工程力学第九章 扭转
- 格式:ppt
- 大小:2.12 MB
- 文档页数:52
第9章扭转(6学时)教学目的:理解圆轴扭转的受力和变形特点,剪应力互等定理;掌握圆轴受扭时的内力、应力、变形的计算;熟练掌握圆轴受扭时的强度、刚度计算。
教学重点:外力偶矩的计算、扭矩图的画法;纯剪切的切应力;圆杆扭转时应力和变形;扭转的应变能。
教学难点:圆杆扭转时截面上切应力的分布规律;切应力互等定理,横截面上切应力公式的推导,扭转变形与剪切变形的区别;掌握扭转时的强度条件和刚度条件,能熟练运用强度和刚度计算。
教具:多媒体。
通过工程实例建立扭转概念,利用幻灯片演示和实物演示表示扭转时的变形。
教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。
通过例题、练习和作业熟练掌握强度和刚度计算。
本章中给出了具体情形下具体量的计算公式,记住并会使用这些公式,强调单位的统一,要求学生在学习和作业中体会。
教学内容:扭转的概念;扭转杆件的内力(扭矩)计算和画扭矩图;切应力互等定理及其应用,剪切胡克定律与剪切弹性模量;扭转时的切应力和变形,圆杆扭转时截面上切应力的分布规律;扭转杆件横截面上的切应力计算方法和扭转强度计算方法;扭转杆件变形(扭转角)计算方法和扭转刚度计算方法。
教学学时:6学时。
教学提纲:9.1 引言工程实际中,有很多构件,如车床的光杆、搅拌机轴、汽车传动轴等,都是受扭构件。
还有一些轴类零件,如电动机主轴、水轮机主轴、机床传动轴等,除扭转变形外还有弯曲变形,属于组合变形。
例如,汽车方向盘下的转向轴,攻螺纹用丝锥的锥杆(图9-1)等,其受力特点是:在杆件两端作用大小相等、方向相反、且作用面垂直于杆件轴线的力偶。
在这样一对力偶的作用下,杆件的变形特点是:杆件的任意两个横截面围绕其轴线作相对转动,杆件的这种变形形式称为扭转。
扭转时杆件两个横截面相对转动的角度,称为扭转角,一般用φ表示(图9-2)。
以扭转变形为主的杆件通常称为轴。
截面形状为圆形的轴称为圆轴,圆轴在工程上是常见的一种受扭转的杆件。
图9-1图9-2本章主要讨论圆轴扭转时的应力、变形、强度及刚度计算等问题,同时非圆截面杆进行简单介绍。
工程力学中的扭转力学分析扭转力学是工程力学中的一个重要分支,研究物体在受到扭转力作用时产生的变形和应力分布。
在工程实践中,扭转力学的应用非常广泛,特别是在建筑、机械、航空航天等领域。
一、引言扭转力学研究的对象是物体在受到外界扭转力矩作用下的行为。
扭转力学涉及到以下几个关键概念:扭转角、扭转应变、扭转应力等。
二、基本原理与公式推导在扭转力学分析中,我们需要借助一些基本原理和公式来描述扭转的行为。
其中,最基本的原理是胡克定律,它表明物体在弹性阶段的扭转行为与受到的扭转力矩成正比。
公式推导过程如下:(1)胡克定律:θ = T / (G * J)其中,θ表示物体的扭转角,T表示扭转力矩,G表示切变模量,J 表示抗扭转性能指标。
(2)扭转应变:γ = θ * r / L其中,γ表示扭转应变,r表示被扭转物体的半径,L表示物体的长度。
(3)扭转应力:τ = G * γ其中,τ表示扭转应力。
三、典型扭转问题的分析在工程实践中,我们常常遇到一些典型的扭转问题,如轴材料的扭转分析、螺旋桨的扭转分析等。
下面以轴材料的扭转分析为例,介绍典型问题的求解过程:(1)问题描述:一根长度为L,半径为r的均质轴材料,在受到扭转力矩T作用下,求解轴的扭转角和轴的最大扭转应力。
(2)解答过程:首先,根据胡克定律可以得到轴的扭转角:θ = T / (G * J),其中G 为轴材料的切变模量,J为轴的惯性矩。
然后,根据扭转应变公式可以得到轴的扭转应变:γ = θ * r / L。
最后,根据扭转应力公式可以得到轴的扭转应力:τ = G * γ。
四、工程应用示例扭转力学在工程中的应用非常广泛,例如在机械工程中,通过对扭转力学的分析,我们可以设计出更加合理的轴、齿轮等零件;在建筑工程中,我们可以通过扭转力学的分析,预测结构在风荷载下的变形和损伤等。
五、总结扭转力学是工程力学中的重要分支,研究物体在受到扭转力作用下的变形和应力分布。
本文通过引言、基本原理与公式推导、典型扭转问题的分析以及工程应用示例的介绍,对扭转力学的相关内容进行了阐述。