无限长单位脉冲响应滤波器设计剖析
- 格式:doc
- 大小:65.50 KB
- 文档页数:8
无限长单位脉冲响应IIR 滤波器的设计一.设计目的1.掌握数字滤波器的设计过程;2.了解IIR 的原理和特性;3.熟悉设计IIR 数字滤波器的原理和方法;4.学习IIR 滤波器的DSP 实现原理;5.学习使用CCS 的波形观察窗口观察输入/输出信号波形和频谱变化情况。
二.设计内容1.通过MATLAB 来设计一个低通滤波器,对它进行模拟仿真确定IIR 滤波器系数。
2.用DSP 汇编语言及C 语言进行编程,实现IIR 运算,对产生的合成信号,滤除信号中高频成分,观察滤波前后的波形变化。
三.设计原理IIR 滤波器与FIR 滤波器相比具有相位特性差的特点,但它的结构简单,运算量小,具有经济高效的特点,并且可以用较少的阶数获得很高的选择性,因此也得到了广泛的应用。
IIR 数字滤波器系统的传递函数为:H(z)= NN N N z a z a z b z b b z X z Y ----+⋯⋯+++⋯⋯++=111101)()( 它具有N 个极点和N 个零点,如果任何一个极点在单位圆外,则系统不稳定。
如果系数a j (j=1,… ,N )全部为0,则滤波器变成非递归的FIR滤波器,系统总是稳定的。
对于IIR滤波器,有系数量化敏感的缺点。
由于系统对序列施加的算法是由加法、乘法和延时的基本运算的组合,所以可以用不同结构的数字滤波器来实现而不影响系统总的传输函数。
四.MATLAB设计IIR滤波器的方法我们所用滤波器设计方法为巴特沃夫Butterworth滤波器设计和切比雪夫Chebyshev滤波器设计。
MATLAB的butter函数可以设计低通、带通、高通和带阻数字滤波器,其特征可以使通带内的幅度响应最大限度的平坦,但会损失截止频率处的下降斜度,使幅度响应衰减较慢,因此butter函数主要用于设计通带平坦的数字滤波器。
如果期望幅度响应下降斜度大,衰减快,可以使用Elliptic(椭圆)或Chebyshev(切比雪夫)滤波器。
第五章 数字滤波器5-3 无限长单位脉冲响应数字滤波器设计一、概述数字滤波器从实现的网络结构或者从单位脉冲响应分类,可以分成无限脉冲响应(IIR)滤波器和有限脉冲响应(FIR)滤波器。
它们的系统函数分别为:理想低通、高通、带通、带阻滤波器幅度特性2 数字滤波器的技术要求我们通常用的数字滤波器一般属于选频滤波器。
假设数字滤波器的传输函数H(e j ω)用下式表示:通带内和阻带内允许的衰减一般用dB 数表示,通带内允许的最大衰减用αp 表示,阻带内允许的最小衰减用αs 表示,αp 和αs 分别定义为:011()1()()Mrr r Nk kk N nn b z H z a z H z h n z -=-=--==+=∑∑∑)(e j ωH )(e j ωH )(e j ωH )(e j ωH 0低通0高通0带通0带阻ωωωωπ-π2-π2-π2-π-π-π-π-ππππ2π2π2π2()()()j j j H e H e e ωωωΩ=00()20lg ()()20lg()psj p j j s j H e dBH e H e dBH e ωωαα==如将|H(ej0)|归一化为1,则表示成:3. 数字滤波器设计方法概述IIR 滤波器和FIR 滤波器的设计方法是很不相同的。
IIR 滤波器设计方法有两类,经常用的一类设计方法是借助于模拟滤波器的设计方法进行的。
其设计步骤是:先设计模拟滤波器得到传输函数Ha(s),然后将Ha(s)按某种方法转换成数字滤波器的系统函数H(z)。
二、模拟滤波器的设计模拟滤波器的理论和设计方法已发展得相当成熟,且有若干典型的模拟滤波器供我们选择,如巴特沃斯(Butterworth)滤波器、切比雪夫(Chebyshev)滤波器、椭圆(Cauer)滤波器、贝塞尔(Bessel)滤波器等,这些滤波器都有严格的设计公式、现成的曲线和图表供设计人员使用。
图5-21理想滤波器的幅频特性1.模拟低通滤波器的设计指标及逼近方法模拟低通滤波器的设计指标有αp, Ωp,αs 和Ωs 。
实验四无限长单位脉冲响应滤波器设计班级:姓名:学号:一、实验目的1、掌握双线形变换法及脉冲响应不变法设计IIR数字滤波器的具体设计方法及其原理,熟悉用双线形变换法及脉冲响应不变法设计低通,高通和带通IIR数字滤波器的计算机编程。
2、观察双线形变换法及脉冲响应不变法设计的滤波器的频域特性,了解双线形变换法及脉冲响应不变法的特点。
3、熟悉巴特沃思滤波器,切比雪夫滤波器和椭圆滤波器的频率特性。
;二、实验原理1、将模拟滤波器的参数指标通过频率变换转换为原型模拟低通滤波器的参数指标,设计满足指标要求的原型模拟低通滤波器,通过频率变换将原型模拟低通滤波器的系统函数变换为其他类型的模拟滤波器2、脉冲响应不变法是使数字滤波器的单位脉冲响应序列h(n)逼近模拟滤波器的冲激响应hs(t),让h(n)正好等于hs(t)的采样值。
3、双线性变换法使得s平面与z平面是一一映射关系,消除了多值变换性,克服了脉冲响应不变法产生的频响的混叠失真。
4、巴特沃思滤波器通带内有最大平坦的幅度特性且随着频率的升高而单调的下降和切比雪夫滤波器逼近误差峰值在一个规定的频段上位最小。
三、实验内容1、fc=0.3kHz,δ=0.8dB,fr=0.2kHz,At=20dB,T=1ms;设计一切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。
2、fc=0.2kHz, δ=1dB,fr=0.3kHz,At=25dB,T=1ms;分别用脉冲响应不变法及双线形变换法设计一巴特沃思数字低通滤波器,观察所设计数字滤波器的幅频特性曲线,记录带宽和衰减量,检查是否满足要求。
比较这两种方法的优缺点。
3、利用双线性变换法分别设计满足下列指标的巴特沃思滤波器,切比雪夫滤波器和椭圆滤波器,并作图验证设计结果:fc=1.2kHz, δ<=0.5dB,fr=2kHz,At>=40dB,fs=8kHz。
4、分别用脉冲响应不变法及双线形变换法设计一巴特沃思数字带通滤波器,已知fs=3kHz,其等效的模拟滤波器指标为δ<3kHz, 2kHz<f<=3kHz, At>=5dB, f>=6kHz, At>=20dB,f<=1.5kHz。
实验四无限长单位脉冲响应滤波器设计一、实验目的1.掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的计算机编程。
2.观察双线性变换及脉冲响应不变法设计的滤波器的频率特性,了解双线性变换法及脉冲响应不变法的特点。
3.熟悉巴特沃思滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。
二、实验原理(1)实验中有关变量的定义:fc通带边界频率,fr阻带边界频率,tao通带波动,at 最小阻带衰减,fs采样频率,t采样周期。
(2)设计一个数字滤波器一般包括以下两步:a.按照任务要求,确定滤波器性能指标b.用一个因果稳定的离散时不变系统的系统函数去逼近这一性能要求(3)数字滤波器的实现:对于IIR滤波器,其逼近问题就是寻找滤波器的各项系数,使其系统函数逼近一个所要求的特性。
先设计一个合适的模拟滤波器,然后变换成满足约定指标的数字滤波器。
用双线形变换法设计IIR数字滤波器的过程:a.将设计性能指标中的关键频率点进行“预畸”b.利用“预畸”得到的频率点设计一个模拟滤波器。
c.双线形变换,确定系统函数三、实验内容1、设计一切比雪夫高通滤波器,性能指标如下:通带边界频率f c=0.4kHz,通带波动δ=0.5dB,阻带边界频率f r=0.3kHz,阻带最小衰减At=20dB,采样频率f s=1000Hz,观察其通带波动和阻带衰减是否满足要求。
(绘制对数幅度谱)2、设计一巴特沃思低通滤波器,性能指标如下:通带边界频率f c=0.4kHz,通带波动δ=1dB,阻带边界频率f r=0.6kHz,阻带最小衰减At=40dB,采样频率f s=2000Hz,分别用脉冲响应不变法和双线性变换法进行设计,比较两种方法的优缺点。
(绘制线性幅度谱)3、用双线性变换法设计巴特沃思、切比雪夫和椭圆低通滤波器,其性能指标如下:通带边界频率f c=1.8kHz,通带波动δ≤1dB,阻带边界频率f r=2.6kHz,阻带最小衰减A t≥50dB,采样频率f s=8kHz。
实验四无限长单位脉冲响应滤波器设计一、实验目的1.掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的计算机编程。
2.观察双线性变换及脉冲响应不变法设计的滤波器的频率特性,了解双线性变换法及脉冲响应不变法的特点。
3.熟悉巴特沃思滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。
二、实验原理(1)实验中有关变量的定义:fc通带边界频率,fr阻带边界频率,tao通带波动,at 最小阻带衰减,fs采样频率,t采样周期。
(2)设计一个数字滤波器一般包括以下两步:a.按照任务要求,确定滤波器性能指标b.用一个因果稳定的离散时不变系统的系统函数去逼近这一性能要求(3)数字滤波器的实现:对于IIR滤波器,其逼近问题就是寻找滤波器的各项系数,使其系统函数逼近一个所要求的特性。
先设计一个合适的模拟滤波器,然后变换成满足约定指标的数字滤波器。
用双线形变换法设计IIR数字滤波器的过程:a.将设计性能指标中的关键频率点进行“预畸”b.利用“预畸”得到的频率点设计一个模拟滤波器。
c.双线形变换,确定系统函数三、实验内容1、设计一切比雪夫高通滤波器,性能指标如下:通带边界频率f c=0.4kHz,通带波动δ=0.5dB,阻带边界频率f r=0.3kHz,阻带最小衰减At=20dB,采样频率f s=1000Hz,观察其通带波动和阻带衰减是否满足要求。
(绘制对数幅度谱)2、设计一巴特沃思低通滤波器,性能指标如下:通带边界频率f c=0.4kHz,通带波动δ=1dB,阻带边界频率f r=0.6kHz,阻带最小衰减At=40dB,采样频率f s=2000Hz,分别用脉冲响应不变法和双线性变换法进行设计,比较两种方法的优缺点。
(绘制线性幅度谱)3、用双线性变换法设计巴特沃思、切比雪夫和椭圆低通滤波器,其性能指标如下:通带边界频率f c=1.8kHz,通带波动δ≤1dB,阻带边界频率f r=2.6kHz,阻带最小衰减A t≥50dB,采样频率f s=8kHz。
(绘制对数幅度谱)4、设计一巴特沃思带通滤波器,性能指标如下:通带频率3kH z≤f≤4kHz,通带波动δ≤1dB;上阻带f≥5kHz,阻带最小衰减At≥15dB;下阻带f≤2kHz,阻带最小衰减At≥20dB;采样频率f s=20kHz,分别用脉冲响应不变法和双线性变换法进行设计。
(绘制线性幅度谱)5、用双线性变换法设计一椭圆带阻滤波器,性能指标如下:阻带频率2kH z≤f≤3kHz,阻带最小衰减At ≥30dB ,通带频率f ≥4kHz 和f ≤1k Hz ,通带波动δ≤3dB ,采样频率f s =10kHz 。
(绘制对数幅度谱)注意:设计结果要求给出程序、数字滤波器的系统函数()H z 和幅频响应,()H z 请用word 自带的公式编辑器编辑(插入-对象-Microsoft 公式3.0)。
四、实验结果与分析1.实验结果:-30-25-20-15-10-55频率/Hz幅度/d B切比雪夫高通滤波器程序:fs=1000;fc=400;fr=300;rp=0.5;rs=20; ws=2*fs*tan(2*pi*fc/fs/2); wp=2*fs*tan(2*pi*fr/fs/2);[N,wn]=cheb1ord(wp,ws,rp,rs,'s'); [b,a]=cheby1(N,rp,wp,'high','s'); [bz,az]=bilinear(b,a,fs); [h,w]=freqz(bz,az); f=w/2/pi*fs; figure;plot(f,20*log10(abs(h))); axis([0,500,-30,5]); grid;xlabel('频率/Hz'); ylabel('幅度/dB');title('切比雪夫高通滤波器');实验结果分析:由图像观察可知,通带波动为0.5dB ,阻带最小衰减20dB,满足要求。
2.实验结果:00.20.40.60.811.21.4频率/Hz幅度巴特沃思低通滤波器,线性幅度谱程序:fs=2000;fc=400;fr=600;rp=1;rs=40; %脉冲响应不变法 wp=2*pi*fc; ws=2*pi*fr;[N,wn]=buttord(wp,ws,rp,rs,'s'); [b1,a1]=butter(N,wn,'s');[bz1,az1]=impinvar(b1,a1,fs); [h1,w]=freqz(bz1,az1); %双线性变换法wp=2*fs*tan(2*pi*fc/fs/2); ws=2*fs*tan(2*pi*fr/fs/2);[N,wn]=buttord(wp,ws,rp,rs,'s'); [b2,a2]=butter(N,wn,'s'); [bz2,az2]=bilinear(b2,a2,fs); [h2,w]=freqz(bz2,az2); f=w/(2*pi)*fs; figure;plot(f,abs(h1),'-.r',f,abs(h2),'-b');%线性幅度谱 grid;xlabel('频率/Hz'); ylabel('幅度');legend('脉冲响应不变法','双线性变换法'); title('巴特沃思低通滤波器,线性幅度谱');实验结果分析:脉冲响应不变法由于混碟效应,使得过渡带和阻带的衰减特性变差,并且不存在传输零点。
同时,也看到双线性变换法,在f=1000Hz 处有一个三阶传输零点,这个三阶零点正是模拟滤波器在Ω=无穷大处的三阶传输零点通过映射形成的。
3.实验结果:-80-70-60-50-40-30-20-10010频率/Hz幅度/d B巴特沃思低通滤波器-80-70-60-50-40-30-20-10010频率/Hz幅度/d B切比雪夫低通滤波器-80-70-60-50-40-30-20-10010频率/Hz幅度/d B椭圆滤波器程序:(1) fs=8000;fc=1800;fr=2600;rp=1;rs=50; wp=2*fs*tan(2*pi*fc/fs/2); ws=2*fs*tan(2*pi*fr/fs/2);[N,wn]=buttord(wp,ws,rp,rs,'s'); [b,a]=butter(N,wn,'s'); [bz,az]=bilinear(b,a,fs); [h,w]=freqz(bz,az); f=w/pi/2*fs; figure;plot(f,20*log10(abs(h1))); axis([0,8000,-80,10]); grid;xlabel('频率/Hz'); ylabel('幅度/dB');title('巴特沃思低通滤波器');(2) fs=8000;fc=1800;fr=2600;rp=1;rs=50; wp=2*fs*tan(2*pi*fc/fs/2); ws=2*fs*tan(2*pi*fr/fs/2);[N,wn]=cheb1ord(wp,ws,rp,rs,'s'); [b,a]=cheby1(N,rp,wp,'s'); [bz,az]=bilinear(b,a,fs); [h,w]=freqz(bz,az); f=w/pi/2*fs; figure;plot(f,20*log10(abs(h))); axis([0,6000,-80,10]);grid;xlabel('频率/Hz'); ylabel('幅度/dB');title('切比雪夫低通滤波器');(3) fs=8000;fc=1800;fr=2600;rp=1;rs=50;wp=2*fs*tan(2*pi*fc/fs/2); ws=2*fs*tan(2*pi*fr/fs/2);[N,wp]=ellipord(wp,ws,rp,rs,'s'); [b,a]=ellip(N,rp,rs,wp,’s'); [bz,az]=bilinear(b,a,fs); [h,w]=freqz(bz,az); f=w/pi/2*fs; figure;plot(f,20*log10(abs(h))); axis([0,6000,-80,10]); grid;xlabel('频率/Hz'); ylabel('幅度/dB'); title('椭圆滤波器');实验结果分析:由图像可知,巴特沃思滤波器的特点是具有通带内最平坦的幅度特性,而且随着频率的升高而单调地下降;切比雪夫滤波器的特点是其逼近误差峰值在一个规定的频段的频段上为最小,实际上误差值在规定的频段上是等波纹的,即误差值等幅地在极大值和极小值之间摆动;椭圆滤波器的特点是其幅值响应在通带和阻带内都是等波纹的,对于给定的阶数和给定的波纹要求,除椭圆滤波器外,其他滤波器均不能获得较窄的过渡带宽。
4.实验结果:00.20.40.60.811.21.4频率/Hz幅度巴特沃思带通滤波器,线性幅度谱程序:fs=20000;fc=[3000 4000];fr=[2000 5000];rp=1;rs=20; %脉冲响应不变法 wp=2*pi*fc; ws=2*pi*fr;[N,wn]=buttord(wp,ws,rp,rs,'s'); [b1,a1]=butter(N,wn,'s');[bz1,az1]=impinvar(b1,a1,fs); [h1,w]=freqz(bz1,az1); %双线性变换法wp=2*fs*tan(2*pi*fc/fs/2); ws=2*fs*tan(2*pi*fr/fs/2);[N,wn]=buttord(wp,ws,rp,rs,'s'); [b2,a2]=butter(N,wn,'s'); [bz2,az2]=bilinear(b2,a2,fs); [h2,w]=freqz(bz2,az2); f=w/(2*pi)*fs; figure;plot(f,abs(h1),'-.r',f,abs(h2),'-b');%线性幅度谱 grid;xlabel('频率/Hz'); ylabel('幅度');legend('脉冲响应不变法','双线性变换法'); title('巴特沃思带通滤波器,线性幅度谱');实验结果分析:脉冲响应不变法由于混碟效应,使得过渡带和阻带的衰减特性变差,并且不存在传输零点。