.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究⽤线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设j x 为互异节点(j =0,1,…,n ),求证:i)0()(0,1,,);j j j x l x xk n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若⽤⼆次插值求xe 的近似值,要使截断误差不超过610-,问使⽤函数表的步长h 应取多少?9. 若2n n y =,求4n y ?及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ?=+-,证明()f x 的k 阶差分()(0)kf x k m ?≤≤是m k -次多项式,并且()0(m lf x l +?=为正整数).11. 证明1()k k k k k k f g f g g f +?=?+?.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==?=--?∑∑13. 证明1200.n j n j y y y -=?=?-?∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f及0182,2,,2f.17. 证明两点三次埃尔⽶特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔⽶特插值的误差限.18. 求⼀个次数不⾼于4次的多项式()P x ,使它满⾜(0)(1)P P k =-+并由此求出分段三次埃尔⽶特插值的误差限.19. 试求出⼀个最⾼次数不⾼于4次的函数多项式()P x ,以便使它能够满⾜以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造⼀个台阶形的零次分段插值函数()n x ?并证明当n →∞时,()n x ?在[],a b 上⼀致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔⽶特插值,并估计误差.24. 给定数据表如下:试求三次样条插值并满⾜条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='=(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"?;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'?.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可⽤(8.7)式的表达式).第三章函数逼近与计算1. (a)利⽤区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做⽐较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳⼀致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳⼀致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极⼩,⼜问这个解是否唯⼀?6. 求()sin f x x =在[]0,/2π上的最佳⼀次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳⼀次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最⼩?r 是否唯⼀? 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式. 10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利⽤插值极⼩化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极⼩化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ?=-----,试将()x ?降低到3次多项式并估计误差. 15. 在[ ]1,1-上利⽤幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n nF x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-?为最⼩.并与1题及6题的⼀次逼近多项式误差作⽐较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+??问它们是否构成内积?19. ⽤许⽡兹不等式(4.5)估计6101x dx x +?的上界,并⽤积分中值定理估计同⼀积分的上下界,并⽐较其结果.20. 选择a ,使下列积分取得最⼩值:1122211(),x ax dx x ax dx----??.21. 设空间{}{}10010121,,,span x span x x 1?=?=,分别在1?、2?上求出⼀个元素,使得其为[]20,1x C ∈的最佳平⽅逼近,并⽐较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ?=上的最佳平⽅逼近.23.sin (1)arccos ()n n x u x +=是第⼆类切⽐雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切⽐雪夫多项式展开,求三次最佳平⽅逼近多项式并画出误差图形,再计算均⽅误差.25. 把()arccos f x x =在[]1,1-上展成切⽐雪夫级数.26. ⽤最⼩⼆乘法求⼀个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均⽅误差.27.28. 在某化学反应⾥,根据实验所得分解物的浓度与时间关系如下:⽤最⼩⼆乘拟合求.29. 编出⽤正交多项式做最⼩⼆乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出⼀张记录{}{}4,3,2,1,0,1,2,3k x =,试⽤改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量⾼,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hhf x dx A f h A f A f h --≈-++?; (2)21012()()(0)()hh f x dx A f hA f A f h --≈-++?;(3)[]1121()(1)2()3()/3f x dxf f x f x -≈-++?;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'?.2. 分别⽤梯形公式和⾟普森公式计算下列积分: (1)120,84xdx n x =+?; (2)1210(1),10x e dx n x --=?;(3)1,4n =?; (4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. ⽤⾟普森公式求积分1x e dx-?并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2baf f x dx b a f a b a 'η=-+-?; (2)2()()()()()2baf f x dx b a f b b a 'η=---?;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-?.6. 证明梯形公式(2.9)和⾟普森公式(2.11)当n →∞时收敛到积分()baf x dx.7. ⽤复化梯形公式求积分()baf x dx,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍⼊误差)?8. 1xedx-,要求误差不超过510-.9. 卫星轨道是⼀个椭圆,椭圆周长的计算公式是S a =θ,这⾥a 是椭圆的半长轴,c是地球中⼼与轨道中⼼(椭圆中⼼)的距离,记h 为近地点距离,H 为远地点距离,6371R =公⾥为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第⼀颗⼈造卫星近地点距离439h =公⾥,远地点距离2384H =公⾥,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,⽤外推算法求π的近似值.11. ⽤下列⽅法计算积分31dyy ?并⽐较结果.(1) 龙贝格⽅法;(2) 三点及五点⾼斯公式;(3) 将积分区间分为四等分,⽤复化两点⾼斯公式.12. ⽤三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误差.()f x 的值由下表给出:第五章常微分⽅程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉⽅法和改进的尤拉⽅法的近似解的表达式,并与准确解bx ax y +=221相⽐较。
第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=-( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2?10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13.()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xxx ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3. 给出f (x )=ln x 的数值表用线性插值及二次插值计算ln 0.54 的近似值.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设j x 为互异节点(j =0,1,…,n ),求证:i)0()(0,1,,);nk kj j j x l x xk n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)kf x k m ∆≤≤是m k -次多项式,并且()0(m lf x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限.19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.24. 给定数据表如下:试求三次样条插值并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='=ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一? 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式. 10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n nF x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26. 用最小二乘法求一个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均方误差.27.28. 在某化学反应里,根据实验所得分解物的浓度与时间关系如下:用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hhf x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f hA f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dxf f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰; (4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分1x e dx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2baf f x dx b a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰.6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8. 1xedx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误差.()f x 的值由下表给出:第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。