半导体的结构类型
- 格式:docx
- 大小:36.61 KB
- 文档页数:2
半导体的结构类型
半导体是一种介于导体和绝缘体之间的材料,其导电性能介于导体和绝缘体之间。
半导体的导电性能与其结构类型密切相关,常见的半导体结构类型有晶体结构、非晶态结构和有机半导体结构。
晶体结构是半导体中最常见的结构类型,其特点是具有有序的晶格结构。
晶体结构的半导体材料通常由单晶、多晶和薄膜三种形式存在。
单晶半导体具有高的电子迁移率和较低的电阻率,是制造高性能电子器件的理想材料。
多晶半导体由多个晶粒组成,其电子迁移率和电阻率介于单晶和薄膜之间。
薄膜半导体是一种在基底上生长的薄膜,其电子迁移率和电阻率较低,但具有较高的表面积,适用于制造大面积的电子器件。
非晶态结构是一种无序的结构类型,其特点是没有明显的晶格结构。
非晶态半导体材料通常由非晶硅、非晶碳和非晶氧化物等材料组成。
非晶态半导体具有较高的电阻率和较低的电子迁移率,但具有较高的光学透明性和较低的制造成本,适用于制造太阳能电池、液晶显示器等器件。
有机半导体结构是一种由有机分子组成的半导体材料,其特点是具有较低的电子迁移率和较高的电阻率。
有机半导体材料具有较低的制造成本和较高的可塑性,适用于制造柔性电子器件、有机发光二极管等器件。
半导体的结构类型对其导电性能和制造成本具有重要影响,不同的结构类型适用于不同的电子器件制造。
随着科技的不断发展,半导体材料的结构类型也在不断创新和发展,为电子器件的制造提供了更多的选择和可能性。
半导体半导体简介:顾名思义:常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料,叫做半导体(semiconductor)。
我们通常把导电性和导电导热性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷等等,称为绝缘体。
而把导电、导热都比较好的金属如金、银、铜、铁、锡、铝等称为导体。
可以简单的把介于导体和绝缘体之间的材料称为半导体。
半导体定义:电阻率介于金属和绝缘体之间并有负的电阻温度系数的物质。
半导体室温时电阻率约在10E-5~10E7欧·米之间,温度升高时电阻率指数则减小。
半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。
有元素半导体,化合物半导体,还有非晶态的玻璃半导体、有机半导体等。
半导体材料:半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电路的电子材料。
半导体材料的电学性质对光、热、电、磁等外界因素的变化十分敏感,在半导体材料中掺入少量杂质可以控制这类材料的电导率。
正是利用半导体材料的这些性质,才制造出功能多样的半导体器件。
半导体材料按化学成分和内部结构,大致可分为以下几类。
1.元素半导体有锗、硅、硒、硼、碲、锑等。
2.化合物半导体由两种或两种以上的元素化合而成的半导体材料,包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。
3.无定形半导体材料,用作半导体的玻璃是一种非晶体无定形半导体材料,分为氧化物玻璃和非氧化物玻璃两种。
4.有机增导体材料已知的有机半导体材料有几十种,包括萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,目前尚未得到应用。
制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。
半导体材料的不同形态要求对应不同的加工工艺。
常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。
常见的半导体晶格结构半导体晶格结构是指半导体材料中原子或分子的有序排列方式。
根据原子或分子的排列方式,半导体晶格结构可以分为多种类型。
下面将介绍几种常见的半导体晶格结构。
1.简单立方结构(Sc):简单立方结构是最简单的晶格结构,原子或分子沿着三个轴线上的整数倍坐标位置排列。
每个原子或分子都有六个近邻,并呈正方形形状分布。
这种结构在石墨和硫等半导体材料中较为常见。
2. 体心立方结构(Bcc):体心立方结构中,除了沿着三个轴线上的整数倍坐标位置排列的原子或分子外,还有一个额外位于晶格中心位置的原子或分子。
这种结构具有更高的密度和稳定性,常见于铁、钠等半导体材料。
3. 面心立方结构(Fcc):面心立方结构中,除了沿着三个轴线上的整数倍坐标位置排列的原子或分子外,还有一个位于每个面的中心位置的原子或分子。
这种结构也具有更高的密度和稳定性,常见于铜、铝等半导体材料。
4. 六方密排结构(Hcp):六方密排结构中,原子或分子沿着六方向的整数倍坐标位置排列。
除了沿着六个轴线的有序排列外,还有一个位于每个六棱柱的中心位置的原子或分子。
这种结构在锌、钛等半导体材料中较为常见。
5.石盐结构(NaCl):石盐结构是一种简单的离子晶格结构,其中正离子和负离子依次排列。
这种结构在氧化铝、氯化锌等半导体材料中较为常见。
6.锌黄铁矿结构(ZnS):锌黄铁矿结构是一种由离子组成的晶体结构,其中正离子和负离子依次排列。
这种结构在锌硫化物等半导体材料中较为常见。
7.花岗岩结构(SiO2):花岗岩结构是一种由共价键连接的原子或分子组成的晶格结构。
这种结构在二氧化硅等半导体材料中常见,也被称为硅的晶体结构。
除了以上介绍的几种常见半导体晶格结构外,还存在一些其他特殊的晶格结构,如钻石结构、四方密排结构等。
这些不同的晶格结构对半导体材料的性质和用途有着重要的影响。
研究和理解晶格结构对于半导体材料的制备和应用具有重要意义。
半导体存储器的组成与基本结构
半导体存储器的组成与基本结构
1 半导体存储器是由多种元件以及组件组成的,包括:
(1) 存储元件:用于空间上存储信息的元件,包括行选择元件、门电极、存取道和存储单元;
(2) 读写元件:与存储元件有关的元件,用于读取或写入存储元件中
的信息,包括数据信号电极和控制信号电极;
(3) 连接元件:用于彼此连接存储元件、读写元件和外部接口的元件,包括连接电路和接口;
(4) 功能组件:控制与调节半导体存储器工作的元件,包括电源、锁
存器和计时器;
(5) 封装元件:用于保护内部机构结构,提供与外界连接的元件,包
括封装、连接器和防火片;
2 半导体存储器的基本结构有:
(1) 存储元件:存储元件通常包括门电极、存取道和存储单元,采用
多位或多级结构空间上存储信息;
(2) 读写元件:读写元件与存储元件有关,利用电声的静电双向效应
实现存取动作,包括数据信号电极和控制信号电极;
(3) 连接元件:连接元件用于连接存储元件与读写元件,以及外部的
接口,包括连接电路和接口;
(4) 功能组件:功能组件用于控制与调节半导体存储器的工作,包括
电源、锁存器和计时器;
(5) 封装元件:封装元件用于提供与外界连接,保护内部机构结构,常见的封装元件有封装、连接器和防火片。
2.1 半导体semiconductor:电阻率介于导体与绝缘体之间,其范围为的一种固体物质。
在较宽的温度范围内,电阻率随温度的升高而减小。
电流是由带正电的空穴和带负电的电子的定向传输实现的。
半导体按其结构可分为三类:单晶体、多晶体和非晶体。
2.2 元素半导体elemental semiconductor:由一种元素组成的半导体。
硅和锗是最常用的元素半导体。
2.3 化合物半导体compound semiconductor:由两种或两种以上的元素化合而成的半导体,如砷化稼、稼铝砷等。
2.4 本征半导体intrinsic semiconductor:晶格完整且不含杂质的单晶半导体,其中参与导电的电子和空穴数目相等。
这是一种实际上难以实现的理想情况。
实用上所说的本征半导体是指仅含极痕量杂质,导电性能与理想情况很相近的半导体。
2.5 导电类型conductivity type:半导体材料中多数载流子的性质所决定的导电特性。
2.6 n-型半导体n-type semiconductor:多数载流子为电子的半导体。
2.7 p-型半导体p-type semiconductor:多数载流子为空穴的半导体。
2.8 空穴hole:半导体价带结构中一种流动空位,其作用就像一个具有正有效质量的正电子电荷一样。
2.9 受主accepter:半导体中其能级位于禁带内,能“接受”价带激发电子的杂质原子或晶格缺陷,形成空穴导电。
2.10 施主donor:半导体中其能级位于禁带内,能向导带“施放”电子的杂质原子或晶格缺陷,形成电子导电。
2.11 载流子carrier:固体中一种能传输电荷的载体,又称荷电载流子。
例如,半导体中导电空穴和导电电子2.12 载流子浓度carrier concentration:单位体积的载流子数目。
在室温无补偿存在的情况下为电离杂质的浓度。
空穴浓度的符号为p,电子浓度的符号为n。
2.13 多数载流子majority carrier:大于载流子总浓度一半的那类载流子。
面接触型管子的特点是,PN 结的结面积大,能通过较大电流,但结电容也大,适用于低频较低整流电路。
半导体二极管半导体二极管是由一个PN 结构成的二端元件。
其端钮有确定的命名,即一端叫阳极a ,一端叫阴极k 。
1.2 半导体二极管1.2.1 半导体二极管结构和类型(1)点接触型二极管(2)面接触型二极管(3)平面型二极管点接触型管子的特点是,PN 结的结面积小,因而结电容小,主要用于高频检波和开关电路。
既不能通过较大电流,也不能承受高的反向电压。
平面型管子的特点是,PN 结的结面积大时,能通过较大电流,适用于大功率整流电路;结面积较小时,结电容较小,工作频率较高,适用于开关电路。
1.结构2. 分类普通二极管特殊二极管变容二极管发光二极管光电二极管激光二极管二极管稳压二极管稳压光电转换调谐按材料的不同,常用的二极管有硅管和锗管两种;按其用途二极管分为普通二极管和特殊二极管两大类:整流、滤波、限幅、钳位、检波及开关等。
忽略正向导通压降和电阻,二极管相当短路;二极管反向截止时忽略反向饱和电流,反向电阻无穷大,二极管相当开路路。
I S uiU R 二极管是一种非线性元件,其特性就是PN 结的特性,而电流i D 与两端的电压u D 的关系近似为:1.2.2 二极管的伏安特性普通二极管是应用PN 结的饱和区、死区和导通区的特性制成的二端元件。
电路符号为:(1)伏安关系(2)理想二极管)(1-=T D V u S D e I i I S —反向饱和电流;V T —温度的电压当量,当常温(T=300K )时,V T =26mV 。
在正常工作范围内,当电源电压远大于二极管正向导通压降时,可将二极管当作理想二极管处理,其伏安特性如图示。
k a D最大整流电流又称为额定正向平均电流,是指二极管长时间使用时,允许通过的最大正向平均电流。
此值取决于PN 结的面积、材料和散热情况。
1.2.3 二极管的主要电参数1)最大整流电流I F2)最高反向工作电压U R3)最大反向电流I RM I F I RM ui U R 最大反向电流是指二极管加上最高反向工作电压时的反向电流值。
半导体的结构类型引言半导体是一种电子属性介于导体和绝缘体之间的材料。
其特殊的电子结构决定了它在电子器件中的重要性。
半导体的结构类型是指半导体材料中原子的排列方式和晶体的结构类型。
本文将详细介绍半导体的结构类型及其特点。
结构类型根据晶体结构的不同,半导体可以分为以下几种结构类型:非晶态、多晶态和单晶态。
非晶态非晶态半导体的原子排列没有规则性,呈现出无序的无定形结构。
它的原子间距和间隙没有明确定义,导致电子在材料中的迁移受到一定的限制。
典型的非晶态半导体包括非晶硅和非晶砷化镓。
非晶态半导体具有以下特点:•电学性能:非晶态半导体的电学性能介于导体和绝缘体之间,电导率较低。
•光学性能:非晶态半导体具有较高的吸收能力和较低的折射率,可以用于光伏器件和光电器件。
•物理性能:非晶态半导体的熔点较低,易于加工和制备。
多晶态多晶态半导体的原子排列呈现出一定的规则性,但晶粒内部存在晶界。
晶界是晶体内部晶粒结构的不连续边界,会对电子的传输和结晶有一定的影响。
典型的多晶态半导体包括多晶硅和多晶碲化镉。
多晶态半导体具有以下特点:•电学性能:多晶态半导体的电导率较高,但不及单晶态半导体。
•结晶性能:多晶态半导体的晶结构比较复杂,晶界对电子传输具有一定的阻碍作用。
•物理性能:多晶态半导体的制备相对容易,成本较低,广泛应用于半导体器件的制造。
单晶态单晶态半导体的原子排列呈现高度规则的晶格结构,具有较好的电子传输性能。
单晶态半导体材料的制备过程较为复杂,需要高温和高压条件。
典型的单晶态半导体包括硅和锗。
单晶态半导体具有以下特点:•电学性能:单晶态半导体的电导率较高,电子传输能力强。
•结晶性能:单晶态半导体的晶体结构完整,晶体缺陷较少,电子传输无阻碍。
•物理性能:单晶态半导体具有优异的光学特性和热特性,可广泛应用于光电器件和高温器件。
结论半导体的结构类型对其电性能和物理性能有着重要的影响。
非晶态半导体具有无定形结构,多晶态半导体具有晶界的存在,而单晶态半导体具有规则完整的晶格结构。
半导体的结构类型
半导体是一种介于导体和绝缘体之间的材料,其电子结构决定了其导
电性质。
半导体的结构类型可以分为两类:共价键型和离子键型。
共价键型半导体
共价键型半导体是由元素硅(Si)和锗(Ge)构成的。
在这些材料中,原子通过共价键相互连接,形成晶格结构。
每个原子都有四个电子与
邻近原子形成共价键,因此这些材料也被称为四面体晶系。
在室温下,共价键型半导体中的电子几乎没有足够的能量跃迁到传导
带中。
只有在施加外部能量或加热时,才会激发出足够的电子跃迁到
传导带中,从而产生电流。
离子键型半导体
离子键型半导体包括硼化物、氮化物和碳化物等化合物。
这些材料由
正负离子相互连接而成,因此被称为离子晶体。
与共价键型半导体不同,在室温下离子键型半导体中就已经存在足够
数量的自由电荷载流子(即空穴和电子),因此这些材料具有较高的
导电性。
总结
总体来说,半导体的结构类型可以分为共价键型和离子键型两类。
共价键型半导体由元素硅和锗构成,原子通过共价键相互连接;离子键型半导体由硼化物、氮化物和碳化物等化合物构成,由正负离子相互连接。
两种类型的半导体在室温下都不具备足够的电流传输能力,需要外部能量激发才能产生电流。