细胞外基质中金属蛋白酶的结构和功能
- 格式:docx
- 大小:37.21 KB
- 文档页数:2
生命科学研究LIFE SCIENCE RESEARCH1999年 第3卷 第3期 Vol.3 No.3 1999基质金属蛋白酶吴二喜 王凤飞 Norman McKIE摘 要:基质金属蛋白酶是一类分解细胞外基质组分的锌蛋白酶。
它们在有机体生长发育中的细胞外基质逆转与重塑以及疾病中的病理损害起着极为重要的作用。
基质金属蛋白酶的表达和活性在不同细胞水平受到严密调控,如细胞因子、生长因子以及激素的调节。
基质金属蛋白酶以酶原形式分泌,随后被其它蛋白酶如胞浆素或非蛋白酶类化学物质如有机汞所激活。
所有基质金属蛋白酶都受到天然抑制剂金属蛋白酶组织抑制剂所抑制。
两者的不平衡导致许多疾病的发生,如肿瘤侵入及转移。
合成基质金属蛋白酶组织抑制剂所抑制,如Marimastat能控制肿瘤转移的发生及进一步扩散。
本文将对基质金属蛋白酶的特征、分子区域结构、底物特性、激活机制、调控方式等方面进行最新概述。
关键词:基质金属蛋白酶;金属蛋白酶组织抑制剂;胶原酶;明胶酶;基质酶;膜型基质金属蛋白酶中图分类号:Q51;Q55 文献标识码:AMatrix MetalloproteinasesWU Er-xi1*,WANG Feng-fei1*,Norman McKIE2(1.Department of Human Metabolism and Clinical Biochemistry,University of Sheffield Medical School,Beech Hill Road,Sheffield S10 2RX,UK; 2.Department of Rheumatology,University of Newcastle-upon-Tyne Medical School Framlington Place,Newcastle-upon-Tyne NE2 4HH,UK)Abstract:Matrix metalloproteinases (MMPs) are zinc proteinases that degrade compounds of the extracellular matrix (ECM). These enzymes play a pivotal role in turnover and remodelling of the ECM during organism growth and development and the pathological destruction of tissues in diseases. The activities of metalloproteinases are tightly controlled at several different cellular levels such as modulation by cytokines, growth factors and hormones. MMPs are secreted as zymogens which can be activated by other proteinases such as plasmin or non-proteolytic agents such as organomercurials. All MMPs are inhibited by their natural inhibitors,tissue inhibitors of matrix metalloproteinases(TIMPs). Imbalance between MMPs and TIMPs has been implicated in many diseases such as tumour invasion and metastasis. The synthetic MMP inhibitors such as Marimastat can prevent the growthand further spread of established metastases.Key words:MMPs;TIMPs;collagenases;gelatinases;stromelysins;membrane type MMPsT0 Introduction Matrix metalloproteinases (MMPs) are also called matrixins. Since the first MMP was discovered by Gross and Lapiere in 1962, numerous other MMPs have been described and characterized. To date at least 14 MMPs have been found (Table 1). According to their structural properties and substrate specificities, MMPs can be divided into sub-Table 1 The matrix metalloproteinase family*Enzymes MMP No.**EC No.Mr(kDa)latent/activeExtracellular matrixsubstratesCollagenases Interstitial collagenase MMP1EC 3.4.24.757/48Collagen Ⅰ,Ⅱ,Ⅲ,Ⅶ,Ⅹ;gelatin,entactin,tenascin,aggrecan,progelatinaseA,progelatinase BNeutrophil collagenase MMP8EC3.4.24.3485/65Collagen Ⅰ,Ⅱ,Ⅲ;aggrecanCollagenase 3MMP13 60/48Collagen Ⅰ,ⅡGelatinases Gelatinase A MMP2EC 3.4.24.2472/66Collagen Ⅰ,Ⅳ,Ⅴ,Ⅶ,Ⅹ;gelatin,fibronectin,laminin,aggrecan elastin,progelatinase BGelatinase B MMP9EC 3.4.24.3592/84Collagen Ⅳ,Ⅴ;gelatin,elastin,entactin,aggrecan,vitronectinStromelysins Stromelysin 1MMP3EC 3.4.24.1760/50Collagen Ⅱ,Ⅳ,Ⅸ,Ⅹ,Ⅺ;gelatin,laminin,fibronectin,elastin,tenascin,aggrecan,procollagenase,progelatinase B,neutrophil procollagenaseStromelysin 2MMP10EC 3.4.24.2253/47Collagen Ⅳ,laminin,fibronectin,elastin,aggrecan,procollagenaseStromelysin 3MMP11 65/45Serpins,α1-PI,α2-antiplasmin,insulin-like growth factor-bindingprotein-1Others Matrilysin MMP7EC 3.4.24.2328/21Collagen Ⅳ,gelatins,laminin,fibronectin,entactin,elastin,aggrecan,progelatinaseA,progelatinase B,procollagenaseMetalloelastase MMP12EC.3.4.24.6552/43ElastinMembrane type MMPs MT1-MMP MMP14 63/54Progelatinase A,procollagenase 3,collagen,proteoglycan,fibronectin,tenascinMT2-MMP MMP15 72/61Progelatinase A,procollagenase 3,collagen,proteoglycan,fibronectin,tenascinMT3-MMP MMP16 64/55Progelatinase A MT4-MMP MMP17 70/54Unknown*Compiled from sources including Sang and Douglas[2];Shingleton et al.[3];Nagase [4];Pei et al.[19];Mari et al.[44];Murphy et al.[96];Takino et al.[28,46]andCockett et al.[116]**Some MMPs have been omitted.MMP5 and MMP2 are the same enzyme[5],MMP4 and MMP6 have been described in only one laboratory and there are no sequence data to date [5].There are some novel MMPs which have been found recently,see text for details.groups: collagenases, gelatinases, stromelysins, membrane type MMPs (MT-MMP) andothers[1~4]. This review summarises the characteristics, domain structure, substratespecificity, activation mechanisms, regulation, functions of the MMPs.1 Main characteristics of the MMPs All MMPs have a number of common characteristics which are also helpful to identify new members. These properties[2, 5~7]are: 1)they share a common domain structure comprising signal, propeptide, catalytic, and C- terminal hemopexin-like domains (except MMP7) (Fig.1).Fig.1 The domain structure of the matrix metalloproteinases2)They are secreted as zymogens. 3)Their activation can be achieved by other proteinases or organomercurials. 4)Their proteinase activity is blocked by 1,10-phenanthroline and chelating agents. 5)Activation is accompanied by a loss of molecular weight. 6)The active site contains metal ion zinc. 7)Their activity is inhibited by tissue inhibitor of metalloproteinases (TIMPs). 8)The active enzymes cleave one or more components of the extracellular matrix. 9)The enzymes act in neutral pH and need calcium ions for stability.2 Domain structure of MMPs After comparing the primary amino acid sequences of the MMP members, it can be seen that these proteins are divided into several distinct domains that are conserved among family members[1]. The largest MMP member (MMP9) has 7 domains in order from N-terminal: signal, propeptide, catalytic, fibronectin-like,α2V collagen-like, hinge, and C-terminal hemopexin-like. The simplest member MMP7 has only signal, propeptide and catalytic domains. The newly discovered MT-MMPs have a transmembrane domain[8]. All MMPs produce a signal as a leader sequence which cells cleave prior to secretion. The propeptide is lost on activation. For example, the human fibroblast collagenase is synthesized as a preproenzyme of Mr 54 kDa (57 kDa in Table 1) with the signal peptide of19 amino acids[9]. The primary secretion products of human fibroblast collagenase consist ofa minor glycosylated form of Mr 57 kDa and a major unglycosylated polypeptide of Mr 52 kDa[9]. 81 amino acids are removed after proteolytic activation of human fibroblast collagenase[9]. The catalytic domain contains a conserved zinc binding site comprising the sequence HEXGHXXGXXH[2]. The zinc acts as an active site and is ligated by the three-histidine residues of the zinc binding consensus sequence. The glutamic acid residue in the conserved zinc binding site acts as the catalytic base and proton shuttle during proteolysis and is involved in the fixation of a zinc-bound water molecule[10]. The structural integrity of the zinc-binding active site is maintained by a conserved methionine that is called “Met-turn”[10]. The catalytic domain also contains a calcium-binding region where the calcium ion is believed to stabilize the enzyme[11]. With the exception of matrilysin (MMP7), the MMPs contain an additional feature, that is their hemopexin-like or vitronectin-like C-terminal domain[1]. This domain is thought to help determine substrate specificity[1,5]. Thiscould be true, since recently Gohlke et al.[12]have found that the topology and the side chain arrangements of gelatinase A (MMP2) and fibroblast collagenases are very similar, but there are significant differences in surface charge and contouring. They thought these differences may be a factor in allowing the MMP2 C-terminal domain to bind to TIMP2. Very recently, Brooks et al.[13,14]have found that MMP2 can bind αvβ3 through its hemopexin-like domain. Besides the prototype domain structure, the gelatinases contain three tandem domains with sequences similar to the collagen-binding domain of fibronectin. The fibronectin-like domain is thought to be involved in the binding of two gelatinases to their substrate[5]. The MT-MMPs contain a transmembrane domain and a furin recognition site which is also found in stromelysin 3[8,15](Fig.1).3 Substrate specificity of MMPs The collagenases mainly cleave interstitial collagens (type I, II and III), unlike other MMPs, their substrate specificity is well defined. Collagenase action on the α2-macroglobulin results in the cleavage of Gly-Leu Peptide bond[5].They cleave the Gly-Ile peptide bond of α1(I) chain of collagen and Gly-Leu peptide bond of α2(I) chain of collagen[5]. The substrate cleavage pattern for collagenases is that P1 "residue is invariably hydrophobic (Leu, Ile, Val) and that P1 is usually Gly or a hydrophobic residue[5,16]. The gelatinases cleave denatured collagens and type IV collagen. As shown in table 1, while gelatinase A (MMP2) can also cleave the fibronectin and laminin, major components of the basement membrane, gelatinase B (MMP9) can only cleave the basement membrane component entactin[2]. Stromelysin 1 and 2 have a broad pH optimum and more general activity and are able to degrade many ECM proteins including proteoglycans, gelatins, fibronectin, laminin, elastin, type IV collagen and type IX collagen[17]. Niedzwiecki et al.[18]tested the substrate specificity of the human stromelysin 1 and found the preferences at P3, P2, P1, P1 ", and P2 "are for the hydrophobic amino acids Pro, Leu, Ala, Nva, and Trp, respectively. The mature stromelysin 3 does not degrade any major ECM components. Up to now, the only known substrates for stromelysin 3 are α1-proteinase inhibitor, serine proteinase inhibitors, α2-antiplasmin, and insulin-like growth factor-binding protein-1 [19,20]. However, the substrate specificity overlaps among the MMP members. The gelatinase A (MMP2) can also cleave triple helical type I collagen generating the 3/4 and 1/4 length collagen fragments characteristic of interstitial collagenases[21]. The cleavage site is the same Gly-Ile/Leu bond as the interstitial collagenases[21]. In fact all of the MMPs cleave gelatin and fibronectin at some rate[1]. Almost every MMP degrades an octapeptide containing collagen sequence GPQGIAGQ[5].4 Activation mechanisms of MMPs The MMPs are secreted in a latent form that is subsequently converted into the mature enzymes. The inactive zymogen can be processed into active forms by numerous reagentsincluding proteinases such as trypsin and plasmin; conformational perturbants such as sodium dodecyl sulfate (SDS); heavy metals such as Au (I) compounds and organomercurials; oxidants such as NaSCN; disulfide reagents such as oxidized glutathione; and sulfhydryl alkylating agents such as N-ethylmaleimide[22]. The latent proform of MMPs contains the highly conserved PRCGVNPD sequence with an unpaired cysteine residue. The cysteine residue links to the active site zinc, which blocks the active site. A ‘cysteine switch’ activation mechanism has been proposed[22,23](Fig. 2). In other words, in the latent form of MMPs, the cysteine residue with the thiol group coordinates the catalytically essential zinc ion in the active site of enzyme. Some reagents such as SDS can dissociate the cysteine residue from the zinc ion[22]. From this hypothesis, each MMP should have an unpaired cysteine residue and a zinc-binding site. In fact, all MMPs contain the PRCGVNPD sequence with an unpaired cysteine residue in the propeptide domain and the HEXXHXXGXXH sequence in the catalytic domain. Very recently, it has been shown that he structure of human pro-MMP2 supports this hypothesis[24]. The loops within the propeptide domain act as bait for activating proteinases. The prodomain structure breaks down and its shielding of the catalytic cleft is withdrawn upon cleavage, which allow water to enter and hydrolyze the coordination of the cysteine residue to the zinc ion[24]. All MT-MMPs found to date and stromelysin 3 contain a consensus sequence RXR/KR, which has already been found to be essential in the activation of stromelysin 3 and MT1-MMP by furin [15,25,26]. MMPs also have the ability to activate one another[27]. MT1-MMP[8]and MT3-MMP[28]have been shown to activate MMP2. MMP7 can activate MMP1, MMP2, MMP3 and MMP9[29]. MMP3 activates MMP1[30], MMP8[31], MMP9[32]and MMP13[33]. MMP2 and MT1-MMP activate MMP13[34], while MMP10 activates MMP8[35]. It has also been well documented that MMPs and serine proteinases can act on the proforms of one another [36,37]. Plasmin can cleave the prodomains of MMPs such as collagenase and stromelysin and activate these enzymes[36,37]. MMP7 can catalyze the formation of low molecular weight pro-urokinase and urokinase[38].Fig.2 Cysteine switch mechanism for activation of MMPsProteinases such as trypsin and plasmin cleave the propeptide,ahead of the cysteine to generate intermediate forms.Alternatively,nonproteolytic agents such as aminiphenyl-mercuric acetate (APMA) and sodium dodecy1 sulfate (SDS) will modify the cysteine.In a second step,these intermediate forms can be autoproteolytically cleaved to remove the propeptide and confer permanent activity.5 Regulation of MMPs The activities of metalloproteinases are tightly controlled at several different cellular levels. There are five points: (i) modulation of gene expression by cytokines, growth factors and hormones; (ii) synthesis and secretion of proMMPs; (iii) selective expression of MMP genes in specific tissue/cell types; (iv) activation of proenzymes; and (v) inhibition of the active enzymes[7,36,39,40]. It is known that the MMPs are not constitutively expressed in most tissue types but their mRNAs can be induced by treatment with many kinds of agents such as cytokines, growth factors, hormones, tumour promoter and oncogene products. In some cases the induction of more than one MMP is coordinately regulated, for example, MMP1 and MMP3 are often coordinately expressed[40]. The synthesis of MMP1 and MMP3 can be upregulated by 12-O-tetradecanoyl-phorbol-13-acetate (TPA), interleukin 1 (IL1), tumor necrosis factor α(TNFα), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF) and platelet derived growth factor (PDGF) and be downregulated by transforming growth factor β (TGF-β), interferon γ (IFN-γ) retinoic acid and dexamethasone[40], and MMP1 is down regulated by IL4[41]. The selective expression of MMP genes in specific tissue/cell types is one method of regulation of MMPs. Interstitial collagenase (MMP1) arises from connective tissue fibroblasts and macrophages. Neutrophil collagenase (MMP8) is only produced by cells of the neutrophil lineage. Stromelysin 1 (MMP3) is not widely expressed normally, but can be readily induced by growth factors, cytokines, tumour promoters and oncogene products in cultured mesenchymal cells such as chondrocytes and connective tissue fibroblasts. Stromelysin 2 (MMP10) is usually expressed in macrophages, keratinocytes and tumour cells[40,42]. Stromelysin 3 (MMP11) is often expressed in tumour stromal cells[37,40,43,44]. Gelatinase A (MMP2) is the most widespead of all MMPs and is frequently elevated in malignancies as well as occurring in connective tissue cells[36,40]. Gelatinase B (MMP9) is expressed in transformed and tumour-derived cells, neutrophil, corneal epithelial cells, cytotrophoblasts and keratinocytes[36]. Matrilysin is expressed in immature monocytes[36]. Metalloelastase (MMP12) is found in macrophages. MT1-MMP is expressed in tumour stroma cells[45]. MT2-MMP is produced by a human oral malignant melanoma and a human placenta[46]. MT3-MMP is expressed in normal tissues such as lung and kidney and cultured cells such as the squamous cell carcinoma cell line OSC-19 and human embryonal lung fibroblasts[28]. MT4-MMP is expressed in primary breast carcinomas and breast cancer cell lines examined[47]. All MMPs are inhibited by natural inhibitors called tissue inhibitors of metalloproteinases (TIMPs) of which four have been described (Table 2). TIMPs 1, 2 and 4 are secreted extracellularly in soluble form whereas TIMP3 binds to the ECM. All TIMPs share 35%~40% sequence identity and considerable higher structural similarity. The TIMPs bind with high affinity and 1∶1 molar ratio to active MMPs resulting in the loss of proteinase activity. All TIMPs contain 12 cysteine residues that have been shown to form disulfide bonds generating 6 loops. The mechanism of inhibition of MMPs by TIMPs is widely felt to be unclear. Murphy[39]. pointed out that the TIMP C-terminal domain has several different MMP binding sites that act to increase the rate of inhibition. Further studies such as site-directed mutagenesis and the crystal structure research of the complex of MMP and TIMP will facilitate understanding of the mechanism. TIMPs play a pivotal role in the regulation of ECM degradation/remodelling. Disruption of the balance between MMPs and TIMPs has been implicated in many diseases such as tumour invasion and metastasis. Besides their inhibitory activities, the TIMPs play a role in growth-promotion[48]. Some effective synthetic MMP inhibitors also can inhibit MMPs[49,50]. For example, the hydroxamate-based inhibitors such as BB94 (batimastat) and BB2516 (marimastat) can inhibit metastatic spread of tumoursand block the process of tumour neovasculariation[51~54]. The hydroxamate group in thesemolecules can combine with the zinc atom in the active site of MMPs[49,50].Table 2 Comparison of TIMP family members* TIMP1TIMP2TIMP3TIMP4 Molecular mass28kDa21kDa24kDa22kDa Glycosylation yes no no/yes no Binding properties proMMP9proMMP2ECM proMMP2Transcripts0.9kb 1.1 and 3.5kb 4.5,2.8,2.4and 1.2kb1.4,4.1,2.1,1.2,and 0.97kbModulation of gene expression by TGF-β1updown or noobvious effectup not determinedMajor sites ofexpressionOvary,bone Placenta Kidney,brain Heart Chromosome locationof human genexq1117q2522q12.1~13.22p25 *Compiled from sources including Stetler-Stevenson[117];Greene et al.[118];Wick et al.[119];Chamber and Matrisian[120]and Olson et al.[121]6 MMPs in physiological processes and pathological destruction Normal expression of MMPs is associated with turnover and remodelling of the ECM during growth and development. Cawston[7]summarised the involvement of MMPs in the normal turnover of connective tissue matrix. The MMPs are involved in the normal physiological processes such as ovulation and embryo implantation, embryological development, angiogenesis, bone turnover, uterine resorption and cervical ripening[7]. The MMPs are associated with the pathological destruction of tissues in diseases[1,7]. They are implicated in the processes such as wound healing, corneal ulceration, tumour growth and metastasis, periodontal disease, rheumatoid arthritis, arteriosclerosis and aortic aneurism[1,7]. Considerable research has been directed toward understanding both the steps involved in tumour cell invasion and metastasis and the molecular mechanism of the process. MMPs are thought to be one of the main contributors to tumour invasion and metastasis since they can degrade all of the components of basement membranes which the tumour cellsmust traverse[55~58]. Now the gene-targeting experiments have facilitated the examinationsof the effects that their absence, mutation or overexpression, in various physiological and pathological processes[59]. In the following sections more detailed information is presented on several MMP family members.7 Collagenases I, II and III (MMP1, MMP8 and MMP13) The group of enzymes termed collagenases includes 3 members: MMP1 (interstitialcollagenase or fibroblast collagenase), MMP8 (neutrophil collagenase) and MMP13 (collagenase 3). Their sequences share around 50%[33]. They cleave all three α chains of native types I, II, III collagens at a single site resulting in fragments corresponding to three-quarters and one-quarter of their initial length by hydrolyzing the peptide bond Gly-[Ile orLeu][60~62]. They do not degrade collagen IV and V, which are cleaved by otherproteinases[63~66]. The collagenases can also cleave type X collagen[67]. The threecollagenases have their own preference in cleaving the collagens. The preferred substrate of collagenase 3 (MMP13) is collagen type II[33], fibroblast collagenase (MMP1) preferentially cleaves collagen type III[68]and neutrophil collagenase (MMP8) prefers to cleave type I collagen[69]. Also collagenase 3 has a much stronger gelatinolytic activity than its homologous counterparts MMP1 and MMP8[33]. To date MMP1 expression has not been found in rats or mice[33]. All collagenases are located in the human chromosome 11q22.3 cluster[70,71]and share a highly conserved gene structure[72,73]. The expression of MMP13 in cartilage and its preference to degrade type II collagen suggests that it plays a critical role in the arthritides[74]. X ray crystallographic analyses of MMP1 and MMP8 are available now. The structures show that their catalytic domains harbour two zinc ions and one or twocalcium ions[75~77]. The structure consists of a five-stranded β sheet and three α helices[75].8 Gelatinases A and B (MMP2 and MMP9) Gelatinases, also called type IV collagenases, contain two members: MMP2 and MMP9. They degrade denatured collagens, type IV, V, VII, X, and XII collagens,vitronectin, aggrecan, elastin, galectin 3 and laminin[78~83]. Recently, it has beendemonstrated that MMP2 degrades native interstitial collagens[21]. MMP2 is the most widely distributed MMP[1]. Overexpression of gelatinases has been demonstrated in many tumorsystems and has been linked to tumour invasion[84~87]. While the proMMP2 is often foundcomplexed with the TIMP2 and is activated by MT1-MMP[88,89], the proMMP9 is associated with the TIMP1[78,90]. The regulation of MMP2 and MMP9 gene expression is different[91]. The promoter of MMP9 gene has a TATA-like sequence and a TPA response element, while MMP2 gene has no TATA motif-like sequence in the vicinity of the start site for transcription and TPA response element in its promoter[91]. There is a structural difference between MMP2 and MMP9 that comprises an extended 54 amino acid hinge region sequence which shares some homology with the α2 chain of type V collagen[78]. Brooks et al.[13,14]have found that MMP2 can directly bind integrin αvβ3. They further demonstrated that MMP2 binds αvβ3 through its hemopexin-like domain. It is likely to be distinct from other αvβ3-directed ligands as MMP2 has no RGD sequence[13,14]. Brooks et al.[14]have also found that PEX, a fragment of MMP2, which contains the C-terminal hemopexin-like domain, prevents MMP2 binding to αvβ3 and blocks cells surfacecollagenolytic activity. PEX is likely to be a natural breakdown product of MMP2 since the active form (62 kDa) of MMP2 can be further processed to a smaller species (43 kDa) resulting from autocatalytic removal of the 29 kDa hemopexin-like domain without the presence of TIMP2[14,92]. Both MMP2 and MMP9 are located on human chromosome 16[93].9 Stromelysins 1, 2 and 3 (MMP3, MMP10 and MMP11) MMP3 (stromelysin 1), MMP10 (stromelysin 2) and MMP11 (stromelysin 3) belong to this group. Stromelysins have wide substrate specificity. Stromelysin 1 degrades aggrecan, fibronectin, gelatin, laminin, type II, IV, IX, X, XI collagens and elastin[2,94]. It also participates in activation of other proMMPs such as proMMP1, proMMP8 and proMMP9[31,32,80]. MMP3 is not readily expressed in tissue but can be induced by cytokines such as IL1 and TNFα, growth factors and tumour promoters such as PMA[1,5,95]. Stromelysin 2 cleaves aggrecan, laminin, fibronectin, elastin and type IV[2]. It is transcriptionally active in normal human cells such as keratinocytes and it encodes the secreted Stromelysin 2[42]. Stromelysin 3 is a newly characterized MMP. It can degrade serpin, α1-proteinase inhibitor (α1-PI), α2-antiplasmin, and insulin-like growth factor-binding protein-1[19,20]; the truncated stromelysin 3 can also degrade fibronectin, laminin, aggrecan and type IV[96]. Stromelysin 3 is often found expressed in stromal cells surrounding primary and metastatic carcinomas[43]and may be involved in promoting local tumor development. Recently it has been suggested that the tumor-specific processing of stromelysin 3 to the 35 kDa protein is likely to be an important regulatory mechanism, since the generation of 35 kDa stromelysin in tumour/stroma coculture requires basic fibroblast growth factor (bFGF) and an MMP-like enzyme[44]. Unlike other MMPs, prodomain of stromelysin 3 contains a furin cleavage site, and therefore stromelysin 3 can be processed directly to its 45 kDa active form by furin within the constitutive secretory pathway[15]. MMP3 and MMP10 are located in the human chromosome cluster 11q22.3[70,72], while MMP11 is mapped to the Q11.2 region of chromosome 22[97].10 Membrane type-matrix metalloproteinases (MMP15, MMP16, MMP17 and MMP18) Membrane type matrix metalloproteinases (MT-MMPs), comprising MT1-MMP, MT2-MMP2, MT3-MMP and MT4-MMP (MMP14, MMP15, MMP16 and MMP17, respectively) are a novel subgroup of MMPs which contain a transmembrane domain and a short cytoplasmic domain in addition to the signal, pro-, catalytic, hemopexin-like and C-terminal domains which are common to other MMPs. To date, four MT-MMPs have been described [8,28,47,98]. From the alignment of amino acid sequences for MT-MMPs[47], it can be seen that they have at least 30% sequence homology to each other. Like other MMPs, they contain cysteine switch sequence, zinc binding site and Met-turn. However, they have an insertion between the propeptide and the catalytic domain in addition to the above mentionedmembrane-binding domain and short cytoplasmic domain. This insertion as in stromelysin 3 contains a potential cleavage site of furin or furin like convertase[8,15]. It has already been demonstrated that furin can cleave this sequence in pro-stromelysin 3 and proMT1-MMP [15,25,26]. However, the proMT1-MMP is proteolytically activated by human plasmin[99]. Okumura et al.[99]proposed that this is an extracellular proteinase activator of proMT1-MMP whereas the intracellular mechanism of activation is mediated by furin or a furin-like enzyme. The second insertion is found in proteinase domain; the function of these 8 amino acids is not known. The third insertion which contains the hydrophobic transmembrane domain is located in the C-terminal. The transmembrane domain of MT-MMPs plays an essential role in the progelatinase A (proMMP2) activation function of MT-MMPs, although some portions of the truncated form remain on the cell surface after the removal of this domain[100]. In MT1-MMP, the activation complex is a trimer comprising MT1-MMP, progelatinase A and TIMP2[88,89]. A recent study has suggested that MT1-MMP is a TIMP2 receptor[101]. This is further confirmed by another recent study[73]that TIMP2 and MT1-MMP form a complex for activation of progelatinase A. TIMP2 and TIMP3 can efficiently inhibit MT1-MMP whereas TIMP1 is a poor inhibitor for MT1-MMP[102]. Will et al.[102] also demonstrated that TIMP2 and TIMP3 can bind more rapidly to the catalytic domain of MT1-MMP than to the catalytic domain of MMP2. At the same time, two groups showed that MMP14, MMP15 and MMP16 locate in chromosomes 14, 16 and 8, respectively [103,104]. The MT-MMP gene loci are dispersed whereas most MMPs are clustered on chromosome 11q22.3[70,71], suggesting that the MT-MMPs may be a genetically distinct subgroup of MMPs. It has been suggested that the MT-MMPs play a critical role in tumor cell invasion and in ECM degradation[8,57,102]. MT-MMPs also can degrade ECM components[25,105,106].11 Others This group includes MMPs such as matrilysin (MMP7) and metalloelastase (MMP12). Matrilysin, also called putative metalloproteinase 1 (pump 1), is the smallest member of the MMP family. Unlike other MMPs, it lacks a C-terminal hemopexin-like domain. MMP7 can degrade various ECM components. It also can activate other proMMPs such as proMMP1, 3, 2 and 9[29]. Metalloelastase (MMP12) is also called macrophage elastase (ME). The expression of human macrophage elastase (HME) is mainly restricted to tissue macrophages [107]. Besides the substrate elastin listed in Table 1, the purified recombinant HME can degrade fibronectin, laminin, entactin, type IV collagen, chondroinan sulfate, and heparan sulfate[108]. Chandler et al.[109]also demonstrated that HME can degrade myelin basic protein and processes a TNF α fusion protein. Therefore Gronski et al.[108]suggested that HME may be essential for macrophages to penetrate basement membranes and remodel injured tissue during inflammation. MMP7 and MMP12 are allocated in the human chromosome cluster 11q22.3[70,72,107].。
tace 化学结构-概述说明以及解释1.引言1.1 概述TACE(Tumor Necrosis Factor-Alpha Converting Enzyme)是一种重要的酶类蛋白,在生物学研究领域中具有广泛的应用和研究价值。
作为一种分泌型金属蛋白酶,TACE能够促进细胞表面受体的活化和底物的剪切,从而参与多种细胞信号传导途径的调控。
TACE的化学结构具有一定的复杂性和多样性。
它是一种跨膜蛋白,由于其重要的生物学功能,其结构也备受关注。
TACE包含多个结构域,包括信号肽、金属螯合结构域、膜结合结构域、Cysteine-rich 结构域和Zn组织域等。
其中,信号肽用于靶向TACE定位并促进其分泌,金属螯合结构域包含了TACE的活性位点,膜结合结构域则使其在细胞膜上得以稳定定位。
Cysteine-rich 结构域和Zn组织域则对TACE的稳定和结构完整性起到重要的作用。
在生物学中,TACE具有多样的作用。
首先,TACE通过剪切和释放细胞膜上的受体前体形式来参与信号通路的激活,如EGF受体、TNF-α等。
其次,TACE还可以调节细胞凋亡、炎症反应和免疫反应等生理过程。
此外,TACE还与许多疾病的发生和发展密切相关,如炎症性疾病、癌症和免疫相关疾病等。
因此,对TACE的化学结构及其在生物学中的作用的深入研究,对于揭示其底层机制以及疾病的防治具有重要的意义。
本文将对TACE的化学结构进行详细介绍,并探讨其在生物学中的作用。
在对TACE结构的总结之后,也将展望TACE在未来的研究方向。
通过深入了解TACE的化学结构和功能,我们可以为开发新的药物靶点和疾病治疗提供重要的依据和思路。
文章结构部分的内容如下:1.2 文章结构本文将按照以下结构展开对TACE(Tumor Necrosis Factor-αConverting Enzyme)的化学结构和生物学作用进行探讨:第一部分为引言部分,我们将对TACE的概述进行简要介绍,包括其定义、来源和重要性。
基质金属蛋白酶9
基质金属蛋白酶9(Matrix Metalloproteinase 9)又称MMP-9,是一类具有多功能的糖蛋白酶,它主要参与了许多细胞间质功能,如组织改变、生长因子和细胞因子的释放,也参与了炎症反应以及血管扩张等过程。
此外,MMP-9还可以促进细胞的浸润和迁移,并帮助血管内皮细胞形成新的血管。
MMP-9在肿瘤发生、发展中起着极其重要的作用,它可以促进血管的新生和肿瘤的侵袭,对肿瘤的发展起到关键性作用。
同时,MMP-9还可以促进肿瘤细胞的凋亡,但是目前这方面的研究尚不完整。
基质金属蛋白酶—9与心血管病的关系基质金属蛋白酶(matrix metalloproteinases,MMPS)是由多种锌离子依赖性酶组成的、能够降解细胞外基质蛋白的重要酶类,几乎能够降解细胞基质的所有成分(胶原、明胶、粘性蛋白、纤维粘连蛋白、蛋白多糖等)。
基质金属蛋白酶-9(matrix metalloproteinase-9,MMP-9)又称明胶酶B,MMP-9不仅参与胚胎的正常发育、形态发生及月经形成等生理过程,在病理情况下,潜在型MMP-9被激活,在细胞外基质胶原重构的过程中具有重要作用,与多种心血管疾病的发生及发展有关,如心肌梗死后心室重构、充血性心力衰竭进展、心房颤动(房颤)、动脉粥样硬化斑块的形成与破裂、动脉瘤形成等。
标签:基质金属蛋白酶-9;心血管病;心肌重构在一些心血管疾病的发展过程中,除心肌细胞本身结构、代谢及功能异常外,心脏间质组织也发生异常改变。
许多实验结果表明,心肌细胞外基质(extracellular matrix,ECM)尤其是心肌胶原的异常改变,在心血管疾病的发病机制中起重要的作用。
MMPs是细胞外基质降解所必需的、锌离子依赖性的内源性蛋白酶家族,是ECM的主要生理性调节物质。
对于血管系统的基质成分而言,最重要的MMPs 是胶原酶和明胶酶,在基质成分合成与降解的过程中起着重要的作用。
现就MMP-9在心血管疾病中的影响做一综述。
1 MMP-9概述1.1 MMPs家族MMPs是自然进化中高度保守的一类酶,人们于1962年在蝌蚪尾组织中发现了第一个MMPs胶原酶,之后陆续在动植物中找到许多MMPs成员,目前已经发现MMPs近30种,在人体中已识别和定性至少23种1。
几乎全体MMPs 都有3个共同的结构域:前肽、催化结构域和血色素结合蛋白样C末端结构域。
根据其底物敏感性不同分4类:①间质胶原酶(MMP-1、8、13、18):主要降解胶原纤维(Ⅰ、Ⅱ、Ⅲ型胶原);②明胶酶(MMP-2、9):主要降解变性胶原及基底膜的主要成分Ⅳ型胶原;③基质降解酶(MMP-3、7、10、11),可降解多数ECM成分:包括蛋白多糖、层粘连蛋白、纤维粘连蛋白;④膜型金属蛋白酶(MT-MMP,MMP-14、15、16、17):能直接降解几种ECM成分和激活其他MMP;⑤未分类(MMP-19、20、23、28等)。
金属基质蛋白酶9与疾病的研究进展摘要:金属基质蛋白酶(MMPs)是一组可以选择性降解细胞外基质(ECM)的内肽酶,金属基质蛋白酶9(MMP-9)又名明胶酶B,它是MMPs家族中一个重要成员,能水解弹性蛋白、胶原蛋白、明胶、纤维蛋白等多种细胞外基质成分,在生理情况下参与人体的正常发育,是ECM降解的生理性调节因子。
所有MMPs都受金属基质蛋白酶抑制剂所抑制,两者的不平衡导致许多疾病的发生。
金属基质蛋白酶抑制剂1(tissue inhibitor of metalloproteinase-1,TIMP-1)为MMP-9特异性抑制剂,目前认为MMP-9与TIMP-1是调节ECM降解、合成的主要酶类,MMP-9/TIMP-1比值失衡是多种疾病发生、发展的重要机制之一。
近年研究发现MMP-9还与全身多系统疾病的发生、发展有关,现就MMP-9与多种疾病的相关研究进展进行综述。
关键词:金属基质蛋白酶9;疾病;研究进展金属基质蛋白酶(matrix metalloteinases,MMPs)是一组锌离子依赖的肽链内肽酶,因含金属离子(锌、钙)而得名,现至少已发现26种MMPs,称为MMPs家族,是构成细胞外基质降解最重要的蛋白水解系统。
其抑制剂(tissue inhibitor of metalloproteinases,TIMPs)是调节MMPs的重要因素。
MMPs与TIMPs在维持ECM的动态平衡中起重要作用。
细胞外基质(extracellullar matrix,ECM)是一类由胶原、蛋白聚糖及糖蛋白等大分子物质组成的动态网状结构,ECM不仅起细胞与细胞之间机械支持和连接作用,也是细胞与细胞之间信号传递的桥梁,现已识别丝氨酸蛋白酶、半胱氨酸蛋白酶、天冬氨酸蛋白酶、基质金属蛋白酶均能降解ECM[1]。
金属基质蛋白酶9(matrix metalloteinases-9,MMP-9)是MMPs家族分子量最大的明胶酶。
基质金属蛋白酶9降解明胶-概述说明以及解释1.引言1.1 概述基质金属蛋白酶9(MMP-9)是一种重要的酶类蛋白,广泛存在于生物体内,主要参与细胞外基质的降解和重塑过程。
明胶作为一种蛋白质,也是生物体中重要的结构分子,具有许多生理功能和应用价值。
本文将重点探讨基质金属蛋白酶9对明胶的降解作用,分析其降解机制及对生物体的影响,以期为进一步研究细胞外基质降解和生物体内蛋白质代谢提供理论基础。
部分的内容1.2 文章结构本文将首先介绍基质金属蛋白酶9的作用,包括其在生物体内的功能和重要性。
接着,将深入探讨明胶的结构与特性,介绍其在生物体中的角色和应用。
最后,将详细讨论基质金属蛋白酶9对明胶的降解机制,揭示其对生物体的影响及可能的未来研究方向。
通过这些内容的呈现,读者将对基质金属蛋白酶9降解明胶的过程有更加全面的了解,促进相关研究领域的进一步发展。
容1.3 目的目的:本文旨在探讨基质金属蛋白酶9对明胶的降解机制,以揭示其在生物体内的重要性。
通过深入了解基质金属蛋白酶9在明胶降解过程中的作用机制,可以更好地认识明胶的结构与特性,并进一步探讨明胶降解对生物体的影响。
同时,本文还将探讨未来研究方向,为相关领域的研究提供参考与借鉴。
通过本文的研究,有望为深化对基质金属蛋白酶9降解明胶的认识,从而为相关领域的科研工作提供理论支持与实验依据。
2.正文2.1 基质金属蛋白酶9的作用基质金属蛋白酶9,也称为MMP-9,是一种重要的内切酶,在细胞外基质的降解过程中起着关键作用。
它属于金属蛋白酶家族,特别善于降解胶原蛋白,是一种重要的胶原酶。
MMP-9主要通过降解胶原和基质蛋白,促进组织修复和细胞迁移。
在生理情况下,MMP-9的活性受到严格控制,只在组织修复和再生过程中被激活。
然而,在某些疾病状态下,如关节炎、癌症和心血管疾病,MMP-9的过度活化会导致病理进程的发展。
总的来说,基质金属蛋白酶9在细胞外基质降解中起着重要作用,平衡其活性对于维持正常的组织结构和功能至关重要。
肝癌的细胞外基质重塑与转移细胞外基质是组织的非细胞成分,由各种复杂的分子组成,包括蛋白质、糖类、脂质等。
肝癌是一种高度侵袭性的癌症,其转移过程中细胞外基质的重塑起着重要作用。
本文将探讨肝癌细胞外基质重塑与转移的相关机制。
一、肝癌细胞外基质的构成肝癌细胞外基质由多种成分组成,其中胶原蛋白是最主要的成分之一,它在肝癌的形成和发展过程中扮演着重要角色。
除胶原蛋白外,纤维连接蛋白、基质金属蛋白酶和粘附分子等也参与了细胞外基质的构建和维持。
二、肝癌细胞外基质的重塑在肝癌发展过程中,细胞外基质会发生重塑现象,尤其是癌细胞周围的基质发生了明显的变化。
这种重塑主要表现为基质成分的改变、基质的刚度增加和基质的病理性改变等。
1. 基质成分的改变肝癌细胞外基质中的成分会发生变化,例如胶原蛋白的增加和分子构型的改变。
研究发现,肝癌组织中的胶原蛋白含量明显增加,而且其在细胞外基质中的排列方式也发生了改变,过度聚集的胶原蛋白会导致细胞外基质刚度增加,从而增强肿瘤细胞的浸润和侵袭能力。
2. 基质的刚度增加肝癌细胞外基质的刚度增加是由于胶原蛋白等成分的改变导致的。
细胞外基质的刚度与肿瘤细胞的生物学行为密切相关,当基质刚度增加时,肝癌细胞会更容易侵入周围组织并进一步转移。
因此,针对细胞外基质的刚度调控可能有助于阻断肝癌的转移过程。
3. 基质的病理性改变肝癌细胞周围的细胞外基质还可能发生病理性改变。
一些研究发现,肿瘤相关基质(tumor-associated matrix)的形成与肝癌的进展和预后密切相关。
肿瘤相关基质会增强肿瘤细胞的侵袭和转移能力,并且还能调节肿瘤免疫反应和血管生成等生物学过程。
三、肝癌细胞外基质重塑与转移的机制肝癌细胞外基质的重塑与肝癌细胞的转移密切相关,涉及多种分子和信号途径的调控。
1.基质金属蛋白酶参与的降解基质金属蛋白酶(matrix metalloproteinases,MMPs)是一类能够降解细胞外基质的酶。
基质金属蛋白酶识别位点概述说明以及解释1. 引言1.1 概述:基质金属蛋白酶(matrix metalloproteinases, MMPs)是一类具有重要生物学功能的酶家族,广泛存在于人体和其他生物体内。
它们在细胞外基质的代谢、细胞迁移、炎症反应、组织修复等多种生物过程中扮演着关键角色。
基质金属蛋白酶通过降解与调控胶原蛋白、纤维连接蛋白等基质成分的结构,参与了许多疾病的发展和进展,如肿瘤转移、心脏病变以及风湿性关节炎等。
1.2 文章结构:本文将依次介绍基质金属蛋白酶的概述、识别位点的重要性以及该领域的研究方法和技术。
首先,我们将对基质金属蛋白酶进行分类定义,并探讨它们在结构和功能特点上的差异。
随后,我们将深入讨论基质金属蛋白酶在生理和病理过程中识别位点的意义,并介绍一些重要识别位点的例子和作用机制。
接下来,我们将详细介绍实验室技术手段、生物信息学分析方法以及基于计算模型预测识别位点的方法。
最后,我们将对基质金属蛋白酶识别位点研究现状进行总结归纳,并展望未来可能的研究方向和应用前景。
1.3 目的:本文旨在全面深入地探讨基质金属蛋白酶识别位点的概述、意义以及相关研究方法和技术。
通过对该领域的综述,我们希望能够提高人们对基质金属蛋白酶与其识别位点之间关系的理解,并促进该领域的进一步研究和应用。
同时,我们也期望为未来开展相关疾病治疗、药物设计等方面的工作提供参考和借鉴。
2. 基质金属蛋白酶概述:2.1 定义与分类:基质金属蛋白酶是一类广泛存在于细胞内和细胞外的酶,其特点在于能够催化多种蛋白质的降解和修饰过程。
它们主要通过断裂或修改细胞外基质中的蛋白质分子,从而参与了许多重要的生物学过程,如组织发育、炎症反应和肿瘤转移等。
基质金属蛋白酶按照结构、底物特异性以及金属离子需求等方面进行了分类,包括胶原酶、凝血酶样蛋白酶、凝血素样活化剂等多个亚族。
2.2 结构与功能特点:基质金属蛋白酶通常由一个完整的蛋白结构域组成,该结构域含有保守性高的催化位点和底物结合位点。
第11卷 第6期2020年11月Vol. 11 No. 6Nov. 2020器官移植Organ Transplantation基质金属蛋白酶(matrix metalloproteinase ,MMP )是一类因需要Ca 2+、Zn 2+等金属离子作为辅助因子而得名的蛋白质家族,最早于1962年在人皮肤组织中发现[1]。
MMP 家族共同参与细胞外基质(extracellular matrix ,ECM )的重塑,包括胶原蛋白、弹性蛋白、明胶和酪蛋白等,在组织发育和维持稳态中有一定的作用。
MMP 家族成员具有相似的结构,由5个功能不同的结构域组成:(1)疏水信号肽序列;(2)前肽区,主要作用是保持酶原的稳【摘要】 基质金属蛋白酶(MMP )是一大类蛋白酶,可切割或重塑细胞外基质(ECM )和细胞表面蛋白。
MMP 的活性受到多种细胞因子的调节,包括金属蛋白酶组织抑制因子(TIMP )、信号转导分子和细胞黏附分子等。
最新的研究表明,MMP 在许多急性和慢性肾病的病理生理过程中都有作用。
本文就MMP 的分类、在肾脏中的表达与分布及其在肾移植相关损伤中的作用作一综述。
【关键词】 基质金属蛋白酶;肾移植;细胞外基质;金属蛋白酶组织抑制因子;急性肾损伤;缺血-再灌注损 伤;慢性移植肾肾病;炎症反应【中图分类号】 R617 【文献标志码】A 【文章编号】1674-7445(2020)06-0018-05·综述·基质金属蛋白酶在肾移植相关损伤中的表达及作用董岩 赵弘 满江位 杨立【Abstract 】 Matrix metalloproteinase (MMP) is a large class of proteases which can cut or reshape extracellular matrix (ECM) and cell surface proteins. The activity of MMP is regulated by a variety of cytokines, including tissue inhibitor of metalloprotease (TIMP), signal transduction molecules and cell adhesion molecules. The latest research shows that MMP has a role in the pathophysiology process of many acute and chronic kidney diseases. In this article, the classification, expression and distribution in the kidney of MMP and its role in injury related renal transplantation was reviewed.【Key words 】 Matrix metalloproteinase; Renal transplantation; Extracellular matrix; Tissue inhibitor of metalloprotease; Acute kidney injury; Ischemia-reperfusion injury; Chronic allograft nephropathy; InflammationExpression and role of matrix metalloproteinase in injury related renal transplantation Dong Yan, Zhao Hong, Man Jiangwei, Yang Li. Department of Urology, Lanzhou University Second Hospital, Lanzhou 730030, China Correspondingauthor:YangLi,Email:***************DOI: 10.3969/j.issn.1674-7445.2020.06.018基金项目:甘肃省自然科学基金项目(17JR5RA237)作者单位:730030 兰州大学第二医院泌尿外科作者简介:董岩,男,硕士,住院医师,研究方向为肾移植,Email :******************通信作者:杨立,男,博士,主任医师,研究方向为肾移植,Email :***************定,当该区域被外源性酶切断后,MMP 酶原被激活;(3)催化活性区,有锌离子结合位点,对酶发挥催化作用至关重要;(4)富含脯氨酸的铰链区; (5)羧基末端,与酶的底物特异性有关。
MMPs对动脉粥样硬化斑块稳定性的调控机制动脉粥样硬化斑块可使血管管腔狭窄,斑块稳定与否又可直接影响心脑血管临床疾病的发生。
基质金属蛋白酶是降解细胞外基质成分的关键酶,对动脉粥样硬化斑块稳定性起重要作用。
综合分析基质金属蛋白酶的结构、功能、活性调节以及与动脉粥样硬化斑块稳定性之间的关系,可为基础研究与临床研究提供有益信息。
标签:动脉粥样硬化;基质金属蛋白酶;斑块稳定性心脑血管疾病是当今威胁全球人类健康与生命的头号杀手,其发生率和死亡率已超过肿瘤性疾病而占居世界第一。
动脉粥样硬化(atherosclerosis,AS)是引发冠心病的病理基础,而AS易损斑块的破裂是急性冠状动脉综合征(acute coronary syndrome, ACS)包括急性心肌梗死、心源性猝死、不稳定型心绞痛的主要原因。
基质金属蛋白酶(matrix metalloproteinases,MMPs)是细胞外基质(ECM)代谢中的关键酶之一,与AS斑块的形成与破裂有密切联系。
本研究重点介绍近年来基质金属蛋白酶与动脉粥样硬化及易损斑块间的关系。
1MMPs的结构与功能MMPs是一类金属依赖的酶原,该蛋白酶的活性受到锌离子的调控,生物学作用及其稳定性受到钙离子的调节[1]。
所有的MMP家族成员都有一段相同的结构。
一个信号肽紧跟着一个前肽区组成了一个三维空间结构,其中前肽区包含一个高度保守的半胱氨酸残基序列,对大多数MMP酶原的活化起重要作用。
前肽区能够屏蔽催化区消化一些物质如胶原蛋白或弹性蛋白。
MMP-2和MMP-9的催化区中有一段纤维样区域。
另外还有一段血凝酶样区域将MMPs成员经细胞膜联系起来。
根据作用底物不同,将MMPs可分为六大亚类:A亚类:MMP-19、-26、-28;B亚类:MMP-11、-21、-23;C亚类:MMP-17、-25;D亚类:MMP-1、-3、-8、-10、-12、-13以及-27;E亚类:MMP-14、-15、-16、-24;F亚类:MMP-2、-7、-9和-20[2]。
基质金属蛋白酶9实验室检查1.引言1.1 概述概述部分的内容可以介绍基质金属蛋白酶9(Matrix Metalloproteinase 9,简称MMP-9)的背景和重要性。
以下是概述部分的一种可能的写法:基质金属蛋白酶9,作为一种重要的分泌性酶,在生物体的生理和病理进程中扮演着重要角色。
它属于金属蛋白酶家族(MMPs),在细胞外基质降解、细胞迁移和组织修复过程中发挥着关键功能。
MMP-9在多种生物学过程中发挥着积极的调节作用,包括胚胎发育、组织修复、免疫应答和癌症转移等。
MMP-9的异常活性与多种疾病的发病机制相关,如慢性炎症、创伤、致病菌感染以及肿瘤和心血管疾病等。
其过量活化与细胞外基质降解失衡、炎症反应增强、肿瘤细胞侵袭和转移等密切相关。
因此,对MMP-9的精确、敏感的检测方法的开发对于研究其生物学作用以及相关疾病的诊断和治疗具有重要意义。
本文旨在探讨基质金属蛋白酶9的检测方法,并就其在实验室检查中的应用前景进行讨论。
通过这一文献综述,我们希望能够全面了解基质金属蛋白酶9的生物学功能、检测方法以及其在临床实践中的潜在价值,为今后的研究和临床应用提供有益的参考。
1.2 文章结构本文将以以下几个部分展开对基质金属蛋白酶9实验室检查的介绍和探讨。
首先,在引言部分将对整篇文章的背景和目的进行概述,为读者提供一个整体的认识。
接下来,在正文部分,我们将着重探讨基质金属蛋白酶9的作用和它的检测方法。
具体来说,2.1节将深入讨论基质金属蛋白酶9的作用机制以及在生物体内的重要功能。
2.2节将详细介绍目前常用的基质金属蛋白酶9检测方法,包括实验室常用的技术和仪器设备等。
最后,在结论部分,我们将强调实验室检查的重要性,并展望基质金属蛋白酶9实验室检查的未来应用前景。
通过以上章节的安排,本文将全面介绍基质金属蛋白酶9实验室检查的相关知识,使读者对其有一个全面深入的了解。
同时,通过细致的文字叙述和详细的信息呈现,有助于读者更好地理解和运用基质金属蛋白酶9实验室检查的相关内容。
mmp2 基质金属蛋白酶信号通路在生物学中,mmp2 基质金属蛋白酶信号通路是一个备受关注的课题。
基质金属蛋白酶(MMP)是一类能够降解细胞外基质的酶,包括胶原蛋白、纤维连接蛋白和凝血蛋白的一类蛋白酶,是调控细胞外基质成分的关键因素。
在这个信号通路中,MMP2扮演着重要的角色,并且对于细胞外基质降解、促进细胞迁移和浸润等生物学过程具有重要作用。
本文将从简到繁地探讨mmp2 基质金属蛋白酶信号通路,帮助读者更深入地理解这一关键生物学信号通路的作用和机制。
1. mmp2 的基本概念mmp2 是一种重要的基质金属蛋白酶,属于MMP家族的一员。
它能够在生物体内降解多种基质蛋白,包括胶原蛋白、纤维连接蛋白和凝血蛋白等。
在细胞外基质的代谢和重塑过程中,mmp2 发挥着重要的作用。
另外,mmp2 也参与了多种生物学过程,如组织再生、肿瘤转移等。
2. mmp2 信号通路的调控mmp2 信号通路的调控涉及到多种因素和机制。
在细胞内外环境的影响下,mmp2 的表达和活性得以调控。
细胞外基质中的信号分子和受体也能够通过不同的信号通路影响mmp2 的表达和分泌。
一些细胞因子的参与也对mmp2 的活性产生影响。
3. mmp2 信号通路的生物学意义在生物学过程中,mmp2 信号通路发挥着重要的作用。
它参与了细胞的迁移、浸润以及组织的再生和修复等过程。
与此mmp2 还参与了肿瘤的血管生成和转移过程,对于癌症的发展和转移具有重要的意义。
4. mmp2 信号通路的研究现状和展望对于mmp2 信号通路的研究一直备受关注。
近年来,一些新的调控因子被发现,对于mmp2 信号通路的调控机制有了新的认识。
未来的研究方向包括更深入地探索mmp2 信号通路的调控机制,以及寻找针对这一通路的新的治疗策略。
总结回顾mmp2 基质金属蛋白酶信号通路作为一个重要的生物学信号通路,对于细胞外基质的代谢和重塑具有重要的作用。
通过深入研究mmp2 信号通路的调控机制和生物学意义,可以更好地理解细胞迁移、浸润等过程的机制,并且有助于寻找新的治疗策略。
机制金属蛋白酶14 -回复什么是机制金属蛋白酶14?机制金属蛋白酶14(MMP-14)是一种酶类蛋白分子,属于金属蛋白酶家族。
它在体内发挥重要的生理和病理作用,参与多个生物学过程和疾病的发生发展。
MMP-14通常被称为MMP-14蛋白酶,是其中的一种类型。
步骤一:MMP-14的结构和功能MMP-14是一种具有金属离子结合位点的蛋白酶,其活性需要金属离子的参与(通常是锌)。
它的结构由一个信号肽、一个膜锚域、一个半胱氨酸蛋白酶域和一个纤维连接区域组成。
信号肽位于蛋白酶的N端,可以将MMP-14定位到细胞膜上。
膜锚域将MMP-14固定在细胞膜上,使其具有膜结合功能。
半胱氨酸蛋白酶域是MMP-14的主要功能区域,包含有金属离子结合位点和底物结合位点。
纤维连接区域是连接半胱氨酸蛋白酶域和膜锚域的一段多肽链。
MMP-14的主要功能是参与基质金属蛋白酶家族的调节作用。
它可以降解胶原蛋白、纤维连接蛋白等细胞外基质成分,参与组织修复和再生过程。
此外,MMP-14还参与了肿瘤的侵袭和转移,免疫细胞的活化和迁移,以及血管生成等生物学过程。
因此,MMP-14在多种生理和病理状态下均发挥重要作用。
步骤二:MMP-14在疾病中的作用MMP-14在很多疾病的发生发展中具有重要作用。
例如,肿瘤血管形成是一种重要的恶性肿瘤特征,也是肿瘤侵袭和转移的关键环节。
MMP-14通过降解细胞外基质,促进了肿瘤血管的形成和内皮前体细胞的迁移,从而影响恶性肿瘤的发展。
因此,MMP-14成为潜在的抗肿瘤治疗靶点。
此外,MMP-14在风湿性关节炎、炎症性肠病、动脉粥样硬化等疾病中也发挥着重要的作用。
在这些疾病中,MMP-14参与了炎症细胞的迁移和活化,导致炎症反应的加剧和组织损伤的发生。
因此,抑制MMP-14的活性有望成为治疗这些疾病的新策略。
步骤三:抑制MMP-14活性的方法由于MMP-14在多种疾病中的作用,抑制其活性已经成为许多研究的焦点。
血浆降解细胞外基质-概述说明以及解释1.引言1.1 概述血浆降解细胞外基质是一种重要的生物学过程,它在机体的正常发育和组织修复中发挥着至关重要的作用。
细胞外基质是位于细胞表面和组织间隙的组织基质,由各种复杂的大分子组成,包括胶原蛋白、弹性蛋白、多糖和其他结构蛋白。
血浆降解细胞外基质是通过酶类的参与来实现的,其中最重要的酶是降解酶,如金属蛋白酶和纤维蛋白酶。
这些酶能够在正常生理条件下,对细胞外基质进行有序的降解和修复,维持组织结构的稳定性和功能。
然而,在某些疾病状态下,降解酶的活性可能过高或过低,导致细胞外基质的异常降解或积累,进而导致组织结构的破坏和功能的异常。
血浆降解细胞外基质在病理过程中起着关键的作用。
一些疾病,如慢性肺病、肝硬化和动脉粥样硬化等,与血浆降解细胞外基质的异常有密切关系。
例如,在肺纤维化的过程中,过度激活的降解酶会引起细胞外基质的大量降解,导致肺组织的结构改变和功能丧失。
另外,一些肿瘤也能够通过调节血浆降解细胞外基质的降解过程来促进肿瘤的侵袭和转移。
因此,对血浆降解细胞外基质的研究具有重要的理论和临床意义。
了解血浆降解细胞外基质的定义、特点以及其在生理和病理过程中的功能,有助于我们更深入地认识组织结构破坏和功能异常的机制,并为相关疾病的诊断和治疗提供新的思路和方法。
未来的研究还可以从探索降解酶的调控机制和寻找相关的干预靶点入手,努力寻求更有效的治疗策略和药物。
总之,深入研究血浆降解细胞外基质的重要性不言而喻,它将为人类健康事业的发展提供新的启示和突破口。
1.2 文章结构文章结构是组织和安排文章内容的顺序和框架,使读者能够更好地理解和掌握文章的主题及论述思路。
本文主要包括引言、正文和结论三个部分。
引言部分主要介绍血浆降解细胞外基质的研究背景和意义,以及本文的目的和结构。
正文部分包括两个小节:血浆降解细胞外基质的定义和特点以及其生理功能。
在第一个小节中,将详细介绍血浆降解细胞外基质的定义和其在生物体中所呈现的特点,例如成分组成、形态结构等。
基质金属蛋白酶(matrix metalloproteinases,MMPs)是一类高度保守的锌离子依赖蛋白水解酶,其在特异性降解细胞外基质(extracellular matrix,ECM)成分的同时,还能作用于非ECM 成分,以介导ECM 释放和激活可溶性因子,如生长因子和细胞因子等[1]。
目前,已报道的MMPs 家族共有26个成员,根据不同成员的结构和底物特异性可将其分为六类,分别为胶原酶、明胶酶、溶基质素、基质溶素、膜型MMPs 和其他MMPs [2]。
所有的MMPs 具有独特但部分重叠的功能,从而精确地调控生物体基本的生理病理过程[3]。
MMP-28又名上皮水解素(epilysin),最早于MMP-28的特性及其在肿瘤发生发展中的作用赵志强,马福林,陈敏学,聂元华,朱占弟,康博雄,樊勇,王琛*(兰州大学第二医院普外科四病区,中国甘肃兰州730030)摘要:MMP-28是基质金属蛋白酶家族的最新成员,可在生物体内广泛表达。
通常,MMP-28以无活性酶原的形式分泌,其活性可通过多种方式调节,从而维持组织的动态平衡。
由于MMP-28的功能具有多样性,所以其不仅在人体正常的生理过程中发挥至关重要的作用,而且还通过多种方式促进肿瘤等病理过程的发生和进展,比如:抑制肿瘤细胞的凋亡,促进癌组织的侵袭转移和血管形成。
本文通过对近年来MMP-28相关研究的总结,探析了MMP-28的特性及其在肿瘤发生发展过程中的作用,为进一步研究MMP-28的生物学功能提供了理论依据。
关键词:基质金属蛋白酶28(MMP-28);结构;功能;活性调节;肿瘤中图分类号:Q71,R73文献标识码:A文章编号:1007-7847(2020)05-0410-05Characteristics of MMP-28and Its Role in Tumorigenesis andDevelopmentZHAO Zhi-qiang,MA Fu-lin,CHEN Min-xue,NIE Yuan-hua,ZHU Zhan-di,KANG Bo-xiong,FAN Yong,WANG Chen *(Department of General Surgery ,Lanzhou University Second Hospital ,Lanzhou 730030,Gansu ,China )Abstract:MMP-28is the latest member of the matrix metalloproteinase family and is widely expressed in organisms.It is usually secreted in the form of an inactive zymogen,and its activity is regulated in a variety of ways to maintain tissue homeostasis.MMP-28has a variety of functions.It not only plays a vital role in the normal physiological processes of the human body,but also promotes the occurrence and progression of pathological processes such as tumors in various ways,such as inhibiting tumor cell apoptosis,promoting cancer tissue invasion and metastasis,and angiogenesis.Herein,based on the MMP-28related research in recent years,the characteristics of MMP-28and its role in tumorigenesis and development are reviewed,with a hope of providing reference for further study of the biological function of MMP-28.Key words:matrix metalloproteinase 28(MMP-28);structure;function;activity regulation;tumor(Life Science Research ,2020,24(5):410~414)收稿日期:2019-11-01;修回日期:2020-01-15作者简介:赵志强(1993—),男,甘肃平凉人,硕士研究生,主要从事胰腺肿瘤方面的研究;*通信作者:王琛(1964—),男,山西太原人,主任医师,主要从事胰腺与胃肠外科疾病方面的研究,Tel:************,E-mail:****************.cn 。
基质金属蛋白酶12的研究进展刘爽;赵冬雪【摘要】基质金属蛋白酶12(MMP-12)由巨噬细胞所产生,能够降解多种细胞外基质成分,如Ⅳ型胶原、硫酸软骨素、层粘连蛋白及纤溶酶原等.人类的MMP-12不仅能促进鼻咽癌、结直肠癌、食管腺癌、子宫颈癌等肿瘤细胞的侵袭及转移,还可以抑制胃癌等肿瘤细胞的生长,降低转移率.MMP-12参与许多肺部疾病的病理过程,如慢性阻塞性肺疾病、过敏性哮喘、肺气肿、肺纤维化和肺部感染等.MMP-12与动脉粥样硬化斑块的进展和不稳定性相关,同时有研究认为它参与动脉粥样硬化性脑梗死及冠心病的病理过程,具体的致病机制尚不明确.【期刊名称】《医学综述》【年(卷),期】2018(024)014【总页数】6页(P2781-2786)【关键词】基质金属蛋白酶12;肿瘤;肺部疾病;动脉粥样硬化【作者】刘爽;赵冬雪【作者单位】中国医科大学附属盛京医院神经内科,沈阳110004;中国医科大学附属盛京医院神经内科,沈阳110004【正文语种】中文【中图分类】R563;R741;R73基质金属蛋白酶(matrix metalloproteinase,MMPs)是一类结构中含有锌离子和钙离子的蛋白水解酶类,能降解细胞外基质(extracellular matrix,ECM)成分,包括基膜胶原质、间质胶原蛋白、纤维蛋白和各种蛋白聚糖[1],在诱导肿瘤血管生成,细胞迁移、增殖,细胞凋亡和结缔组织退化中发挥核心作用[2]。
目前MMPs由24种成员组成,其中23种存在于人体中,根据催化底物的不同以及序列的相似性MMPs可以被分为5类:①Ⅰ型胶原酶(MMP-1,MMP-8,MMP-13),能降解间质胶原蛋白,同时也可以降解其他ECM和非ECM分子;②明胶酶类(MMP-2,MMP-9),又称Ⅳ型胶原酶,因具有降解明胶的能力被命名,MMP-2和MMP-9的降解底物大多相同,但MMP-9不能直接水解蛋白;③基质降解酶类(MMP-3,MMP-10,MMP-11);④膜结合型MMPs(MMP-14,MMP-15,MMP-16,MMP-17),一般在细胞表面表达,可通过糖基磷脂酰肌醇或跨膜区锚定于质膜,并局限在质膜表面活动;⑤其他MMPs,如MMP-4,MMP-5,MMP-6。
基质金属蛋白酶8-概述说明以及解释1.引言1.1 概述基质金属蛋白酶8(MMP-8)是一种属于基质金属蛋白酶家族的酶类。
基质金属蛋白酶是一类负责细胞外基质降解的蛋白酶,在细胞外基质的合成和降解过程中发挥重要作用。
MMP-8主要由中性粒细胞产生,并且在炎症反应和组织修复过程中起关键作用。
基质金属蛋白酶8具有多种生物学功能。
它可促进胶原蛋白、弹力蛋白和其他基质蛋白的降解,参与细胞外基质的重建和重塑。
同时,MMP-8还能够调节细胞外基质的合成,调控细胞迁移和增殖,以及参与细胞凋亡的过程。
除了在正常生理过程中的作用外,研究发现基质金属蛋白酶8在多种疾病的发展中扮演重要角色。
例如,在炎症性疾病中,MMP-8的过度激活和表达会导致细胞外基质的大量降解,损伤组织结构,加重疾病的进展。
此外,MMP-8还与肿瘤的侵袭和转移相关,研究人员发现抑制MMP-8的表达或活性可以有效抑制肿瘤的扩散和转移。
综上所述,基质金属蛋白酶8是一种重要的酶类,在细胞外基质代谢和疾病发展中具有关键作用。
研究基质金属蛋白酶8的功能和调控机制,以及开发针对该酶的治疗策略,对于疾病的诊断和治疗具有重要意义。
未来的研究应着重深入探究基质金属蛋白酶8的生物学功能和信号传导机制,以期为其靶向治疗提供更多有力的证据。
1.2 文章结构本文分为引言、正文和结论三部分。
在引言部分,首先概述了基质金属蛋白酶8的重要性和作用,接着介绍了本文的结构和目的。
正文部分主要包括了基质金属蛋白酶8的定义、功能以及在疾病中的作用。
结论部分总结了基质金属蛋白酶8的重要性,并展望了未来研究的方向。
最后,给出了结论部分的总结。
整篇文章将全面介绍基质金属蛋白酶8的研究进展和意义,希望能够对相关领域的研究者和读者提供有价值的参考。
目的部分的内容可能如下所示:1.3 目的本文旨在探讨基质金属蛋白酶8(matrix metalloproteinase-8,MMP-8)在生物体内的功能及其在疾病中的作用。
细胞外基质中金属蛋白酶的结构和功能
细胞外基质(ECM)是一种薄而致密的自然基质,存在于组织和器官之间。
它由众多的蛋白质分子构成,包括胶原蛋白、弹性蛋白、纤维连接蛋白、荧光素等。
ECM不仅是细胞外的物理结构支持,还在许多生理或病理情况下调节着细胞的形态、迁移和增殖。
金属蛋白酶(MMP)是ECM中的一种重要酶类,负责去除并修剪ECM,以便于细胞的迁移和生长。
MMP是一类结构相似、功能类似的锌蛋白酶。
它们通常由一个信号序列和一
个活性亚基组成,分子量在50 kDa以上。
它们的活性部位包括三种氨基酸残基:
谷氨酰胺(Glu)、丝氨酸(Ser)和脯氨酸(Pro)。
活性物质中的锌离子被一个
固定的组方位于该酶的中心,其帮助成员酶与底物相结合,在酶反应中发挥催化作用。
MMP的活性受到许多不同的组织学和生物化学因素的调节。
特别是组织细胞
来源的生长因子,如胰高血糖素、信息素和干扰素,以及天然组织抑制物和抗血管生成因子等。
MMP主要作用于ECM上的基质分子,包括胶原、卵剂素、纤维网蛋白、纤维素等。
MMP的作用主要由其底物专属性决定。
MMP-1、MMP-2、MMP-3、MMP-7、MMP-8、MMP-9和MMP-12主要降解胶原蛋白;MMP-9和MMP-20降解卵剂
素和纤维连结蛋白;MMP-1、MMP-3和MMP-9降解纤维素;而MMP-14则主要
作用于银联素-1和银联素-2等区分过程的微纤蛋白。
这种底物专属性使得MMP能
够在特定的细胞类型、生物修复过程和病理情况中表现出差异化特点。
MMP可能与许多与肿瘤和心血管疾病有关的过程相关。
例如,在不同层面上,MMP在肿瘤发生、肿瘤生长、肺、乳房和黏膜颈部癌细胞的迁移和侵袭等方面发
挥了重要作用。
总的来说,ECM是一个动态的、复杂的网络,由许多互补的分子和结构因素
组成。
MMP是这个网络中的一个重要组成部分,通过修剪和去除ECM中的分子,
维持其反应性和可塑性。
同时,MMP在生理和病理方面都发挥了重要的作用,因此,对MMP的结构和功能的深入了解是值得进行的进一步研究的方向。