第3章 无限长单位脉冲响应(IIR)滤波器的设计方法
- 格式:ppt
- 大小:2.94 MB
- 文档页数:184
数字信号处理实验指导实验四、 无限长单位脉冲响应(IIR)滤波器的设计方法(一) 实验目的加深对无限冲激响应( IIR )数字滤波器的常用指标和设计过程的理解。
(二) 实验内容常用函数介绍:1、Matlab 信号处理工具箱中提供了设计巴特沃思模拟滤波器的函数buttord 、buttap 和butter ,格式如下:(1)[,](,,,,C P S P S N W buttord W W R R s ='')用于计算巴特沃思模拟低通滤波器的阶N 和3dB 截止频率Wc (即本书中的符号c Ω)。
其中,Wp 和Ws 分别是滤波器的通带截止频率p Ω和阻止截止频率s Ω,单位为rad/s ;Rp 和Rs 分别是通带最大衰减系数p α和阻带最小衰减系数s α,单位为dB 。
(2)[,,]()z p G buttap N =用于计算N 阶巴特沃思归一化(c Ω=1)模拟低通滤波器系统函数的零、极点和增益因子,返回长度为N 的向量z 和p 分别给出N 个零点和极点,G 是滤波器增益。
得到的滤波器系统函数形式如下:1212()()()()()()()()()a N a a N Q s s z s z s z H s G P s s p s p s p ---==--- 其中,k z 和k p 分别是向量z 和p 的第k 个元素。
如果要从零、极点得到系统函数的分子和分母多项式系数向量B 和A ,可以调用结构转换函数(3)[,]2(,,)B A zp tf z p G =,结构转换后系统函数的形式为111111()()()M M M a N N Nb s b s b B s H s A s a s a s a ----+++==+++ 其中,M 是向量B 的长度,N 是向量A 的长度,k k b a 和分别是向量B 和A 的第k 个元素。
(3)[,](,,,)C B A butter N W ftype s =''''用于计算巴特沃思模拟滤波器系统函数中分子和分母多项式系数向量B 和A ,其中N 和C W 分别是滤波器的阶和3dB 截止频率c Ω,返回向量B 和A 中的元素k a 和k b 分别是上面的()a H s 表示式中的分母和分子系数。
有源模拟带通滤波器的设计 (10)数字信号处理实验指导实验四、 无限长单位脉冲响应(IIR)滤波器的设计方法(一) 实验目的加深对无限冲激响应( IIR )数字滤波器的常用指标和设计过程的理解。
(二) 实验内容常用函数介绍:1、Matlab 信号处理工具箱中提供了设计巴特沃思模拟滤波器的函数buttord 、buttap 和butter ,格式如下:(1)[,](,,,,C P S P S N W buttord W W R R s ='')用于计算巴特沃思模拟低通滤波器的阶N 和3dB 截止频率Wc (即本书中的符号c Ω)。
其中,Wp 和Ws 分别是滤波器的通带截止频率p Ω和阻止截止频率s Ω,单位为rad/s ;Rp 和Rs 分别是通带最大衰减系数p α和阻带最小衰减系数s α,单位为dB 。
(2)[,,]()z p G buttap N =用于计算N 阶巴特沃思归一化(c Ω=1)模拟低通滤波器系统函数的零、极点和增益因子,返回长度为N 的向量z 和p 分别给出N 个零点和极点,G 是滤波器增益。
得到的滤波器系统函数形式如下:1212()()()()()()()()()a N a a N Q s s z s z s z H s G P s s p s p s p ---==--- 其中,k z 和k p 分别是向量z 和p 的第k 个元素。
如果要从零、极点得到系统函数的分子和分母多项式系数向量B 和A ,可以调用结构转换函数(3)[,]2(,,)B A zp tf z p G =,结构转换后系统函数的形式为111111()()()M M M a N N Nb s b s b B s H s A s a s a s a ----+++==+++其中,M 是向量B 的长度,N 是向量A 的长度,k k b a 和分别是向量B 和A 的第k 个元素。
(3)[,](,,,)C B A butter N W ftype s =''''用于计算巴特沃思模拟滤波器系统函数中分子和分母多项式系数向量B 和A ,其中N 和C W 分别是滤波器的阶和3dB 截止频率c Ω,返回向量B 和A 中的元素k a 和k b 分别是上面的()a H s 表示式中的分母和分子系数。
无限脉冲响应数字滤波器(IIR )设计所谓的数字滤波,指的是输入、输出均为数字信号,通过一定运算关系改变输入信号所含频率成分的相对比例或者滤除某些频率成分。
数字滤波可分为无限脉冲响应(IIR )滤波和有限脉冲响应(FIR )滤波。
本次试验利用VISUAL DSP++ 软环境SIMULATOR 模拟实现无限脉冲响应(IIR )数字信号处理。
无限脉冲响应(IIR)的系统函数为:1()1Mrrr N kk k bz H Z a z-=-==+∑∑ 公式1即如果输入为X(Z),输出为Y(N),则:Y(Z)= X(Z )×H(Z),即01()()1Mrr r N kk k b zY Z X Z a z -=-==+∑∑ 公式2本试验中利用的公式是对上面的公式2对了相应的形式变化,利用中间变量11()()1Nkk k W Z X Z a z -==+∑ 公式3那么()()Mr r r Y Z W N b z -==∑ 公式4因此,本次试验设计了一个4阶IIR 滤波,其对应的公式3和公式4的时域公式如下:W(n)=x(n)*scale+w(n-1)*a1+w(n-2)*a2+w(n-3)*a3+w(n-4)*a4;公式5y(n)=w(n)+w(n-1)*b1+w(n-2)*b2+w(n-3)*b3+w(n-4)*b4;公式6在本次设计中由于系数a4,a3,a2,a1,b4,b3,b2,b1都是用户自己初始化的时候给定的且均为常数,所以公式5和公式6也相应可以变为公式7和公式8:W(n)=x(n)*scale+w(n-1)*a4+w(n-2)*a3+w(n-3)*a2+w(n-4)*a1 公式7 y(n)=w(n)+w(n-1)*b4+w(n-2)*b3+w(n-3)*b2+w(n-4)*b1 公式8其中x(n)是输入的数字序列。
从公式5和公式6可知:只要我们设定设计需要的a4,a3,a2,a1,b4,b3,b2,b1,以及初始化w(n-1), w(n-2), w(n-3), w(n-4),就可以得到我们所需要的滤波器了。
无限长单位脉冲响应IIR 滤波器的设计一.设计目的1.掌握数字滤波器的设计过程;2.了解IIR 的原理和特性;3.熟悉设计IIR 数字滤波器的原理和方法;4.学习IIR 滤波器的DSP 实现原理;5.学习使用CCS 的波形观察窗口观察输入/输出信号波形和频谱变化情况。
二.设计内容1.通过MATLAB 来设计一个低通滤波器,对它进行模拟仿真确定IIR 滤波器系数。
2.用DSP 汇编语言及C 语言进行编程,实现IIR 运算,对产生的合成信号,滤除信号中高频成分,观察滤波前后的波形变化。
三.设计原理IIR 滤波器与FIR 滤波器相比具有相位特性差的特点,但它的结构简单,运算量小,具有经济高效的特点,并且可以用较少的阶数获得很高的选择性,因此也得到了广泛的应用。
IIR 数字滤波器系统的传递函数为:H(z)= NN N N z a z a z b z b b z X z Y ----+⋯⋯+++⋯⋯++=111101)()( 它具有N 个极点和N 个零点,如果任何一个极点在单位圆外,则系统不稳定。
如果系数a j (j=1,… ,N )全部为0,则滤波器变成非递归的FIR滤波器,系统总是稳定的。
对于IIR滤波器,有系数量化敏感的缺点。
由于系统对序列施加的算法是由加法、乘法和延时的基本运算的组合,所以可以用不同结构的数字滤波器来实现而不影响系统总的传输函数。
四.MATLAB设计IIR滤波器的方法我们所用滤波器设计方法为巴特沃夫Butterworth滤波器设计和切比雪夫Chebyshev滤波器设计。
MATLAB的butter函数可以设计低通、带通、高通和带阻数字滤波器,其特征可以使通带内的幅度响应最大限度的平坦,但会损失截止频率处的下降斜度,使幅度响应衰减较慢,因此butter函数主要用于设计通带平坦的数字滤波器。
如果期望幅度响应下降斜度大,衰减快,可以使用Elliptic(椭圆)或Chebyshev(切比雪夫)滤波器。