2016-2017学年黑龙江省哈尔滨市松北区2017届九年级上学期期末数学试题(原卷版)
- 格式:doc
- 大小:416.65 KB
- 文档页数:6
2017~2018南岗区学年度(上)九年级期末调研测试一、选择题(每小题3分。
共计30分) 1.下列各数是有理数的是( ). (A)91-(B) 5 (C) 7- (D)23 2.下列计算正确的是( ).(A)(一3)3=-273(B) 6÷2=3(C)2+3=62(D)(-y)=2-y 23.下列图形中,是轴对称图形,不是中心对称图形的是( ).4.将抛物线y=2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式 是( )..(A)y=(+2)2+1 (B)y=(+2)2—1 (C)y=(一2)2+1 (D)y=(一2)2—15.如图所示几何体是由5个大小相同的小立方块搭成,它的俯视图是( ).6.方程2)1(231--=-x x x 的解为( ). (A)=61-(B) =67 (C) =76 (D) =45 7.如图.在Rt △ABC 中,∠BAC=900,AD ⊥BC 于点D ,则下列结论不正确的是( ) (A)sinB =AB AD (B) sinB =BC AC ; (C)sinB=AC CD (D)sinB=ACAD8.如图,四边形ABCD 内接于⊙O,四边形ABC0是平行四边形,则∠ADC 的大小是( ). (A)450(B)600(C)650(D)7509.如图,在△ABC 中,点D ,E ,F 分别在AB ,AC,BC 边上,DE∥BC ,DF ∥A C ,则下列结论一定正确的是( ). (A)AE CE BF DE = (B) BF CE CF AE = (C) AC AB CF AD = (D) ABADAC DF =10.一段笔直的公路AC 长30千米,途中有一处休息点B ,AB 长20千米,甲、乙两名长跑爱好者同时从点A 出发.甲以15千米/时的速度匀速跑至点B ,原地休息10分钟后,再以15千米/时的速度匀速跑至终点C ;.乙以l2千米/时的速度匀速跑至终点C,下列选项中。
2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。
2017学年第一学期期末教学质量监测九年级 数学试卷考生须知:1.本试卷分试题卷和答题卷两部分。
满分100分,考试时间90分钟。
2.答题前,必须在答题卷的密封区内填写校名、班级、学号、姓名、试场、座位码。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号对应。
4.考试结束后,只需上交答题卷。
试题卷一、选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.两个相似三角形的面积比为2:3,则这两个三角形的面积比为( ) A. 2:3B.2:3C. 4:9D. 9:42.已知圆O 的半径为2,点P 在同一平面内,PO=3,那么点P 与圆O 的位置关系是( ) A. 点P 在圆O 内 B. 点P 在圆O 上 C. 点P 在圆O 外 D. 无法确定3.下列函数中有最小值的是( ) A. y=2x -1 B.y=x3-C.y=-2x +1 C.y=22x+3x4.“a 是实数,|a|⩾0”这一事件是( ) A. 必然事件 B. 不确定事件 C. 不可能事件 D. 随机事件5.在Rt △ABC 中,∠C=90∘, ∠B=58∘,BC=3 , 则AB 的长为( ) A. ︒58sin 3B.︒58cos 3C. 3sin58∘D. 3cos58∘6.已知圆心角为120°的扇形的面积为12π,则扇形的弧长为( ) A. 4π B.2π C. 4 D.27.如图,圆O 是△ABC 的外接圆,BC 的中垂线与弧AC 相交于D 点,若∠A =60°,∠C =40°,则弧AD 的度数为( ) A. 80°B. 70°D. 30°8.如图,在相同的4×4的正方形网格中,三角形相似的是()A.①和②B.②和④C.②和③D.①和③9.定义符号min{a ,b}的含义为:当a ≥b 时,min{a ,b}=b ;当a <b 时,min{a ,b}=a.如:min{5,-2}=-2,min{-6,-3}=-6,则min{2-x+3,x}的最大值是( )A.2131+ B.2131+- C.3 D.213-1-10.如图,AB 是圆O 的直径,弦CD ⊥AB 于点G ,点F 是CD 上一点,且满足CF :FD=3:7,连接AF 并延长交圆O 于点E ,连接AD 、DE ,若CF=3,AF=3,给出下列结论:①FG=2; ②tan ∠E=55 ③S △DEF=6549 其中正确的有( )个。
2016-2017学年黑龙江省哈尔滨市松北区2017届九年级上学期期末数学试题一、选择题(每小题3分,共30分)1. 的倒数是( )A. B. - C. - D.【答案】D【解析】的倒数是 ;故选D。
2. 下列运算中,正确的是( )A. 2x+2y=2xyB. (x2y3)2=x4y5C. (xy)2÷=(xy)3D. 2xy-3yx=xy【答案】C【解析】选项A,不是同类项不能合并;选项B,根据积的乘方的运算法则可得原式=;选项C,原式=;选项D,根据合并同类项法则可得原式=-xy.故选C.3. 反比例函数y=的图象,当x>0时,y随x的增大而减小,则k的取值范围().A. k<2B. k≤2C. k>2D. k≥2【答案】C【解析】试题分析:∵反比例函数y=的图象,当x>0时,y随x的增大而减小∴k-2>0;解得k>2 考点:反比例函数点评:本题考查反比例函数的性质,要考生对反比例函数的性质熟练是解本题的关键4. 如图所示的由六个小正方体组成的几何体的俯视图是( )A. B. C. D.【答案】D【解析】试题分析:从上面看易得左边第一列有3个正方形,中间第二列有1个正方形,最右边一列有1故选D.考点:简单组合体的三视图.5. 松北某超市今年一月份的营业额为50万元.三月份的营业额为72万元.则二、三两个月平均每月营业额的增长率是().A. 25﹪B. 20﹪C. 15﹪D. 10﹪【答案】B【解析】试题分析:设增长率为x,根据题意得50(1+x)2=72,解得x=﹣2.2(不合题意舍去),x=0.2,所以每月的增长率应为20%,故选:B.考点:一元二次方程的应用.6. 将抛物线向左平移3个单位得到的抛物线的解析式是( )A. B. C. D.【答案】C【解析】根据抛物线的平移规律“左加右减,上加下减”可得:将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故选C.7. 如图,将矩形纸片ABCD沿EF折叠(E、F分别是AD、BC上的点),使点B与四边形CDEF内一点重合,若°,则等于()A. 110°B. 115°C. 120°D. 130°【答案】B【解析】∵四边形A′EFB′是四边形ABFE折叠而成,∴∠BFE=∠EFB′,∵∠B'FC=50°,∴∠EFB=,∴∠AEF=180°-∠EFB=115°.故选B.点睛:本题考查的是折叠的性质及平行线的性质:(1)折叠的性质:图形折叠后与原图形完全重合;(2)平行线的性质:两直线平行,同旁内角互补.8. 在△ABC中,∠C=90°,BC=4,sinA=,那么AC边的长是( )A. 6B. 2C. 3D. 2【答案】B..............................9. 如图,DE∥BC,分别交△ABC的边AB、AC于点D、E,, 若AE=1,则EC=( ).A. 2B. 3C. 4D. 6【答案】A【解析】∵DE∥BC,∴,∵AE=1,∴AC=3∴EC=AC-AE=3-1=2.故选A.10. 甲、乙两车沿同一平直公路由A地匀速行驶(中途不停留),前往终点B地,甲、乙两车之间的距离S (千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.下列说法:①甲、乙两地相距210千米;②甲速度为60千米/小时;③乙速度为120千米/小时;④乙车共行驶小时,其中正确的个数为()A. 1个B. 2个C. 3个D. 4个【答案】D【解析】试题分析:由图可知,甲车的速度为:60÷1=60千米/时,故②正确,则A、B两地的距离是:60×=210(千米),故①正确,则乙的速度为:(60×2)÷(2﹣1)=120千米/时,故③正确,乙车行驶的时间为:2﹣1=1(小时),故④错误,故选C.考点:一次函数的应用.第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共30分)11. 数字12800000用科学记数法表示为_______________.【答案】1.28×107【解析】试题分析:将12800000用科学记数法表示为:1.28×107.考点:科学记数法—表示较大的数.12. 函数y=中,自变量x的取值范围是____________.【答案】x≠-2【解析】根据题意得x+2≠0,解得x≠−2.故答案为:x≠−2.13. 计算=______.【答案】-【解析】原式=.14. 把多项式分解因式的结果是____________.【答案】2(m+2n)(m-2n)【解析】原式=.15. 不等式组的解集为____________________.【答案】-2≤x<【解析】∵解不等式①得:x⩾−2,解不等式②得:x<,∴不等式组的解集为−2⩽x<,故答案为:−2⩽x<.16. 分式方程的解为x=_______.【答案】3【解析】去分母得:2x−2=x+1,解得:x=3,经检验x=3是分式方程的解,故答案为:317. 若弧长为4π的扇形的圆心角为直角,则该扇形的半径为___________.【答案】8【解析】试题分析:∵扇形的圆心角为90°,弧长为4π,∴l=,即4π=,则扇形的半径r=8.考点:弧长的计算.18. 已知,平面直角坐标系中,O为坐标原点,一次函数的图像交x轴于点A,交y轴于点B,则⊿AOB 的面积=____________.【答案】419. 已知,⊿ABC中,AB=AC,AB的垂直平分线交AB于E,交AC所在直线于P,若∠APE=54°,则∠B=________.【答案】18°或72°【解析】试题分析:分为两种情况:①如图1,∵PE是AB的垂直平分线,∴AP=BP,∴∠A=∠ABP,∠APE=∠BPE=54°,∴∠A=∠ABP=36°,∵∠A=36°,AB=AC,∴∠C=∠ABC==72°;②如图2,∵PE是AB的垂直平分线,∴AP=BP,∴∠PAB=∠ABP,∠APE=∠BPE=54°,∴∠PAB=∠ABP=36°,∴∠BAC=144°,∵AB=AC,∴∠C=∠ABC==18°,考点:等腰三角形的性质;线段垂直平分线的性质.20. 如图,ΔABC中,CD是AB边上的高,AC=8,∠ACD=30°,tan∠ACB= ,点P为CD上一动点,当BP+CP 最小时,DP=_________.【答案】【解析】作PE⊥AC 于E,BE′⊥AC 于E′ 交CD 于P′.∵CD⊥AB,∠ACD=30°,∠PEC=90°,AC=8 ,∴PE=PC,∠A=60°,∠ABE′=30°,AD=4,CD=4,∴PB+PC=PB+PE ,∴当BE′⊥AC 时,PB+PE=BP′+P′E′=BE′最小,∵tan∠ACB==,设BE′=5k,CE′=3k ,∴AE′=8−3k,AB=16−6k,BD=16−6k−4=12−6k ,∴BC2=BD2+CD2=BE′2+CE′2,∴(12−6k)2+48=9k2+75k2 ,整理得k2+3k−4=0 ,∴k=1或−4( 舍去) ,∴BE′=5,CE′=3在Rt△CE′P′中,∠ACD=30°,CE′=3,可求得C P′=2,∴DP′=CD-C P′=4-2=2.点睛:本题考查了垂线段最短、锐角的三角函数及勾股定理等知识,解决本题的关键是作出辅助线,把问题转化为垂线段最短的问题.三、解答题(21、22小题各7分,23、24小题各8分,25、26、27小题各10分,共60分)21. 先化简,再求代数式的值,其中x=2.【答案】【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,再利用除法法则变形,约分得到最简结果,利用特殊角的三角函数值求出x的值,代入计算即可.试题解析:∵,∴原式=.22. 如图,是由边长为1的小正方形构成的网格,各个小正方形的顶点称之为格点,点A、C、E、F均在格点上,根据不同要求,选择格点,画出符合条件的图形:(1)在图1中,画一个以AC为一边的⊿ABC,使∠ABC=45°(画出一个即可);(2)在图2中,画一个以EF为一边的⊿DEF,使tan∠EDF=,并直接写出线段DF的长.【答案】(1)见解析;(2)见解析【解析】试题分析:(1)利用网格特点,AB在水平格线上,BC为4×4的正方形的对角线;(2)由于tan∠EDF=,则在含∠D的直角三角形中,满足对边与邻边之比为1:2即可.试题解析:(1)如图1,△ABC为所作;(2)如图2,△DEF为所作,DF==4.考点:作图—复杂作图;锐角三角函数的定义.23. 为便于管理与场地安排,松北某中学校以小明所在班级为例,对学生参加各个体育项目进行了调查统计。
2016-2017学年度第一学期期末考试试题一、细心选一选.(每小题3分,共30分)1.在下列各式的计算中,正确的是 ( ).A .5x 3·(-2x 2)=-10x 5B .4m 2n-5mn 2 = -m 2nC .(-a)3÷(-a) =-a 2D .3a+2b=5ab2.点M 1(a-1,5)和M 2(2,b-1)关于x 轴对称,则a,b 的值分别为( ).A .3,-2B .-3,2C .4,-3D .3,-4 3.下列图案是轴对称图形的有 ( ).A. 1个 B .2个 C .3个 D .4个4.下列说法正确的是( ).A .等腰三角形任意一边的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的一边不可以是另一边的两倍D .等腰三角形的两底角相等5.如图所示,下列图中具有稳定性的是( ).6.下列各组线段中,能组成三角形的是( ).A . a=2,b=3,c=8B .a=7,b=6,c=13C . a=12,b=14,c=18D .a=4,b=5,c=67.下列多项式中,能直接用完全平方公式因式分解的是( ).A. x 2+2xy- y 2B. -x 2+2xy+ y 2C. x 2+xy+ y 2D. 42x -xy+y 28.在△ABC 和△DEF 中,给出下列四组条件:(1) AB=DE, BC=EF, AC=DF(2) AB=DE, ∠B=∠E, BC=EF (3)∠B=∠E , BC=EF, ∠C=∠FDC B A(4) AB=DE, AC=DF, ∠B=∠E 其中能使△ABC ≌△DEF 的条件共有 ( ).A.1组B.2组C.3组D.4组9.已知 a=833, b=1625, c=3219, 则有( ).A .a <b <cB .c <b <aC .c <a <bD .a <c <b10.如图,在直角△ABC 中,∠ACB=90°,∠A 的平分线交BC 于D .过C 点作CG ⊥AB 于G, 交AD 于E, 过D 点作DF ⊥AB 于F.下列结论:(1)∠CED=∠CDE (2)∠ADF=2∠FDB (3)CE=DF (4)△AEC 的面积与△AEG 的面积比等于AC:AG其中正确的结论是( ).A .(1)(3)(4)B .(2)(3)C .(2) (3)(4)D .(1)(2)(3)(4)二、耐心填一填.(每小题3分,共30分)11.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,这个数用科学记数法表示为__________ m. 12. 如果把分式yx x+2中的x 和y 都扩大5倍,那么分式的值 . 13.已知ab=1,m =a +11+b+11 ,则m 2016的值是 . 14.如果一个多边形的边数增加一条,其内角和变为1260°,那么这个多 边形为 边形.15.如图,若△ACD 的周长为19cm , DE为AB 边的垂直平分线,则 AC+BC= cm.16.若(x-1)0-2(3x-6)-2有意义,则x 的取值范围是 .17.如图,在直角△ABC 中,∠BAC=90°,AD ⊥BC 于D ,将AB 边沿AD 折叠, 发现B 的对应点E 正好在AC 的垂 直平分线上,则∠C= .18.如图,在△ABC 中,∠A=50°,点D 、E 分别在AB ,AC 上,EF 平分∠CED ,DF 平分∠BDE ,则 ∠F = .19.已知等腰△ABC ,AB=AC,现将△ABC 折叠,使A 、B 两点重合,折痕所在的直 线与直线AC 的夹角为40°,则∠B 的 度数为 .E DCBAGFEDCBAF EDC BA EDCBA20.如图,在△ABC 中,AB=AC,点D 在AB 上,过点D 作DE ⊥AC 于E ,在BC 上取一点F , 且点F 在DE 的垂直平分线上,连接DF , 若∠C=2∠BFD ,BD=5,CE=11,则BC 的 长为 . 三、用心答一答.(60分) 21.(9分)(1) 分解因式: 8xy+ (2x-y)2(2)先化简,再求值:(a+b)2- b(2a+b)- 4b ,其中a=-2, b=-43;(3)先化简,再求值:(4482+-+x x x -x -21)÷xx x 232-+,其中 x=-222.(6分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长为1,点A 、点B 和点C 在小正方形的顶点上, 请在图1、图2中各画一个四边形,满足以下要求:(1)在图1中画出以A 、B 、C 和D 为顶点的四边形,此四边形为轴 对称图形,并画出一条直线将此四边形分割为两个等腰三角形;(2)在图2中画出以A 、B 、C 和E 为顶点的四边形,此四边形为 轴对称图形,并画出此四边形的对称轴; (3)两个轴对称图形不全等.FEDCB A图1图223.(9分)已知关于x 的方程21++x x - 1-x x = )(+1-)2(x x a的解是正数, 求a 的取值范围.24.(6分) 如图,△ABC 与△ABD 都是等边三角形,点E 、F 分别在BC ,AC 上,BE=CF,AE 与BF 交于点G.(1)求∠AGB 的度数;(2)连接DG,求证:DG=AG+BG.25.(10分)百姓果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完;由于水果畅销,第二次购买时,每千克进价比第一次提高10%,用1452元所购买的数量比第一次多20kg ,以每千克9元出售100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次水果的进价是每千克多少元?(2)该果品店在这次销售中,总体是盈利还是亏损?盈利或亏损了多少元?G F E DC B A26.(10分)(1)已知3x =4y =5z ,求yx y z 5332+-的值.(2)已知6122---x x x =2+x A +3-x B,其中A 、B 为常数, 求2A+5B 的值.(3)已知 x+y+z ≠0,a 、b 、c 均不为0,且zy x+=a, x z y +=b , yx z +=c 求证:a a +1+b b +1+cc +1=127.(10分)如图1,AD//BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E在线段AB 上.(1)求∠ADE 的度数; (2)求证:AB=BC ;(3)如图2,若F 为线段CD 上一点,∠FBC=30°,求DF:FC 的值.D图1E CBA D图2FE CBA。
2016—2017学年度上学期九年级期末调研测试数学学科一.选择题(每小题3分,共计30分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )(A) (B) (C) (D) 2.在△ABC 中,∠C=90°,下列选项中的关系式正确的是( ) (A)sinA=AB AC (B)cosB=BC AC (C)tanA=ABBC(D)AC=A AB cos ⋅ 3.如图的几何体是由一些小正方体组合而成的,则这个几何体的主视图是( )4.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AD 、DB 、BC , 若∠ABD=55°,则∠BCD 的度数为( ) (A )65° (B )55° (C )45°(D )35°5.如图,将△ABC 绕点A 逆时针旋转得到C B A ''∆,若B '落 在BC 边上, ∠B=50°,则C B C ''∠为( ) (A )50° (B )60° (C )70°(D )80°6.在反比例函数xmy 31-=图象上有两点A ),(11y x ,B ),22y x (,1x <0<2x ,1y <2y , 则m 的取值范围是( )(A )m >13 (B )m <13 (C )m ≥13 (D )m ≤13(第3题图)7.一个袋中里有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从 这个袋中任取2个珠子,都是蓝色珠子的概率是( )(A)21(B)31 (C)41 (D)618.如图,543l l l ∥∥,1l 交543,,l l l 于E,A,C, 2l 交543,,l l l 于D,A,B,以 下结论的错误的为( )(A)AB DA AC EA = (B)CE CA BD BA = (C)DB DA CE CA = (D)DBDAEC EA =9. 如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E 且分别交PA 、PB 于点C ,D ,若PA=4,则△PCD 的周长为( ) (A )8(B )7(C )6 (D )510.如图是抛物线y 1=ax 2+bx+c (a≠0)的一部分,抛物线的顶点坐标 A (1,3),与x 轴的一个公共点B (4,0),直线y 2=mx+n (m≠0) 与抛物线交于A ,B 两点,下列结论:①2a-b=0;②abc <0;③方程 ax 2+bx+c=3有两个相等的实数根;④抛物线与x 轴的另一个公共点是(﹣1,0);⑤当1<x <4时,有y 2>y 1 ;其中正确的有( )个. (A)1 (B)2 (C)3 (D)4二.填空题(每题3分,共30分)11.点(-4,1)关于原点的对称点的坐标为 . 12.若反比例函数xky =的图象经过点(﹣2,3),则k= . 13.将二次函数y=x 2+1的图象向左平移2个单位,再向下平移3个单位长度得到的图象对应的二次函数的解析式为b ax x y ++=2,则ab = . 14.在△ABC 中,∠C=90°,cosA=23,AC=36,则BC= . 15.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为4,(第8题图)(第9题图)(第10题图)∠B=135°,则 AC 的长为 .16.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一 颗棋子,取得白色棋子的概率是31,如再往盒中放进4颗黑色棋子, 取得白色棋子的概率变为51,则22y x += . 17.如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15° 方向的A 处,若渔船沿北偏西75°方向以60海里/小时的速度 航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,则B 、C 之间的距离为 海里 .18.某种商品的进价为40元,在某段时间内若以每件x 元出售,可卖 出(100-x)件,当x= 时才能使利润最大.19.如图,⊙O 的弦AB 与半径OC 垂直,点D 为垂足,OD=DC, 32=AB ,点E 在⊙O 上,∠EOA=30°,则△EOC 的面积为 . 20. 如图,△ABC,∠ACB=90°,点D,E 分别在AB, BC 上, AC=AD,∠CDE=45°,CD 与AE 交于点F,若 ∠AEC=∠DEB, CE=4107,则CF= .三.解答题(60分)21.(本题7分)通过配方,确定抛物线12++=bx ax y 的顶点坐标及对称轴,其中︒-︒=45tan 30sin a ,︒⋅︒=60sin 30tan 4b .(第19题图)(第17题图)(第20题图)22.(本题7分)如图,在小正方形的边长均为1的方格纸中,有线段AB ,点A ,B 均在小正方形的顶点上.(1)在图1中画出四边形ABCD ,四边形ABCD 是中心对称图形,且四边形ABCD 的面积为6,点C ,D 均在小正方形的顶点上;(2)在图2中画一个△ABE ,点E 在小正方形的顶点上,且BE=BA,请直接写出∠BEA 的余弦值.23.(本题8分)在平面直角坐标系内,点O 为坐标原点,直线4+=x y 交x 轴于点A,交y 轴于点B, 点C(2,m)在直线4+=x y 上,反比例函数xny =经过点C. (1)求m ,n 的值 ; (2)点D 在反比例函数xny =的图象上,过点D 作X 轴的垂线,点E 为垂足,若OE=3, 连接AD,求tan ∠DAE 的值(第23题图)24.(本题8分)如图,正方形ABCD,点E 在AD 上,将△CDE 绕点C 顺时针旋转90°至△CFG ,点F,G 分别为点D,E 旋转后的对应点,连接EG ,DB,DF, DB 与CE 交于点M,DF 与CG 交于点N.(1)求证BM=DN;(2)直接写出图中已经存在的所有等腰直角三角形.25.(本题10分)如图,在平面直角坐标系内,点O 为坐标原点,抛物线423412++-=x x y 交x 轴负半轴于点A,交x 轴正半轴于点B,交y 轴于点C. (1)求AB 长 ;(2)同时经过A,B,C 三点作⊙D ,求点D 的坐标 ; (3)在(2)的条件下,横坐标为10的点E 在抛物线423412++-=x x y 上,连接AE,BE, 求∠AEB 的度数.26.(本题10分)如图,AB 为⊙O 的直径,弦CD ⊥AB,点E 为垂足,点F 为 BC的中点,连接DA,DF,DF 交AB 于点G.(1)如图1,求证:∠AGD=∠ADG ;(2)如图2,连接AF 交CE 于点H,连接HG,求证:CH=HG ;(3)如图3,在(2)的条件下,过点O 作OP ⊥AD,点P 为垂足,若OP=BG ,DG=4,求HG 长 .27.(本题10分)如图,在平面直角坐标系内,点O 为坐标原点,抛物线22++=bx ax y 交x 正半轴 于点A,交x 轴负半轴于点B,交y 轴于点C,OB=OC,连接AC, tan ∠OCA=2. (1)求抛物线的解析式 ;(2)点P 是第三象限抛物线22++=bx ax y 上的一个动点,过点P 作y 轴的平行线交直 线AC 于点D,设PD 的长为d,点P 的横坐标为t,求d 与t 之间的函数关系式(不要求 写出自变量t 的取值范围);(3)在(2)的条件下,连接PA,PC,当△ACP 的面积为30时,将△APC 沿AP 折叠得C AP '∆, 点C '为点C 的对应点,求点C '坐标并判断点C '是否在抛物线22++=bx ax y 上, 说明理由.九年级数学参考答案一.1.D 2.D 3.C 4.D 5.D 6.B 7.D 8.C 9.A 10.B二.11.(4,-1) 12.-6 13.8 14.6 15.2p 16.20 17.302 18.70 19.1或2;20. 5三.21.解:︒-︒=45tan 30sin a 11122=-=-1分︒⋅︒=60sin 30tan 4b 334232=创=1分2211212y ax bx x x =++=-++21(4)12x x =--+21(444)12x x =--+-+ 21(44)212x x =--+++21(2)32x =--+ 3分抛物线顶点坐标(2,3) 1分 对称轴直线x=2 1分 22.(1)正确画图 3分 (2)正确画图2分 ∠BEA 的余弦值为552分 23.(1)点C(2,m)在直线4+=x y 上,即m=2+4=6 2分∴C(2,6) 把6,2==y x 代入x ny =即62n =解得n=12 2分 (2) ∵OE=3,DE ⊥x 轴∴点D 的横坐标是3,当x=3时,121243y x ===∴D(3,4) 2分 ∴DE=4,把y=0代入4+=x y 即04x =+解得x=-4,∴OA=4,∴AE=7 1分 ∴4tan 7DE DAEAE ?= 1分24.(1) ∵正方形ABCD ∴ ∠DCB=90°∵△CDE 绕点C 顺时针旋转90°至△CFG ∴CF=CD ,∠ECG=∠DCF=90° 1分 ∵DC=CF ∴∠CDF=∠CFD=45°, ∵∠BCM+∠DCE=∠DCN+∠DCE=90°∴∠BCM=∠DCN 1分 ∵∠CBM=21∠ABC= 45° ∴∠CBM=∠CDN ∵正方形ABCD ∴CD=CB ∴△BCM ≌△DCN ∴BM=DN 1分(2) △ABD,△BCD,△CDF,△ECG, △BDF 每对1个1分 共5分 25.解:(1)把y=0代入423412++-=x x y ,即2130442x x =-++ 解得:1x =8 , 2x =2 1分 ∴A (-2,0),B (8,0)∴OA=2,BO=8∴AB=10 1分(2)连接AC,BC ,把x=0代入423412++-=x x y 即213004442y =-??=,解得y=4 ∴C (0,4)∴OC=4, 1分 ∵21tan 42OA ACOOC ?==,41tan 82OC CBO OB ?==∴∠ACO=∠CBO 1分∵∠OBC+∠OCB=90°∴∠ACO+∠OCB=∠ACB=90° ∴AB 为⊙D 的直径 1分∵AD=BD=5 ∴OD=3 ∴D (3,0)1分(3)∵点E 的横坐标为10,∴把x=10代入423412++-=x x y , 21310104642y =-??=-∴E (10,-6) 1分∴ER=6,OR=10∴AR=12 tan ∠EAR=AR ER =21∴∠EAR=∠ACO ∴∠CAE=∠EAR+∠CAO=∠ACO +∠CAO=90°设AE 交⊙D 于点K,连接BK ∵ AB 为⊙D 直径 ∠AKB=∠ACB=∠CAK=90° ∴四边形ACBK 为矩形,∴BK=AC, 222OC AO AC += BK=AC=52 1分 在Rt △BER 中,222222640BE BR ER =+=+= ∴210BE = 1分 ∴252cos 2210BK KBEBE ?==∴∠KBE=45°,∴∠AEB=∠AKB-∠KBE=45° 1分26.(1)证明:连接BD. ∵F 为 BC的中点∴∠CDF=∠BDF 1分 ∵AB 为⊙O 的直径,CD ⊥AB ∴ =AC AD ∴∠ADC=∠DBA 1分 ∴∠AGD=∠DBG+∠BDG ∵∠ADG=∠ADE+∠EDG ∴∠AGD=∠ADG 1分 (2)证明:连接AC. =AC AD ∴AC=AD ∵∠AGD=∠ADG ∴AG=AD ∴AC=AG 1分∵F 为 BC的中点∴∠CAH=∠GAH ∵AH 为公共边 ∴△ACH ≌△GAH 1分 ∴CH=HG 1分(3)解: =AC AD AC=AD,AE ⊥CD ∠DAE=∠CAE=2∠HAE 连接FO,过点F 作FK ⊥BG 于点K. ∵∠FOB=2∠HAE ∴∠DAE=∠FOB ∵OA=OF ∠OPA=∠FKO=90°∴△OAP ≌△FOK ∴FK=OP 1分连接FB,∵∠FBA=∠ADF 又∵∠AGD=∠ADG, ∠AGD=∠FGB∴∠FBG=∠FGB ∴FG=FB ∵FK ⊥BG ∴GK=KB ∵OP=FK ∴FK=2GK ∵∠DEG=∠FKG=90°∴DE ∥FK 连接CG 交AF 于点R,∴∠GFK=∠CDG ∵EG 垂直平分CD ∴CG=DG=4∴∠GCE=∠GDC ∴∠GCE=∠GFK ∵AC=AG ∠CAH=∠GAH CR=RG=2 1分 ∵∠HCR=∠GFK ∴tan ∠HCR=tan ∠GFK ∴HR GK CR FK = 即122HR =∴HR=1 在Rt △HCR 中,22222125CH HR CR =+=+=∴5CH =∴HG=5CH = 1分方法二:证明△MGB ≌△APO,27.解:(1)把x=0代入22++=bx ax y 即2002=2y a b =??∴C(0,2) ∴OC=2∴OB=OC=2∴B(-2,0) 1分 ∵tan ∠OCA=2即22OA OAOC == ∴OA=4∴A(4,0)1分 把B(-2,0),A(4,0)代入22++=bx ax y 即422016420a b a b ì-+=ïí++=ïî解得1412a b ì=-ïïíï=ïî∴抛物线解析式是211422y x x =-++1分 (2)设PD 交x 轴于点N,∵点P 的横坐标为t,PN ⊥x 轴∴点N 的横坐标为t ,点P 的纵坐标为211422t t -++ ∵点P 在第三象限 ∴PN=21142t t 2--1分 ∴AN=4-t ∵∠DNA=∠COA=90°∴DN ∥OC ∴∠ADN=∠ACO ∴tan ∠ADN= tan ∠ACO=2∴42AN t DN DN -==∴122DN t =-1分 ∴d=PD=DN+PN=122t -+21142t t 2--=214t t -1分(3)过点C 作CR ⊥PD 于点R ,过点K C '⊥x 轴于点K ,∵∠CRN=∠RNO=∠CON=90° ∴四边形OCRN 为矩形 ∴CR=ON11111()()22222APC APD CPD S S S PD AN PD CR PD AN CR PD AN ON PD OA D D D =-=??-=-=? 22111()4230242t t t t =??-=解得1x =10 (舍去) 2x = - 6 把x= - 6代入211422y x x =-++即211(6)(6)422=-10y =-?+?+∴P (-6,-10) 1分∴PN=10,ON=6∴AN=PN=10∴∠PAN=∠APN=45°∵将△APC 沿AP 折叠得C AP '∆△APC ≌C AP '∆∴∠PA C '=∠PAC 即∠PA C '=∠PAN+∠CAO=45°+∠CAO ∴∠OAC’=∠PAO+∠PA C '=90°+∠CAO ∴∠CAK=180°-∠OA C '=90°-∠CAO=∠ACO ∵A C '=AC, ∠AK C '=∠COA=90°∴△AK C '≌△COA 1分 ∴C 'K=OA=4,AK=OC=2∴C '(6,-4),1分 当x=6时,21166422=-4y =-??∴点C’ 在抛物线22++=bx ax y 上 1分。
C O 图4DB A 2016-2017年九年级上学期期末数学试卷一、选择题(每小题4分,共40分)1. 下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( B )A .B .C .D .2.有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同。
小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( B )A .6 B .16 C .18 D .243.已知1x 、2x 是一元二次方程2362x x =-的两根,则1122x x x x -+的值是( C )A .43-B .83C .83-D .434.已知二次函数y =-(x +k )2+h ,当x >-2时,y 随x 的增大而减小,则函数中k 的取值范围是( C )A .k ≥-2 B .k ≤-2 C .k ≥2 D .k ≤2 5.在△ABC 中,∠A =90°,AB =3cm ,AC =4cm ,若以A 为圆心3cm 为半径作⊙O ,则BC 与⊙O 的位置关系是( A )A .相交 B .相离 C .相切 D .不能确定 6.如图C 、D 是以线段AB 为直径的⊙O 上两点,若CA CD =,且40ACD ∠=, 则CAB ∠=( B ) A.10B.20C.30D.407.如图在△ABC 中,∠C=90°,AC=4,BC=3,将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B 、D 两点间的距离为 ( A ) A .10 B .2 2 C .3 D .2 58.如图AB 是⊙O 的直径,AB=2,点C 在⊙O 上,∠CAB=30°,D 为 的中点,P 是直径AB 上一动点,则PC+PD 的最小值为( B )A .22B.2C.1D.29.如图⊙O 是以原点为圆心,2为半径的圆,点P 是直线 y =-x +6上的一点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( B )A .3B .4C .6-D .3-110.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴为x =1,给出下列结论:①abc >0;②当x >2时,y >0;③3a +c >0;④3a+b >0.其中正确的结论有( C ) A .①② B .①④ C .①③④ D .②③④ 二、填空题(每小题4分,共40分)11.已知m 是关于x 的方程x 2﹣2x ﹣3=0的一个根,则2m 2﹣4m= 6 .12.若关于x 的二次函数221y kx x =+-与x 轴仅有一个公共点,则实数k 的值为1k =-. 13.如图,⊙O 的直径CD 与弦AB 垂直相交于点E ,且BC =1,AD =2,则⊙O 的直径长为5 .14.如图,AB 为⊙0的弦,AB=6,点C 是⊙0上的一个动点,且∠ACB=45°,若点M 、N 分别是AB 、BC 的中点,则MN 长的最大值是____32__________。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知二次函数y =(a ﹣1)x 2﹣x+a 2﹣1图象经过原点,则a 的取值为( )A .a =±1B .a =1C .a =﹣1D .无法确定 【答案】C【分析】将(0,0)代入y =(a ﹣1)x 2﹣x+a 2﹣1 即可得出a 的值.【详解】解:∵二次函数y =(a ﹣1)x 2﹣x+a 2﹣1 的图象经过原点,∴a 2﹣1=0,∴a =±1,∵a ﹣1≠0,∴a≠1,∴a 的值为﹣1.故选:C .【点睛】本题考查了二次函数,二次函数图像上的点满足二次函数解析式,熟练掌握这一点是解题的关键,同时解题过程中要注意二次项系数不为0.2.如图,半径为3的A 经过原点O 和点()0,2C ,B 是y 轴左侧A 优弧上一点,则tan OBC ∠为( )A 10B 2C 22D .22【答案】B【分析】连接CA 与x 轴交于点D ,根据勾股定理求出OD 的长,求出2tan 4CDO =∠,再根据圆心角定理得CDO OBC =∠∠,即可求出tan OBC ∠的值.【详解】设A 与x 轴的另一个交点为D ,连接CD∵90COD ∠=︒∴CD 是A 的直径∴236CD =⨯=在Rt OCD △中,6CD =,2OC =根据勾股定理可得 22226242OD CD OC =-=-=∴2tan 4CDO =∠ 根据圆心角定理得CDO OBC =∠∠∴2tan OBC ∠=故答案为:B .【点睛】本题考查了三角函数的问题,掌握圆周角定理、勾股定理、锐角三角函数的定义是解题的关键. 3.抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1,与x 轴的一个交点在(-3,0)和(-2,0)之间,其部分图象如图,则下列结论:①4ac -b 2<0;②2a -b =0;③a +b +c <0;④点(x 1,y 1),(x 2,y 2)在抛物线上,若x 1<x 2,则y 1<y 2 .正确结论的个数是( )A .1B .2C .3D .4【答案】C 【分析】根据二次函数图像与b 2-4ac 的关系、对称轴公式、点的坐标及增减性逐一判断即可.【详解】解:①由图可知,将抛物线补全,抛物线y =ax 2+bx +c(a≠0)与x 轴有两个交点∴b 2-4ac >0∴4ac -b 2<0,故①正确;②∵抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1∴12b a-=-解得:2b a =∴2a -b =0,故②正确;③∵抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1,与x 轴的一个交点在(-3,0)和(-2,0)之间, ∴此抛物线与x 轴的另一个交点在(0,0)和(1,0)之间∵在对称轴的右侧,函数y 随x 增大而减小∴当x=1时,y <0,∴将x=1代入解析式中,得:y =a +b +c <0故③正确;④若点(x 1,y 1),(x 2,y 2)在对称轴右侧时,函数y 随x 增大而减小即若x 1<x 2,则y 1>y 2故④错误;故选C.【点睛】此题考查的是二次函数图像及性质,掌握二次函数图像及性质和各系数之间的关系是解决此题的关键. 4.将抛物线2y x 向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( ) A .2(2)3y x =+-B .2(2)3y x =++C .2(2)3y x =-+D .2(2)3y x =--【答案】A【分析】先确定抛物线y=x 2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】抛物线y=x 2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选A .5.扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯B .()()130********x x --=⨯⨯ C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 【答案】D 【分析】根据空白区域的面积34=矩形空地的面积可得. 【详解】设花带的宽度为xm ,则可列方程为330220203(4())0x x --=⨯⨯, 故选D .【点睛】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.6.化简8的结果是( )A .22B .42C .2D .4 【答案】A【解析】根据最简二次根式的定义进行化简即可.【详解】84222=⨯=故选:A.【点睛】本题考查二次根式的化简,熟练掌握最简二次根式的定义是关键.7.如图,矩形ABCD 的两条对角线交于点O ,若∠AOD=120°,AB=6,则AC 等于( )A .8B .10C .12D .18【答案】C 【分析】根据矩形的对角线互相平分且相等可得OA=OB=12AC ,根据邻补角的定义求出∠AOB ,然后判断出△AOB 是等边三角形,根据等边三角形的性质可得OA=AB ,然后求解即可.【详解】∵矩形ABCD 的两条对角线交于点O ,∴OA=OB=12AC , ∵∠AOD=10°,∴∠AOB=180°-∠AOD=180°-10°=60°,∴△AOB 是等边三角形,∴OA=AB=6,∴AC=2OA=2×6=1.故选C .【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟记矩形的对角线互相平分且相等是解题的关键. 8.已知x ,y 满足2254440-+++=x x xy y ,则x y 的值是( ).A .16B .116C .8D .18【答案】A【分析】先把等式左边分组因式分解,化成非负数之和等于0形式,求出x,y 即可.【详解】由2254440-+++=x x xy y 得 ()()22244440xy y x x x +++-+=()()22220x x y +++=所以2x y +=0,2x +=0所以x=-2,y=-4所以x y =(-4)-2=16故选:A【点睛】考核知识点:因式分解运用.灵活拆项因式分解是关键.9.如图,点A ,B ,C 都在O 上,若34C ∠=︒,则AOB ∠为( )A .34︒B .56︒C .60︒D .68︒【答案】D 【分析】直接根据圆周角定理求解.【详解】∵∠C=34°,∴∠AOB=2∠C=68°.故选:D .【点睛】此题考查圆周角定理,解题关键在于掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10.如图,已知矩形ABCD和矩形EFGO在平面直角坐标系中,点B,F的坐标分别为(-4,4),(2,1).若矩形ABCD和矩形EFGO是位似图形,点P(点P在GC上)是位似中心,则点P的坐标为()A.(0,3)B.(0,2.5)C.(0,2)D.(0,1.5)【答案】C【分析】如图连接BF交y轴于P ,由BC∥GF可得GPPC=GFPC,再根据线段的长即可求出GP,PC,即可得出P点坐标.【详解】连接BF交y轴于P,∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(-4,4),(2,1),∴点C的坐标为(0,4),点G的坐标为(0,1),∴CG=3,∵BC∥GF,∴GPPC =GFPC=12,∴GP=1,PC=2,∴点P的坐标为(0,2),故选C.【点睛】此题主要考查位似图形的性质,解题的关键是根据位似图形的对应线段成比例.11.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°【答案】C【解析】试题分析:∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°.∵点C、A、B1在同一条直线上,∴∠BAB′=180°﹣∠BAC=180°﹣55°=125°.∴旋转角等于125°.故选C.12.下列各选项的事件中,发生的可能性大小相等的是()A.小明去某路口,碰到红灯,黄灯和绿灯B.掷一枚图钉,落地后钉尖“朝上”和“朝下”C.小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上D.小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”【答案】D【分析】根据概率公式逐一判断即可.【详解】A、∵交通信号灯有“红、绿、黄”三种颜色,但是红黄绿灯发生的时间一般不相同,∴它们发生的概率不相同,∴选项A不正确;B、∵图钉上下不一样,∴钉尖朝上的概率和钉尖着地的概率不相同,∴选项B不正确;C、∵“直角三角形”三边的长度不相同,∴小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上走,他出现在各边上的概率不相同,∴选项C不正确;D、小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”的可能性大小相等,∴选项D正确.故选:D.【点睛】此题考查的是概率问题,掌握根据概率公式分析概率的大小是解决此题的关键.二、填空题(本题包括8个小题)13.如图,已知点A是双曲线y=1x在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y =k x(k <0)上运动,则k 的值是_____.【答案】-1.【分析】连结OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,设A 点坐标为(a ,1a),利用反比例函数的性质得到点A 与点B 关于原点对称,则OA =OB ,再根据等腰直角三角形的性质得OC =OA ,OC ⊥OA ,然后利用等角的余角相等可得到∠DCO =∠AOE ,则根据“AAS ”可判断△COD ≌△OAE ,所以OD =AE =1a ,CD =OE =a ,于是C 点坐标为(1a ,﹣a ),最后根据反比例函数图象上点的坐标特征确定C 点所在的函数图象解析式.【详解】解:连结OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,设A 点坐标为(a ,1a), ∵A 点、B 点是正比例函数图象与双曲线y =1a 的交点, ∴点A 与点B 关于原点对称,∴OA =OB∵△ABC 为等腰直角三角形,∴OC =OA ,OC ⊥OA ,∴∠DOC+∠AOE =90°,∵∠DOC+∠DCO =90°,∴∠DCO =∠AOE ,在△COD 和△OAE 中,DCO AOE CDO AEO OC OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△OAE , ∴OD =AE ,CD =OE ,∴点C 的坐标为(1a,﹣a ), 1a×(﹣a )=﹣1, ∴k =﹣1.故答案为:﹣1.【点睛】本题是一道综合性较强的题目,用到的知识点有,反比例函数的性质,等腰三角形的性质,全等三角形的判定与性质等,充分考查了学生综合分析问题的能力.此类题目往往需要借助辅助线,使题目更容易理解. 14.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利1 200元,设每件衬衫应降价x 元,则所列方程为_______________________________________.(不用化简)【答案】 (40-x)(2x+20)=1200【解析】试题解析:每件衬衫的利润:40.x -销售量:202.x +∴方程为:()()402201200.x x -+=故答案为:()()402201200.x x -+=点睛:这个题目属于一元二次方程的实际应用,利用销售量⨯每件利润=总利润,列出方程即可. 15.半径为4 cm ,圆心角为60°的扇形的面积为 cm 1. 【答案】83π.【解析】试题分析:根据扇形的面积公式求解. 试题解析:()2260843603cm ππ⨯⨯=. 考点:扇形的面积公式.16.二次函数y=()21x -+2的顶点坐标为 .【答案】(1,2).【解析】试题分析:由二次函数的解析式可求得答案.∵y=(x ﹣1)2+2,∴抛物线顶点坐标为(1,2). 故答案为(1,2).考点:二次函数的性质.17.Rt △ABC 中,已知∠C =90°,∠B =50°,点D 在边BC 上,BD =2CD (如图).把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m =______.【答案】80°或120°【分析】本题可以图形的旋转问题转化为点B绕D点逆时针旋转的问题,故可以D点为圆心,DB长为半径画弧,第一次与原三角形交于斜边AB上的一点B′,交直角边AC于B″,此时DB′=DB,DB″=DB=2CD,由等腰三角形的性质求旋转角∠BDB′的度数,在Rt△B″CD中,解直角三角形求∠CDB″,可得旋转角∠BDB″的度数.【详解】解:如图,在线段AB取一点B′,使DB=DB′,在线段AC取一点B″,使DB=DB″,∴①旋转角m=∠BDB′=180°-∠DB′B-∠B=180°-2∠B=80°,②在Rt△B″CD中,∵DB″=DB=2CD,∴∠CDB″=60°,旋转角∠BDB″=180°-∠CDB″=120°.故答案为80°或120°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.运用含30度的直角三角形三边的关系也是解决问题的关键.18.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).【答案】3 8π【解析】试题分析:将左下阴影部分对称移到右上角,则阴影部分面积的和为一个900角的扇形面积与一个450角的扇形面积的和:22 9014513 3603608πππ⨯⨯⨯⨯+=.三、解答题(本题包括8个小题)19.如图,已知Rt△ABC中,∠ACB=90°,E为AB上一点,以AE为直径作⊙O与BC相切于点D,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若AE=5,AC=4,求BE的长.【答案】(1)证明见解析;(2)53.【分析】(1)连接OD,根据切线的性质得到OD⊥BC,根据平行线的判定定理得到OD∥AC,求得∠ODE =∠F,根据等腰三角形的性质得到∠OED=∠ODE,等量代换得到∠OED=∠F,于是得到结论;(2)根据相似三角形的判定和性质即可得到结论.【详解】证明:(1)连接OD,∵BC切⊙O于点D,∴OD⊥BC,∴∠ODC=90°,又∵∠ACB=90°,∴OD∥AC,∴∠ODE=∠F,∵OE=OD,∴∠OED=∠ODE,∴∠OED=∠F,∴AE=AF;(2)∵OD∥AC∴△BOD∽△BAC,∴BO OD AB AC,∵AE=5,AC=4,即2.5 2.554BE BE +=+, ∴BE =53. 【点睛】本题考查了切线的性质,平行线的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键. 20.长城汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x 辆(x≤30,且x 为正整数),实际进价为y 万元/辆,求y 与x 的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润45万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)【答案】(1)当0≤x≤5时,y=30;当5<x≤30时,y=﹣0.1x+30.5;(2)该月需售出15辆汽车.【解析】试题分析:(1)根据分段函数可以表示出当05530x x ≤≤<≤,时由销售数量与进价的关系就可以得出结论;(2)由销售利润=销售价-进价,由(1)的解析式建立方程就可以求出结论.试题解析:(1)由题意,得当05x ≤≤时y=30.当530x <≤时,y=30−0.1(x−5)=−0.1x+30.5.∴30(05)0.130.5(530)x y x x <≤⎧=⎨-+<≤⎩; (2)当05x ≤≤时,(32−30)×5=10<25,不符合题意,当530x <≤时,[32−(−0.1x+30.5)]x=45,解得:121530x x ==-,(不合题意舍去).答:该月需售出15辆汽车.21.已知反比例函数3k y x-=,(k 为常数,3k ≠). (1)若点(2,3)A 在这个函数的图象上,求k 的值;(2)若在这个函数图象的每一分支上,y 随x 的增大而增大,求k 的取值范围.【答案】(1)k=9;(2)k<3【分析】(1)根据反比例函数图象上点的坐标特征得到k-3=2×3,然后解方程即可;(2)根据反比例函数的性质得30k -<,然后解不等式即可;【详解】解:(1)∵点(2,3)A在这个函数的图象上,323k∴-=⨯,解得9k=;(2)∵在函数3kyx-=图象的每一支上,y随x的增大而增大,30k∴-<,得3k<.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数kyx=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.22.将A B C D,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人.(1)A在甲组的概率是多少?(2)A B,都在甲组的概率是多少?【答案】(1)12(2)16【解析】解:所有可能出现的结果如下:总共有6种结果,每种结果出现的可能性相同.(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16. 利用表格表示出所有可能的结果,根据A 在甲组的概率=3162=, A B ,都在甲组的概率=1623.如图,四边形ABCD 内接于圆,AD 、BC 的延长线交于点E ,F 是BD 延长线上一点,DE 平分∠CDF .求证:AB=AC .【答案】见解析【解析】试题分析:先根据角平分线的性质得出∠CDE=∠EDF ,再由对顶角相等得出∠EDF=∠ADB ,∠CDE=∠ADB .根据圆内接四边形的性质得出∠CDE=∠ABC ,∠ADB=∠ACB ,进而可得出结论. 证明:∵DE 平分∠CDF ,∴∠CDE=∠EDF .∵∠EDF=∠ADB ,∴∠CDE=∠ADB .∵∠CDE=∠ABC ,∠ADB=∠ACB ,∴∠ABC=∠ACB ,∴AB=AC .考点:圆周角定理.24.在一空旷场地上设计一落地为矩形ABCD 的小屋,10AB BC m +=,拴住小狗的10m 长的绳子一端固定在B 点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为()2S m .(1)如图1,若4BC m =,则S =__________2m .(2)如图2,现考虑在(1)中的矩形ABCD 小屋的右侧以CD 为边拓展一正CDE △区域,使之变成落地为五边形ABCED 的小屋,其他条件不变,则在BC 的变化过程中,当S 取得最小值时,求边BC 的长及S 的最小值.【答案】(1)88π;(2)BC长为52;S的最小值为3254.【分析】(1)小狗活动的区域面积为以B为圆心、10为半径的34圆,以C为圆心、6为半径的14圆和以A为圆心、4为半径的14圆的面积和,据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心、10为半径的34圆,以A为圆心、x为半径的14圆、以C为圆心、10-x为半径的30360圆的面积和,列出函数解析式,由二次函数的性质解答即可.【详解】解:(1)如图1,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10为半径的34圆,以C为圆心、6为半径的14圆和以A为圆心、4为半径的14圆的面积和,∴S=34×π•102+14•π•62+14•π•42=88π,故答案为:88π;(2)如图2,设BC=x,则AB=10-x,∴S=34•π•102+14•π•x 2+30360•π•(10-x )2 =3π(x 2-5x+250) =3π(x-52)2+3254π, 当x=52时,S 取得最小值3254π, ∴BC 长为52;S 的最小值为3254π. 【点睛】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.25.为了测量山坡上的电线杆PQ 的高度,数学兴趣小组带上测角器和皮尺来到山脚下,他们在A 处测得信号塔顶端P 的仰角是45︒,信号塔底端点Q 的仰角为30,沿水平地面向前走100米到B 处,测得信号塔顶端P 的仰角是60︒,求信号塔PQ 的高度.(结果保留整数)【答案】信号塔PQ 的高度约为100米.【分析】延长PQ 交直线AB 于点M ,连接AQ ,设PM 的长为x 米,先由三角函数得出方程求出PM ,再由三角函数求出QM ,得出PQ 的长度即可.【详解】解:延长PQ 交直线AB 于点M ,连接AQ ,如图所示:则90PMA ∠=︒,设PM 的长为x 米,在Rt PAM 中,45PAM ∠=︒,∴AM PM x ==米,∴100BM x =-(米),在Rt PBM △中,∵tan PM PBM BM ∠=,∴tan 603100x x ︒==-, 解得:(5033x =,在Rt QAM △中,∵tan QM QAM AM ∠=, ∴tan 50(33)tan 3050(31)QM AM QAM ︒=⋅∠=+⨯=+(米),∴100PQ PM QM =-=(米);答:信号塔PQ 的高度约为100米.【点睛】本题考查解直角三角形的应用、三角函数;由三角函数得出方程是解决问题的关键,注意掌握当两个直角三角形有公共边时,先求出这条公共边的长是解答此类题的一般思路.26.已知抛物线2y x ax b =++与x 轴交于(1,0)A ,(3,0)B 两点,与y 轴交于点C .(1)填空:a = ,b = .(2)如图1,已知5(,0)2E ,过点E 的直线与抛物线交于点M 、N ,且点M 、N 关于点E 对称,求直线MN 的解析式.(3)如图2,已知(0,1)D ,P 是第一象限内抛物线上一点,作PH y ⊥轴于点H ,若PHD ∆与BDO ∆相似,请求出点P 的横坐标.【答案】(1)4a =-,3b =;(2)直线5:2MN y x =-;(3)P 1397±741±【分析】(1)把(1,0)A ,(3,0)B 代入解析式即可求出a,b 的值;(2)设直线MN 为y=kx-52k ,根据二次函数联立得到一元二次方程,设交点M 、N 的横坐标为x 1,x 2,根据对称性可得x 1+x 2=5,根据根与系数的关系求解k ,即可求解.(3)求出OD,OB ,设P (x,243x x -+),得到HP=x,DH=243x x -+-1=242x x -+,根据PHD ∆与BDO ∆相似分两种情况列出比例式即可求解.【详解】(1)把(1,0)A ,(3,0)B 代入2y x ax b =++得01093b c a c =++⎧⎨=++⎩解得43a b =-⎧⎨=⎩ 故答案为:-4;3; (2)设直线MN 为y=kx+b ,把5(,0)2E 代入得b=-52k ∴直线MN 为y=kx-52k , 联立二次函数得kx-52k =243x x -+ 整理得x 2-(k+4)x+52k +3=0 设交点M 、N 的横坐标为x 1,x 2,∵点M 、N 关于点E 对称,∴x 1+x 2=5故k+4=5解得k=1∴直线5:2MN y x =-; (3)∵D (0,1),B (3,0)∴OD=1,OB=3,设P (x,243x x -+),则HP=x,DH=243x x -+-1=242x x -+,当PHD ∆∽BOD ∆时,PH BO DH DO =,即2342x x x =-+ 解得x=1397± 当PHD ∆∽DOB ∆时,PH DO DH BO =,即21423x x x =-+ 解得x=741± ∴P 点的横坐标为1397±或7412±.【点睛】此题主要考查二次函数综合,解题的关键是熟知待定系数法、函数与方程的关系及相似三角形的性质.27.己知函数223y ax x =--(a 是常数)(1)当1a =时,该函数图像与直线1y x =-有几个公共点?请说明理由;(2)若函数图像与x 轴只有一公共点,求a 的值.【答案】(1)函数图像与直线有两个不同的公共点;(2)0a =或13a =-.【分析】(1)首先联立二次函数和一次函数得出一元二次方程,然后由根的判别式判定即可; (2)分情况讨论:当0a =和0a ≠时,与x 轴有一个公共点求解即可.【详解】(1)当1a =时,223y x x =-- ∴2123y x y x x =-⎧⎨=--⎩∴2320x x --= ∵()9412170∆=-⨯⨯-=>∴方程有两个不相等的实数根,函数图像与直线有两个不同的公共点(2)①当0a =时,函数23y x =--与x 轴有一个公共点3,02⎛⎫- ⎪⎝⎭②当0a ≠时,函数223y ax x =--是二次函数由题可得4120a ∆=+=,13a =-综上可知:0a =或13a =-.【点睛】此题主要考查二次函数与一次函数的综合运用,熟练掌握,即可解题.。
2021-2021学年上期末调研测试1.D2.C3.C4.D5.B6.C7.B8.B9.A 10.D 11.1.28×107 12.x ≠-2 13.3- 14.2(m+2n)(m-2n)15.x ≤-2<32 16.3 17.8 18.4 19.18°或72° 20.32 21.解:()()()()111111*********+=-•+-=-÷+-=⎪⎭⎫ ⎝⎛-÷-+-x x x x x x x x x x x x x x x x x (4分) ∵12122245tan 45sin 2-=-⨯=︒-︒=x (1分)∴原式=221121=+-(2分)22.略(7分)23.解:(1)20÷40﹪=50,50-20-10-15=5,补全(4分)(2)800÷50×5=80答:估计全校学生中大约有80人参加篮球项目(4分)24.(1)略(3分);(2)画图有一分,和为6(5分)25.解(1)设这种衬衫原进价为每件x 元476.18.02+=⨯x x (3分) 解得:x=40,(1分)经检验:x=40是原分式方程的解,答:略(1分)(2)设打m 折8000÷40×3=600,58(600-100)=29000(1分)6300176008000101005829000++≥⨯⨯+m (2分) 解得:x ≥5(1分)答:最多可以打5折.(1分)26.(1)连接OA ,证全等(2分)(2)连接BC ,∵OH ⊥AC ∴AH=CH∵H 、O 、B 在一条直线上∴BH 垂直平分AC ∴AB=BC (2分)∴⊿ABC 为等边三角形∴∠BAC=60°(2分)(3)过点B 作BM ⊥CE 延长线于M ,过E 、O 作EN ⊥BC 于N ,OK ⊥BC 于K ∵CH=7 ∴BC=AC=14设ME=x, ∵∠CEB=120°∴∠BEM=60°∴BE=2x ,∴BM=x 3,BE=10. ……………2分 ⊿BCM 中勾股得:BM=35,∴sin ∠BCM=1435 ∴NE=7315 OK=33CK=337∴NE :OK=4945=DE:OD. ……………2分27. (1)∵抛物线y=-x 2+bx+c 与x 轴交于A (-1,0) , B(5,0)两点,∴220=1b+c 0=55b+c⎧---⎨-+⎩() ∴b=4c=5⎧⎨⎩ ∴抛物线的解析式为y =-x 2+4x+5.………………………………………………2分(2)点P 横坐标为m ,则P(m ,-m 2+4m +5),E(m ,-34m+3),F(m,0), ∵点P 在x 轴上方,要使PE=5EF,点P 应在y 轴右侧,∴ 0<m <5.PE=-m 2+4m +5-(-34m +3)= -m 2+194m +2……………………………2分 分两种情况讨论: ①当点E 在点F 上方时,EF=-34m +3. ∵PE=5EF ,∴-m 2+194m +2=5(-34m +3) 即2m 2-17m +26=0,解得m 1=2,m 2=132(舍去)………………………………1分 ②当点E 在点F 下方时,EF=34m -3. ∵PE=5EF ,∴-m 2+194m +2=5(34m -3),A即m 2-m -17=0,解得m 3=12+,m 4=12(舍去),∴m 的值为2或12+……………………1分 (3),点P 的坐标为P 1(-12,114),P 2(4,5), ……………………2分P 3(3--3).……………………2分。
2016-2017学年黑龙江省哈尔滨市松北区2017届九年级上学期
期末数学试题
一、选择题(每小题3分,共30分)
1. 的倒数是( )
A. B. - C. - D.
2. 下列运算中,正确的是( )
A. 2x+2y=2xy
B. (x2y3)2=x4y5
C. (xy)2÷=(xy)3
D. 2xy-3yx=xy
3. 反比例函数y=的图象,当x>0时,y随x的增大而减小,则k的取值范围().
A. k<2
B. k≤2
C. k>2
D. k≥2
4. 如图所示的由六个小正方体组成的几何体的俯视图是( )
A. B. C. D.
5. 松北某超市今年一月份的营业额为50万元.三月份的营业额为72万元.则二、三两个月平均每月营业额的增长率是().
A. 25﹪
B. 20﹪
C. 15﹪
D. 10﹪
6. 将抛物线向左平移3个单位得到的抛物线的解析式是( )
A. B. C. D.
7. 如图,将矩形纸片ABCD沿EF折叠(E、F分别是AD、BC上的点),使点B与四边形CDEF内一点重合,若°,则等于()
......
A. 110°
B. 115°
C. 120°
D. 130°
8. 在△ABC中,∠C=90°,BC=4,sinA=,那么AC边的长是( )
A. 6
B. 2
C. 3
D. 2
9. 如图,DE∥BC,分别交△ABC的边AB、AC于点D、E,, 若AE=1,则EC=( ).
A. 2
B. 3
C. 4
D. 6
10. 甲、乙两车沿同一平直公路由A地匀速行驶(中途不停留),前往终点B地,甲、乙两车之间的距离S (千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.下列说法:①甲、乙两地相距210千米;
②甲速度为60千米/小时;③乙速度为120千米/小时;④乙车共行驶小时,其中正确的个数为()
A. 1个
B. 2个
C. 3个
D. 4个
第Ⅱ卷非选择题(共90分)
二、填空题(每小题3分,共30分)
11. 数字12800000用科学记数法表示为_______________.
12. 函数y=中,自变量x的取值范围是____________.
13. 计算=______.
14. 把多项式分解因式的结果是____________.
15. 不等式组的解集为____________________.
16. 分式方程的解为x=_______.
17. 若弧长为4π的扇形的圆心角为直角,则该扇形的半径为___________.
18. 已知,平面直角坐标系中,O为坐标原点,一次函数的图像交x轴于点A,交y轴于点B,则⊿AO B 的面积=____________.
19. 已知,⊿ABC中,AB=AC,AB的垂直平分线交AB于E,交AC所在直线于P,若∠APE=54°,则∠B=________.
20. 如图,ΔABC中,CD是AB边上的高,AC=8,∠ACD=30°,tan∠ACB= ,点P为CD上一动点,当BP+CP 最小时,DP=_________.
三、解答题(21、22小题各7分,23、24小题各8分,25、26、27小题各10分,共60分)
21. 先化简,再求代数式的值,其中x=2.
22. 如图,是由边长为1的小正方形构成的网格,各个小正方形的顶点称之为格点,点A、C、E、F均在格点上,根据不同要求,选择格点,画出符合条件的图形:
(1)在图1中,画一个以AC为一边的⊿ABC,使∠ABC=45°(画出一个即可);
(2)在图2中,画一个以EF为一边的⊿DEF,使tan∠EDF=,并直接写出线段DF的长.
23. 为便于管理与场地安排,松北某中学校以小明所在班级为例,对学生参加各个体育项目进行了调查统计。
并把调查的结果绘制了如下图所示的不完全统计图,请你根据下列信息回答问题:
⑴在这次调查中,小明所在的班级参加篮球项目的同学有多少人?并补全条形统计图.
⑵如果学校有800名学生,请估计全校学生中有多少人参加篮球项目.
24. 如图,⊿ABC中,∠ACB=90°,∠A=30°,CD为△ABC的中线,作CO⊥AB于O,点E在CO延长线上,DE=AD,连接BE、DE.
(1)求证:四边形BCDE为菱形;
(2)把⊿ABC分割成三个全等的三角形,需要两条分割线段,若AC=6,求两条分割线段长度的和.
25. 某商厦进货员预测一种应季衬衫能畅销市场,就用0.8万元购进这种衬衫,面市后果然供不应求.于是,商厦又用1.76万元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了4元,商厦销售这种衬衫时每件预定售价都是58元.
(1)求这种衬衫原进价为每件多少元?
(2)经过一段时间销售,根据市场饱和情况,商厦经理决定对剩余的100件衬衫进行打折销售,以提高回款速度,要使这两批衬衫的总利润不少于6300元,最多可以打几折?
26. 已知,AB、AC是圆O的两条弦,AB=AC,过圆心O作OH⊥AC于点H.
(1)如图1,求证:∠B=∠C;
(2)如图2,当H、O、B三点在一条直线上时,求∠BAC的度数;
(3)如图3,在(2)的条件下,点E为劣弧BC上一点,CE=6,CH=7,连接BC、OE交于点D,求BE 的长和的值.
27. 如图,抛物线交X轴于点A、B(A左B右),交Y轴于点C,
=6,点P为第一象限内抛物线上的一点.
(1)求抛物线的解析式;
(2)若∠PCB=45°,求点P的坐标;
(3)点Q为第四象限内抛物线上一点,点Q的横坐标比点P的横坐标大1,连接PC、
AQ,当PC=AQ时,求点P的坐标以及ΔPCQ的面积.
28. 如图,抛物线y=-x2+bx+c与x轴交于A(-1,0),B(5,0)两点,直线y=-x+3与y轴交于点C,,与x 轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.
(1)求抛物线的解析式;
(2)若PE =5EF,求m的值;
(3)若点E/是点E关于直线PC的对称点、是否存在点P,使点E/落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.。