数值分析第四版习题及答案
- 格式:doc
- 大小:355.50 KB
- 文档页数:32
第一章1、 在下列各对数中,x 是精确值 a 的近似值。
3.14,7/100)4(143.0,7/1)2(0031.0,1000/)3(1.3,)1(========x a x a x a x a ππ试估计x 的绝对误差和相对误差。
解:(1)0132.00416.01.3≈=≈-=-=a ee x a e r π (2)0011.00143.0143.07/1≈=≈-=-=a ee x a e r (3)0127.000004.00031.01000/≈=≈-=-=aee x a e r π (4)001.00143.03.147/100≈=≈-=-=aee x a e r2. 已知四个数:x 1=26.3,x 2=0.0250, x 3= 134.25,x 4=0.001。
试估计各近似数的有效位数和误差限,并估计运算μ1= x 1 x 2 x 3和μ1= x 3 x 4 /x 1的相对误差限。
解:x 1=26.3 n=3 δx 1=0.05 δr x 1=δx 1/∣x 1∣=0.19011×10-2x 2=0.0250 n=3 δx 2=0.00005 δr x 2=δx 2/∣x 2∣=0.2×10-2x 3= 134.25 n=5 δx 3=0.005 δr x 3=δx 3/∣x 3∣=0.372×10-4x 4=0.001 n=1 δx 4=0.0005 δr x 4=δx 4/∣x 4∣=0.5由公式:e r (μ)= e (μ)/∣μ∣≦1/∣μ∣Σni=1∣∂f/∂x i ∣δx ie r (μ1)≦1/∣μ1∣[x 2 x 3δx 1+ x 1 x 3δx 2 +x 1x 2δx 3] =0.34468/88.269275 =0.0039049e r (μ2)≦1/∣μ2∣[x 3 x 4/ x 21δx 1+ x 4/ x 1δx 3 + x 3/ x 1δx 4] =0.5019373、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。
应⽤数值分析(第四版)课后习题答案第9章第九章习题解答1.已知矩阵=???=4114114114,30103212321A A 试⽤格希哥林圆盘确定A 的特征值的界。
解:,24)2(,33)1(≤-≤-λλ2.设T x x x x ),...,,(321=是矩阵A 属于特征值λ的特征向量,若i x x =∞,试证明特征值的估计式∑≠=≤-n i j j ij ii aa 1λ.解:,x Ax λ=∞∞∞∞≤==x A x x Ax i λλ由 i x x =∞ 得 i n in i ii i x x a x a x a λ=++++ 11j n j i i ij i ii x ax a ∑≠==-1)(λj n j i i ij j n j i i ij i ii x a x ax a ∑∑≠=≠=≤=-11λ∑∑≠=≠=≤≤-nj i i ij i j n j i i ijii a x x a a 11λ3.⽤幂法求矩阵=1634310232A 的强特征值和特征向量,迭代初值取T y )1,1,1()0(=。
解:y=[1,1,1]';z=y;d=0;A=[2,3,2;10,3,4;3,6,1];for k=1:100y=A*z;[c,i]=max(abs(y));if y(i)<0,c=-c;endz=y/cif abs(c-d)<0.0001,break; endd=cend11.0000=c ,0.7500) 1.0000 0.5000(z 10.9999 =c ,0.7500) 1.0000 0.5000(z 11.0003 =c ,0.7500) 1.0000 0.5000(z 10.9989=c ,0.7500) 1.0000 0.5000(z 11.0040 =c ,0.7498) 1.0000 0.5000(z 10.9859=c ,0.7506) 1.0000 0.5001(z 11.04981 =c ,0.7478) 1.0000 0.4995(z 10.8316 =c ,0.7574) 1.0000 0.5020(z 11.5839 =c ,) 0.7260 1.0000 0.4928 (z 9.4706 =c ,0.8261) 1.0000 0.5280(z 17 = c ,0.5882) 1.0000 0.4118(z 11T (11)10T (10)9T (9)8T (8)7T (7)6T (6)5T (5)4T (4)3T (3)2T (2)1T (1)===========强特征值为11,特征向量为T 0.7500)1.0000 0.5000(。
第一章1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为nn x x nn xn x x n x x x **1***%2%2)()()()(*⋅=='=-=εε,相对误差为%2)()x ()x (*n *n*n x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
第三章习题解答1.试讨论a 取什么值时,下列线性方程组有解,并求出解 。
123123123123212312311(1)1(2)1ax x x ax x x x ax x x ax x a x x ax x x ax a⎧++=++=⎧⎪⎪++=++=⎨⎨⎪⎪++=++=⎩⎩ 解:(1)111111111a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 经初等行变换化为1001/(2)0101/(2)0011/(2)a a a +⎡⎤⎢⎥+⎢⎥⎢⎥+⎣⎦ 当2a ≠-时,方程组有解,解为111(,,).222Tx a a a =+++ (2)21111111a A a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 经初等行变换化为2100(1)/(2)0101/(2)001(21)/(2)a a a a a a -++⎡⎤⎢⎥+⎢⎥⎢⎥+++⎣⎦当2a ≠-时,方程组有解,解为21121(,,).222Ta a a x a a a +++=-+++2.证明下列方程组Ax=b12341123421233234432432385x x x x b x x x x b x x x b x x x b+--=⎧⎪-+-=⎪⎨+-=⎪⎪-+-=⎩ 当(1)(10,4,16,3).T b =-时无解;(2)(2,3,1,3).T b =时有无穷多组解。
解:(1) r(A)=3≠r(A,b)=4 当(10,4,16,3).T b =-时无解;(2) r(A)=3,r(A,b)=3 当(2,3,1,3).T b =时有无穷多组解。
3.用列主元高斯消元法求解Ax=b2233(1)477,12457A b ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦ 1231(2)234,13462A b ⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1)x=(2,-2,1)T (2)x=(0,-7,5)T4.证明上(下)三角方阵的逆矩阵任是上(下)三角方阵。
数学分析第四版答案简介《数学分析第四版》是一本经典的数学教材,主要介绍了数学分析的基本概念、理论和方法。
本文档旨在提供《数学分析第四版》习题的答案,帮助读者更好地理解和掌握数学分析的知识。
第一章简介1.1 数学分析的基本概念习题答案:1.由已知条件可知,当a=a时,a(a)=a(a)成立。
所以函数a(a)是一个常函数。
2.对于任意实数a和a,有a(a+a)=a(a)+a(a),即函数a(a)满足加法性。
根据题意,我们需要证明a(aa)=a(a)a(a)。
证明:设实数a和a,并令a=a和 $b=\\frac{y}{x}$,根据加法性,我们有:$$ f(a+b) = f(a) + f(b) \\quad \\text{(1)} $$将a=a和 $b=\\frac{y}{x}$ 代入上式,得到:$$ f\\left(x + \\frac{y}{x}\\right) = f(x) +f\\left(\\frac{y}{x}\\right) \\quad \\text{(2)} $$又根据题目条件,我们知道a(aa)=a(a)a(a),将$b=\\frac{y}{x}$ 代入该式,得到:$$ f(xy) = f\\left(x\\cdot\\frac{y}{x}\\right) =f(x)f\\left(\\frac{y}{x}\\right) \\quad \\text{(3)} $$将式 (3) 代入式 (2),得到:$$ f\\left(x + \\frac{y}{x}\\right) = f(xy) \\quad \\text{(4)} $$根据题目条件中的函数性质,我们得到:$$ x+\\frac{y}{x} = xy $$上式可以转化为二次方程的形式,解得:$$ x^2 - xy + \\frac{y}{x} = 0 $$由上式可知,a是方程a2−aa+a=0的一个根。
根据韦达定理,该方程的两个根分别为:$$ x_1 = \\frac{y+\\sqrt{y^2+4}}{2} \\quad \\text{和}\\quad x_2 = \\frac{y-\\sqrt{y^2+4}}{2} $$由于题目中没有限制a的取值范围,所以a可以取任意实数。
第八章 常微分方程初值问题数值解法1、解:欧拉法公式为221(,)(100),0,1,2+=+=++=n n n n n n n y y hf x y y h x y n代00y =入上式,计算结果为 123(0.1)0.0,(0.2)0.0010,(0.3)0.00501≈=≈=≈=y y y y y y2、解:改进的欧拉法为1112[(,)(,(,))]n n n n n n n n y y h f x y f x y hf x y ++=+++将2(,)=+-f x y x x y 代入上式,得2111111221n n n n n n h hh x x x x y h y +++)+[(-)(+)+(+)]=(-+ 同理,梯形法公式为211122[(1)(1)]-+++++=++++h h n nn n n n h h y y x x x x 将00,0.1y h ==代入上二式,,计算结果见表9—5表 9—5可见梯形方法比改进的欧拉法精确。
3、证明:梯形公式为111[(,)(,)]2n n n n n n hy y f x y f x y +++=++代(,)f x y y =-入上式,得11[]2++=+--n n n n hy y y y解得21110222()()()222n n n n h h h y y y y h h h++----===⋯=+++ 因为01y =,故2()2nn h y h-=+ 对0x∀>,以h 为步长经n 步运算可求得()y x 的近似值n y ,故,,xx nh n h==代入上式有2()2x hn hy h-=+22220000222lim lim()lim(1)lim[(1)]222x x h h xx h h h h hn h h h h h h h y e h h h+-+→→→→-==-=-=+++4、解:令2()xt y x e dt =⎰,则有初值问题2',(0)0x y e y ==对上述问题应用欧拉法,取h=0.5,计算公式为210.5,0,1,2,3n x n n y y e n +=+=由0(0)0,y y ==得1234(0.5)0.5,(1.0) 1.142012708(1.5) 2.501153623,(2.0)7.245021541≈=≈=≈=≈=y y y y y y y y5、解: 四阶经典龙格-库塔方法计算公式见式(9.7)。
第一章习题解答1、 在下列各对数中,x 是精确值 a 的近似值。
3.14,7/100)4(143.0,7/1)2(0031.0,1000/)3(1.3,)1(========x a x a x a x a ππ试估计x 的绝对误差和相对误差。
解:(1)0132.00416.01.3≈=≈−=−=aee x a e r π (2)0011.00143.0143.07/1≈=≈−=−=a ee x a e r (3)0127.000004.00031.01000/≈=≈−=−=aee x a e r π (4)001.00143.03.147/100≈=≈−=−=aee x a e r2、已知四个数:001.0,25.134,0250.0,3.264321====x x x x 。
试估计各近似数的有效位数和误差限,并估计运算3211x x x =μ和1431/x x x =μ的相对误差限。
解:21111121101901.0,1021,3,10263.06.23−−⨯≈=⨯==⨯==x x x x n x r δδδ22214212102.0,1021,3,10250.00250.0−−−⨯≈=⨯==⨯==x x x x n x r δδδ 43332333103724.0,1021,5,1013425.025.134−−⨯≈=⨯==⨯==x x x x n x r δδδ 5.0,1021,1,101.0001.04443424==⨯==⨯==−−x x x x n x r δδδ 由相对误差限公式:i r ini n in ni i ir x x fx x f x x x f x x f u δδδ∂∂=∂∂=∑∑==1111),,(),,()(所以有:232123113211103938.0)(1)(−⨯≈++=x x x x x x x x x r δδδμμδ4971.0)(1)(4133141214311≈++−=x x x x x x x x x x r δδδμμδ 3、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。
第四版数值分析习题第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2? 10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xxx ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x xk n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求x e 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ. 10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i) 若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()nx ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差. 23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii) (0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式. 8. 如何选取r,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式. 13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差.15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005. 16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数. 17. 求a 、b 使[]22sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义()(,)()();()(,)()()()();bbaaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x=在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()nn x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.2y a bx =+.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()h h f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰; (4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10x e dx-⎰并计算误差. 5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2ba f f x dxb a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1xedx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长. 10. 证明等式3524sin3!5!n n nnππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计()f x第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:近似值*x 的相对误差为*****r e x x e x x δ-===而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。
解:设()n f x x =,则函数的条件数为'()||()p xf x C f x =又1'()n f x nx-= , 1||n p nx nx C n x-⋅∴==又((*))(*)r p r x n C x εε≈⋅ 且(*)r e x 为2((*))0.02nr x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字;*20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。
4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234,,,x x x x 均为第3题所给的数。
解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯***123*********123231132143(2)()()()()1111.10210.031100.031385.6101.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈ **24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x x εεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C VRππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=故度量半径R 时允许的相对误差限为1(*)10.333r R ε=⨯≈6.设028Y =,按递推公式1n n Y Y -=-(n=1,2,…)计算到100Y 。
第四版数值分析习题第一章绪论1.设x>0,x得相对误差为δ,求得误差、2.设x得相对误差为2%,求得相对误差、3.下列各数都就是经过四舍五入得到得近似数,即误差限不超过最后一位得半个单位,试指出它们就是几位有效数字:4.利用公式(3、3)求下列各近似值得误差限:其中均为第3题所给得数、5.计算球体积要使相对误差限为1%,问度量半径R时允许得相对误差限就是多少?6.设按递推公式( n=1,2,…)计算到、若取≈27、982(五位有效数字),试问计算将有多大误差?7.求方程得两个根,使它至少具有四位有效数字(≈27、982)、8.当N充分大时,怎样求?9.正方形得边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝?10.设假定g就是准确得,而对t得测量有±0、1秒得误差,证明当t增加时S得绝对误差增加,而相对误差却减小、11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程稳定吗?12.计算,取,利用下列等式计算,哪一个得到得结果最好?13.,求f(30)得值、若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式计算,求对数时误差有多大?14.试用消元法解方程组假定只用三位数计算,问结果就是否可靠?15.已知三角形面积其中c为弧度,,且测量a ,b ,c得误差分别为证明面积得误差满足第二章插值法1.根据(2、2)定义得范德蒙行列式,令证明就是n次多项式,它得根就是,且、2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)得二次插值多项式、3.4.,研究用线性插值求cos x 近似值时得总误差界、5. 设,k =0,1,2,3,求、6. 设为互异节点(j =0,1,…,n ),求证:i) ii) 7. 设且,求证8. 在上给出得等距节点函数表,若用二次插值求得近似值,要使截断误差不超过,问使用函数表得步长应取多少? 9. 若,求及、10. 如果就是次多项式,记,证明得阶差分就是次多项式,并且为正整数)、 11. 证明、 12. 证明 13. 证明14. 若有个不同实根,证明15. 证明阶均差有下列性质: i) 若,则; ii) 若,则、 16. ,求及、17. 证明两点三次埃尔米特插值余项就是并由此求出分段三次埃尔米特插值得误差限、18. 求一个次数不高于4次得多项式,使它满足并由此求出分段三次埃尔米特插值得误差限、 19. 试求出一个最高次数不高于4次得函数多项式,以便使它能够满足以下边界条件,,、 20. 设,把分为等分,试构造一个台阶形得零次分段插值函数并证明当时,在上一致收敛到、 21. 设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处得与得值,并估计误差、 22. 求在上得分段线性插值函数,并估计误差、 23. 求在上得分段埃尔米特插值,并估计误差、i) ii)25. 若,就是三次样条函数,证明i)[][][][]222()()()()2()()()bbbba aaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰; ii) 若,式中为插值节点,且,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰、26. 编出计算三次样条函数系数及其在插值节点中点得值得程序框图(可用(8、7)式得表达式)、第三章 函数逼近与计算1. (a)利用区间变换推出区间为得伯恩斯坦多项式、(b)对在上求1次与三次伯恩斯坦多项式并画出图形,并与相应得马克劳林级数部分与误差做比较、 2. 求证:(a)当时,、 (b)当时,、3. 在次数不超过6得多项式中,求在得最佳一致逼近多项式、4. 假设在上连续,求得零次最佳一致逼近多项式、5. 选取常数,使达到极小,又问这个解就是否唯一?6. 求在上得最佳一次逼近多项式,并估计误差、7. 求在上得最佳一次逼近多项式、8. 如何选取,使在上与零偏差最小?就是否唯一? 9. 设,在上求三次最佳逼近多项式、 10. 令,求、11. 试证就是在上带权得正交多项式、12. 在上利用插值极小化求1得三次近似最佳逼近多项式、13. 设在上得插值极小化近似最佳逼近多项式为,若有界,证明对任何,存在常数、,使14. 设在上,试将降低到3次多项式并估计误差、15. 在上利用幂级数项数求得3次逼近多项式,使误差不超过0、005、16. 就是上得连续奇(偶)函数,证明不管就是奇数或偶数,得最佳逼近多项式也就是奇(偶)函数、17. 求、使为最小、并与1题及6题得一次逼近多项式误差作比较、 18. 、,定义()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们就是否构成内积? 19. 用许瓦兹不等式(4、5)估计得上界,并用积分中值定理估计同一积分得上下界,并比较其结果、20. 选择,使下列积分取得最小值:、21. 设空间,分别在、上求出一个元素,使得其为得最佳平方逼近,并比较其结果、 22. 在上,求在上得最佳平方逼近、23. 就是第二类切比雪夫多项式,证明它有递推关系、24. 将在上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差、 25. 把在上展成切比雪夫级数、26.27.29. 编出用正交多项式做最小二乘拟合得程序框图、 30. 编出改进FFT 算法得程序框图、31. 现给出一张记录,试用改进FFT 算法求出序列得离散频谱第四章 数值积分与数值微分1. 确定下列求积公式中得待定参数,使其代数精度尽量高,并指明所构造出得求积公式所具有得代数精度:(1);(2);(3);(4)、2.分别用梯形公式与辛普森公式计算下列积分:(1); (2);(3); (4)、3.直接验证柯特斯公式(2、4)具有5次代数精度、4.用辛普森公式求积分并计算误差、5.推导下列三种矩形求积公式:(1);(2);(3)、6.证明梯形公式(2、9)与辛普森公式(2、11)当时收敛到积分、7.用复化梯形公式求积分,问要将积分区间分成多少等分,才能保证误差不超过(设不计舍入误差)?8.用龙贝格方法计算积分,要求误差不超过、9.卫星轨道就是一个椭圆,椭圆周长得计算公式就是,这里就是椭圆得半长轴,就是地球中心与轨道中心(椭圆中心)得距离,记为近地点距离,为远地点距离,公里为地球半径,则、我国第一颗人造卫星近地点距离公里,远地点距离公里,试求卫星轨道得周长、10.证明等式试依据得值,用外推算法求得近似值、11.用下列方法计算积分并比较结果、(1)龙贝格方法;(2)三点及五点高斯公式;(3)将积分区间分为四等分,用复化两点高斯公式、12.用三点公式与五点公式分别求在1、0,1、1与1、2处得导数值,并估计误差、得值由下第五章常微分方程数值解法1、就初值问题分别导出尤拉方法与改进得尤拉方法得近似解得表达式,并与准确解相比较。
2、用改进得尤拉方法解初值问题取步长h=0、1计算,并与准确解相比较。
3、用改进得尤拉方法解取步长h=0、1计算,并与准确解相比较。
4、用梯形方法解初值问题证明其近似解为并证明当时,它原初值问题得准确解。
5、利用尤拉方法计算积分在点得近似值。
6、取h=0、2,用四阶经典得龙格-库塔方法求解下列初值问题:1)2)7、证明对任意参数t,下列龙格-库塔公式就是二阶得:8、证明下列两种龙格-库塔方法就是三阶得:1)2)9、分别用二阶显式亚当姆斯方法与二阶隐式亚当姆斯方法解下列初值问题:取计算并与准确解相比较。
10、证明解得下列差分公式就是二阶得,并求出截断误差得首项。
11、导出具有下列形式得三阶方法:12、将下列方程化为一阶方程组:1)2)3)13、取h=0、25,用差分方法解边值问题14、对方程可建立差分公式试用这一公式求解初值问题验证计算解恒等于准确解15、取h=0、2用差分方法解边值问题第六章方程求根1、用二分法求方程得正根,要求误差<0、05。
2、用比例求根法求在区间[0,1]内得一个根,直到近似根满足精度时终止计算。
3、为求方程在附近得一个根,设将方程改写成下列等价形式,并建立相应得迭代公式。
1),迭代公式;2),迭代公式;3),迭代公式。
试分析每种迭代公式得收敛性,并选取一种公式求出具有四位有效数字得近似根。
4、比较求得根到三位小数所需得计算量;1)在区间[0,1]内用二分法;2) 用迭代法,取初值。
5、给定函数,设对一切存在且,证明对于范围内得任意定数λ,迭代过程均收敛于得根。
6、已知在区间[a,b]内只有一根,而当a<x<b时,,试问如何将化为适于迭代得形式?将化为适于迭代得形式,并求x=4、5(弧度)附近得根。
7、用下列方法求在附近得根。
根得准确值=1、87938524…,要求计算结果准确到四位有效数字。
1) 用牛顿法;2)用弦截法,取;3)用抛物线法,取。
8、用二分法与牛顿法求得最小正根。
9、研究求得牛顿公式证明对一切且序列就是递减得。
10、对于得牛顿公式,证明收敛到,这里为得根。
11、试就下列函数讨论牛顿法得收敛性与收敛速度:1)2)12、应用牛顿法于方程,导出求立方根得迭代公式,并讨论其收敛性。
13、应用牛顿法于方程,导出求得迭代公式,并用此公式求得值。
14、应用牛顿法于方程与,分别导出求得迭代公式,并求15、证明迭代公式就是计算得三阶方法。
假定初值充分靠近根,求第七章解线性方程组得直接方法1、考虑方程组:(a)用高斯消去法解此方程组(用四位小数计算),(b)用列主元消去法解上述方程组并且与(a)比较结果。
2、(a) 设A就是对称阵且,经过高斯消去法一步后,A约化为证明A2就是对称矩阵。
(b)用高斯消去法解对称方程组:4、设A为n阶非奇异矩阵且有分解式A=LU,其中L为单位下三角阵,U为上三角阵,求证A 得所有顺序主子式均不为零。
5、由高斯消去法说明当时,则A=LU,其中L为单位下三角阵,U 为上三角阵。
6、设A 为n阶矩阵,如果称A为对角优势阵。
证明:若A就是对角优势阵,经过高斯消去法一步后,A具有形式。
7、设A就是对称正定矩阵,经过高斯消去法一步后,A约化为,其中证明(1)A得对角元素(2)A2就是对称正定矩阵;(3)(4)A得绝对值最大得元素必在对角线上;(5)(6)从(2),(3),(5)推出,如果,则对所有k8、设为指标为k得初等下三角阵,即(除第k列对角元下元素外,与单位阵I相同)求证当时,也就是一个指标为k得初等下三角阵,其中为初等排列阵。