九年级上学期数学《期末考试题》及答案解析
- 格式:doc
- 大小:2.37 MB
- 文档页数:38
人教版九年级上学期期末数学试卷(含答案)一、选择题(在下列四个选项中,只有-项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共10个小题,每小题3分,共30分)1.﹣的绝对值是()A.﹣B.﹣2C.D.22.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品3.电影《长津湖》票房突破58亿元,5800000000用科学记数法表示为()A.5.8×108B.5.8×109C.0.58×109D.58×1084.下列运算结果正确的是()A.3a﹣a=2B.a2•a4=a8C.(a+2)(a﹣2)=a2﹣4D.(﹣a)2=﹣a25.在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.6.sin60°=()A.B.C.D.7.某县为发展教育事业,加强了对教育经费的投入,2012年投入3000万元,预计2014年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000x2=5000B.3000(1+x)2=5000C.3000(1+x%)2=5000D.3000(1+x)+3000(1+x)2=50008.如图,在△ABC中,D、E两点分别在AB、AC边上,DE∥BC.若DE:BC=2:3,则S△ADE:S△ABC为()A.4:9B.9:4C.2:3D.3:29.今年“五一”节,小雨骑自行车从家出发去图书馆学习,她从家到图书馆过程中,中途休息了一段时间,设她从家出发后所用的时间为t(分钟),所走的路程为S(米),S与t之间的函数关系如图所示,下列说法错误的是()A.小雨中途休息用了4分钟B.小雨休息前骑车的速度为每分钟400米C.小雨在上述过程中所走的路程为6600米D.小雨休息前骑车的平均速度大于休息后骑车的平均速度10.如图,有一斜坡AB,坡顶B离地面的高度BC为30cm,斜坡的倾角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75cm B.50cm C.30cm D.45cm二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:2a2﹣8a=.12.在函数y=﹣中,自变量x的取值范围是.13.某市在一次空气污染指数抽查中,收集到6天的数据如下:61,74,70,56,80,91.该组数据的中位数是.14.关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则m的值为.15.扇形的半径为5,圆心角等于120°,则扇形的面积等于.16.如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C 恰好落在AD边上的点P处,则∠EFC=,FP=.三、解答题(本大题共9个题,第17,18,19每题6分,第20,21题每题8分,第22,23题每题9分,第24,25题每题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣1)2021+|﹣2|+4sin30°﹣(﹣π)0.18.(6分)计算: 19.(6分)如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC 沿x 轴翻折得到△AB 1C 1,在图中画出△AB 1C 1.(2)将△ABC 以点A 为位似中心放大2倍.(3)求△ABC 的面积.20.(8分)某校创建“环保示范学校”,为了解全校学生参加环保类社团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:社团名称 A .酵素制作社团B .回收材料小制作社团C .垃圾分类社团D .环保义工社团E .绿植养护社团 人数 10 15 5 10 5(1)填空:在统计表中,这5个数的中位数是 ;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.21.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?22.(9分)在建设美好乡村活动中,某村民委员会准备在乡村道路两旁种植柏树和杉树.经市场调查发现:购买2棵柏树和3棵杉树共需440元,购买3棵柏树和1棵杉树共需380元.(1)求柏树和杉树的单价;(2)若本次美化乡村道路购买柏树和杉树共150棵(两种树都必须购买),且柏树的棵数不少于杉树的3倍,设本次活动中购买柏树x棵,此次购树的费用为w元.①求w与x之间的函数表达式,并写出x的取值范围?②要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?23.(9分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,与CA的延长线交于点E,⊙O的切线DF与AC垂直,垂足为F.(1)求证:AB=AC.(2)若CF=2AF,AE=4,求⊙O的半径.24.(10分)定义:(一)如果两个函数y1,y2,存在x取同一个值,使得y1=y2,那么称y1,y2为“合作函数”,称对应x的值为y1,y2的“合作点”;(二)如果两个函数为y1,y2为“合作函数”,那么y1+y2的最大值称为y1,y2的“共赢值”.(1)判断函数y=x+2m与y=是否为“合作函数”,如果是,请求出m=1时它们的合作点;如果不是,请说明理由;(2)判断函数y=x+2m与y=3x﹣1(|x|≤2)是否为“合作函数”,如果是,请求出合作点;如果不是,请说明理由;(3)已知函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,且有唯一合作点.①求出m的取值范围;②若它们的“共赢值”为24,试求出m的值.25.(10分)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A(3,0),D两点,与y轴交于点B,抛物线的对称轴与x轴交于点C(1,0),点E,P为抛物线的对称轴上的动点.(1)求该抛物线的解析式;(2)当BE+DE最小时,求此时点E的坐标;(3)若点M为对称轴右侧抛物线上一点,且M在x轴上方,N为平面内一动点,是否存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(在下列四个选项中,只有-项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共10个小题,每小题3分,共30分)1.﹣的绝对值是()A.﹣B.﹣2C.D.2【分析】根据绝对值的定义直接计算即可解答.【解答】解:﹣的绝对值为.故选:C.【点评】本题主要考查绝对值的性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、既是轴对称图形,又是中心对称图形,故本选项符合题意;故选:D.【点评】本题考查了轴对称图形及中心对称图形的知识,轴对称图形的关键是寻找对称轴,图形沿对称轴叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.3.电影《长津湖》票房突破58亿元,5800000000用科学记数法表示为()A.5.8×108B.5.8×109C.0.58×109D.58×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:5800000000=5.8×109.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.4.下列运算结果正确的是()A.3a﹣a=2B.a2•a4=a8C.(a+2)(a﹣2)=a2﹣4D.(﹣a)2=﹣a2【分析】根据合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则正确计算即可求出正确答案.【解答】解:3a和a属于同类项,所以3a﹣a=2a,故A项不符合题意,根据同底数幂的乘法运算法则可得a2•a4=a6,故B项不符合题意,根据平方差公式(a+2)(a﹣2)=a2﹣4,故C项符合题意,(﹣a)2=a2,故D项不符合题意,故选:C.【点评】本题主要考查合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则,熟练运用运算法则是解题的关键.5.在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.【分析】直接利用概率公式计算可得.【解答】解:在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为=.故选:C.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.6.sin60°=()A.B.C.D.【分析】利用特殊角的三角函数值解答即可.【解答】解:sin60°=.故选:B.【点评】本题考查了特殊角的三角函数值.特指30°、45°、60°角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=.7.某县为发展教育事业,加强了对教育经费的投入,2012年投入3000万元,预计2014年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000x2=5000B.3000(1+x)2=5000C.3000(1+x%)2=5000D.3000(1+x)+3000(1+x)2=5000【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设教育经费的年平均增长率为x,根据“2012年投入3000万元,预计2014年投入5000万元”,可以分别用x表示2012以后两年的投入,然后根据已知条件可得出方程.【解答】解:设教育经费的年平均增长率为x,则2013的教育经费为:3000×(1+x)万元,2014的教育经费为:3000×(1+x)2万元,那么可得方程:3000×(1+x)2=5000.故选:B.【点评】本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.8.如图,在△ABC中,D、E两点分别在AB、AC边上,DE∥BC.若DE:BC=2:3,则S△ADE:S△ABC为()A.4:9B.9:4C.2:3D.3:2【分析】根据相似三角形的面积比等于对应边长的平方比.【解答】解:∵△ADE∽△ABC,DE:BC=2:3∴S△ADE:S△ABC=4:9故选:A.【点评】熟练掌握三角形的性质.9.今年“五一”节,小雨骑自行车从家出发去图书馆学习,她从家到图书馆过程中,中途休息了一段时间,设她从家出发后所用的时间为t(分钟),所走的路程为S(米),S与t之间的函数关系如图所示,下列说法错误的是()A.小雨中途休息用了4分钟B.小雨休息前骑车的速度为每分钟400米C.小雨在上述过程中所走的路程为6600米D.小雨休息前骑车的平均速度大于休息后骑车的平均速度【分析】根据函数图象可知,小雨6分钟所走的路程为2400米,6~10分钟休息,10~16分钟所走的路程为(4200﹣2400)米,所走的总路程为4200米,根据路程、速度、时间之间的关系进行解答即可.【解答】解:A、小雨中途休息用了10﹣6=4(分钟),正确,不符合题意;B、小雨休息前骑车的速度为每分钟=400(米),正确,不符合题意;C、小雨在上述过程中所走的路程为4200米,错误,符合题意;D、小雨休息后骑车的速度为每分钟=300(米)<400米,∴小雨休息前骑车的平均速度大于休息后骑车的平均速度,正确,不符合题意;故选:C.【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.10.如图,有一斜坡AB,坡顶B离地面的高度BC为30cm,斜坡的倾角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75cm B.50cm C.30cm D.45cm【分析】根据正切的定义计算即可.【解答】解:在Rt△ABC中,∠C=90°,BC=30cm,tan A=,则=,解得:AC=75,则斜坡的水平距离AC为75cm,故选:A.【点评】本题考查的是解直角三角形的应用坡度坡角问题,掌握正切的定义是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:2a2﹣8a=2a(a﹣4).【分析】原式提取2a即可得到结果.【解答】解:原式=2a(a﹣4),故答案为:2a(a﹣4)【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.在函数y=﹣中,自变量x的取值范围是x≥5.【分析】根据二次根式的性质被开方数大于等于0,列不等式求解.【解答】解:依题意,得x﹣5≥0,解得x≥5.【点评】本题考查的知识点为:二次根式的被开方数是非负数.13.某市在一次空气污染指数抽查中,收集到6天的数据如下:61,74,70,56,80,91.该组数据的中位数是72.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:56,61,70,74,80,91,处在第3和第4位两个数的平均数为中位数,故中位数是(70+74)÷2=72.故答案为:72.【点评】本题考查了中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).14.关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则m的值为1.【分析】根据一元二次方程根的判别式的意义,方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则有Δ=0,得到关于m的方程,解方程即可.【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,∴Δ=0,即22﹣4×1×[﹣(m﹣2)]=0,解得m=1.故答案为:1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.15.扇形的半径为5,圆心角等于120°,则扇形的面积等于π.【分析】根据扇形面积公式S=进行计算即可.【解答】解:S扇形==π.故答案为π.【点评】本题考查了扇形的面积的计算.解答该题的关键是熟记扇形的面积公式.16.如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C 恰好落在AD边上的点P处,则∠EFC=30°,FP=2.【分析】先求出DE=a,CE=2a,再根据翻折变换的性质可得PE=CE,FP=FC,∠EPF=∠C=90°,∠CFE =∠PFE,然后根据直角三角形30°角所对的直角边等于斜边的一半求出∠DPE=30°,从而得到∠DPF,根据两直线平行,同旁内角互补求出∠CFP,再求出∠CFE=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出EF,利用勾股定理列式求出FC,从而得解.【解答】解:∵DC=3DE=3a,∴DE=a,CE=2a,由翻折变换得,PE=CE,FP=FC,∠EPF=∠C=90°,∠CFE=∠PFE,∴在Rt△DPE中,∠DPE=30°,∴∠DPF=∠EPF+∠DPE=90°+30°=120°,∵矩形对边AD∥BC,∴∠CFP=180°﹣∠DPF=180°﹣120°=60°,∴∠CFE=∠CFP=×60°=30°,∴EF=2CE=2×2a=4a,在Rt△CEF中,根据勾股定理得,FP=FC===2a,故答案为:30°,2a.【点评】本题考查了翻折变换的性质,矩形的性质,直角三角形30°角所对的直角边等于斜边的一半,熟记各性质并确定出直角三角形中30°的角是解题的关键.三、解答题(本大题共9个题,第17,18,19每题6分,第20,21题每题8分,第22,23题每题9分,第24,25题每题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣1)2021+|﹣2|+4sin30°﹣(﹣π)0.【分析】按照实数的运算法则依次展开计算即可得出答案.【解答】解:原式=﹣1+2+4×﹣1=﹣1+2+2﹣1=2.【点评】本题考查实数的混合运算,涉及绝对值、零指数幂、正整数幂,特殊角的三角函数值等知识,熟练掌握其运算法则,细心运算是解题的关键.18.(6分)计算:【分析】根据分式的运算法则即可求出答案.【解答】解:原式=×﹣=﹣==﹣1【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(6分)如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴翻折得到△AB1C1,在图中画出△AB1C1.(2)将△ABC以点A为位似中心放大2倍.(3)求△ABC的面积.【分析】(1)利用轴对称变换的性质分别作出B ,C 的对应点B 1,C 1即可;(2)利用位似变换的性质分别作出B ,C 的对应点E ,F 即可;(3)把三角形的面积看成矩形的面积减去周围的三个三角形面积即可.【解答】解:(1)如图,△AB 1C 1即为所求;(2)如图,△AEF 即为所求;(3)△ABC 的面积=2×3﹣×1×2﹣×1×2﹣×1×3=2.5.【点评】本题考查作图﹣位似变换,轴对称变换等知识,解题的关键是掌握位似变换,轴对称变换的性质,属于中考常考题型.20.(8分)某校创建“环保示范学校”,为了解全校学生参加环保类社团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:社团名称 A .酵素制作社团B .回收材料小制作社团C .垃圾分类社团D .环保义工社团E .绿植养护社团 人数 10 15 5 10 5(1)填空:在统计表中,这5个数的中位数是 10 ;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.【分析】(1)根据中位数的定义即可判断;(2)求出没有选择的百分比,高度和E相同,即可画出图形;(3)利用样本估计总体的思想解决问题即可;(4)画出树状图即可解决问题;【解答】解:(1)这5个数从小到大排列:5,5,10,10,15,故中位数为10,故答案为10.(2)没有选择的占1﹣10%﹣30%﹣20%﹣10%﹣20%=10%,条形图的高度和E相同;如图所示:(3)1400×20%=280(名)答:估计全校有多少学生愿意参加环保义工社团有280名;(4)酵素制作社团、绿植养护社团分别用A、B表示:树状图如图所示,共有4种可能,两人同时选择绿植养护社团只有一种情形,∴这两名同学同时选择绿植养护社团的概率=.【点评】此题考查了扇形统计图,条形统计图,列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【分析】(1)在△ABP中,求出∠P AB、∠PBA的度数即可解决问题;(2)作PH⊥AB于H.求出PH的值即可判定;【解答】解:(1)∵∠P AB=30°,∠ABP=120°,∴∠APB=180°﹣∠P AB﹣∠ABP=30°.(2)作PH⊥AB于H.∵∠BAP=∠BP A=30°,∴BA=BP=50,在Rt△PBH中,PH=PB•sin60°=50×=25,∵25>25,∴海监船继续向正东方向航行是安全的.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.22.(9分)在建设美好乡村活动中,某村民委员会准备在乡村道路两旁种植柏树和杉树.经市场调查发现:购买2棵柏树和3棵杉树共需440元,购买3棵柏树和1棵杉树共需380元.(1)求柏树和杉树的单价;(2)若本次美化乡村道路购买柏树和杉树共150棵(两种树都必须购买),且柏树的棵数不少于杉树的3倍,设本次活动中购买柏树x棵,此次购树的费用为w元.①求w与x之间的函数表达式,并写出x的取值范围?②要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?【分析】(1)设柏树每棵m元,杉树每棵n元,可得:,即可解得柏树每棵100元,杉树每棵80元;(2)①由柏树的棵数不少于杉树的3倍,有x≥3(150﹣x),而w=100x+80(150﹣x)=20x+12000,即知w =20x+12000(x≥112.5且x是整数);②由一次函数性质可得柏树购买113棵,杉树购买37棵,最少费用为14260元.【解答】解:(1)设柏树每棵m元,杉树每棵n元,根据题意得:,解得,∴柏树每棵100元,杉树每棵80元;(2)①∵柏树的棵数不少于杉树的3倍,∴x≥3(150﹣x),解得x≥112.5,根据题意得:w=100x+80(150﹣x)=20x+12000,∴w=20x+12000(x≥112.5且x是整数);②∵20>0,∴w随x的增大而增大,∵x是整数,∴x最小取113,∴当x=113时,w取最小值20×113+12000=14260,此时150﹣x=150﹣113=37,答:要使此次购树费用最少,柏树购买113棵,杉树购买37棵,最少费用为14260元.【点评】本题考查二元一次方程组和一次函数的应用,解题的关键是读懂题意,列出方程组和函数关系式.23.(9分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,与CA的延长线交于点E,⊙O的切线DF与AC垂直,垂足为F.(1)求证:AB=AC.(2)若CF=2AF,AE=4,求⊙O的半径.【分析】(1)连接OD,根据切线的性质得到OD⊥DF,进而得出OD∥AC,根据平行线的性质、等腰三角形的判定和性质定理证明结论;(2)连接BE、AD,根据圆周角定理得到AD⊥BC,BE⊥EC,根据等腰三角形的性质得到BD=DC,进而得到AC=12,得到答案.【解答】(1)证明:如图,连接OD,∵DF是⊙O的切线,∴OD⊥DF,∵DF⊥AC,∴OD∥AC,∴∠ODB=∠ACB,∵OB=OD,∴∠ODB=∠OBD,∴∠OBD=∠ACB,∴AB=AC;(2)解:如图,连接BE、AD,∵AB是⊙O的直径,∴AD⊥BC,BE⊥EC,∵AB=AC,∴BD=DC,∵DF⊥AC,BE⊥EC,∴DF∥BE,∵BD=DC,∴CF=FE,∵CF=2AF,AE=4,∴AC=12,∴AB=AC=12,∴⊙O的半径为6.【点评】本题考查的是切线的性质、圆周角定理、等腰三角形的判定,掌握圆的切线垂直于经过切点的半径是解题的关键.24.(10分)定义:(一)如果两个函数y1,y2,存在x取同一个值,使得y1=y2,那么称y1,y2为“合作函数”,称对应x的值为y1,y2的“合作点”;(二)如果两个函数为y1,y2为“合作函数”,那么y1+y2的最大值称为y1,y2的“共赢值”.(1)判断函数y=x+2m与y=是否为“合作函数”,如果是,请求出m=1时它们的合作点;如果不是,请说明理由;(2)判断函数y=x+2m与y=3x﹣1(|x|≤2)是否为“合作函数”,如果是,请求出合作点;如果不是,请说明理由;(3)已知函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,且有唯一合作点.①求出m的取值范围;②若它们的“共赢值”为24,试求出m的值.【分析】(1)由于y=x+2m与y=都经过第一、第三象限,所以两个函数有公共点,可以判断两个函数是“合作函数”,再联立x+2=,解得x=﹣4或x=2,即可求“合作点”;(2)假设是“合作函数”,可求“合作点”为x=m+,再由|x|≤2,可得当﹣≤m≤时,是“合作函数”;当m>或m<﹣时,不是“合作函数”;(3)①由已知可得:x+2m=x2﹣(2m+1)x+(m2+4m﹣3),解得x=m+3或x=m﹣1,再由已知可得当0≤m+3≤5时,﹣3≤m≤2,当0≤m﹣1≤5时,1≤m≤6,因为只有一个“合作点”则﹣3≤m<1或2<m≤6;②y1+y2=(x﹣m)2+6m﹣3,由①可分两种情况求m的值:当﹣3≤m<1时,x=5时,y1+y2在0≤x≤5的有最大值为m2﹣4m+22=24,当2<m≤6时,x=0时,y1+y2在0≤x≤5的有最大值为m2+6m﹣3=24,分别求出符合条件的m值即可.【解答】解:(1)∵y=x+2m是经过第一、第三象限的直线,y=是经过第一、第三象限的双曲线,∴两函数有公共点,∴存在x取同一个值,使得y1=y2,∴函数y=x+2m与y=是“合作函数”;当m=1时,y=x+2,∴x+2=,解得x=﹣4或x=2,∴“合作点”为x=2或x=﹣4;(2)假设函数y=x+2m与y=3x﹣1是“合作函数”,∴x+2m=3x﹣1,∴x=m+,∵|x|≤2,∴﹣2≤m+≤2,∴﹣≤m≤,∴当﹣≤m≤时,函数y=x+2m与y=3x﹣1(|x|≤2)是“合作函数”;当m>或m<﹣时,函数y=x+2m 与y=3x﹣1(|x|≤2)不是“合作函数”;(3)①∵函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,∴x+2m=x2﹣(2m+1)x+(m2+4m﹣3),∴x2﹣(2m+2)x+(m2+2m﹣3)=0,∴x=m+3或x=m﹣1,∵0≤x≤5时有唯一合作点,当0≤m+3≤5时,﹣3≤m≤2,当0≤m﹣1≤5时,1≤m≤6,∴﹣3≤m<1或2<m≤6时,满足题意;②∵y1+y2=x2﹣(2m+1)x+(m2+4m﹣3)+x+2m=x2﹣2mx+m2+6m﹣3=(x﹣m)2+6m﹣3,∴对称轴为x=m,∵﹣3≤m<1或2<m≤6,当﹣3≤m<1时,x=5时,y1+y2在0≤x≤5的有最大值为m2﹣4m+22,∴m2﹣4m+22=24,∴m=2+或m=2﹣,∴m=2﹣;当2<m≤6时,x=0时,y1+y2在0≤x≤5的有最大值为m2+6m﹣3,∴m2+6m﹣3=24,∴m=3或m=﹣9,∴m=3;综上所述:m=2﹣或m=3.【点评】本题考查二次函数的图象及性质;理解题意,熟练掌握一次函数、二次函数的图象及性质是解题的关键.25.(10分)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A(3,0),D两点,与y轴交于点B,抛物线的对称轴与x轴交于点C(1,0),点E,P为抛物线的对称轴上的动点.(1)求该抛物线的解析式;(2)当BE+DE最小时,求此时点E的坐标;(3)若点M为对称轴右侧抛物线上一点,且M在x轴上方,N为平面内一动点,是否存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)由对称轴﹣=1,可知b=﹣2a,再将A(3,0)代入y=ax2﹣2ax+3,即可求函数的解析式;(2)连接BA交对称轴于点E,连接DE,当A、B、E三点共线时,BE+DE的值最小,又由∠OAB=45°,可求CE=2,则E(1,2);(3)设P(1,t),当AM为正方形的对角线时,PM=P A,过M点作MG⊥PC交于G,证明△PGM≌△ACP(AAS),可求M(1+t,t+2),再将M代入函数解析式即可求M(2,3);当∠P AM=90°时,AM=AP,过A点作AH⊥x 轴,过M点作MH⊥AH交于点H,同理可证△MAH≌△P AC(AAS),求出M(3+t,2),再将M代入函数解析式即可求M(2+,2);当∠PMA=90°时,PM=AM,过点M作TS∥x轴交对称轴于点T,过点A作AS⊥ST交于点S,同理可得△MPT≌△AMS(AAS),求出M(2+t,1+t),再将M代入函数解析式即可求M(,).【解答】解:(1)∵抛物线的对称轴与x轴交于点C(1,0),∴﹣=1,∴b=﹣2a,∴y=ax2﹣2ax+3,将A(3,0)代入y=ax2﹣2ax+3,∴9a﹣6a+3=0,解得a=﹣1,∴y=﹣x2+2x+3;(2)令y=0,则﹣x2+2x+3=0,解得x=﹣1或x=3,∴D(﹣1,0),令x=0,则y=3,∴B(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,连接BA交对称轴于点E,连接DE,∵A、D关于直线x=1对称,∴DE=AE,∴BE+DE=AE+BE≥AB,当A、B、E三点共线时,BE+DE的值最小,∵OA=OB=3,∴∠OAB=45°,∴AC=CE,∵AC=2,∴CE=2,∴E(1,2);(3)存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形,理由如下:设P(1,t),当AM为正方形的对角线时,如图2,PM=P A,过M点作MG⊥PC交于G,∵∠MP A=90°,∴∠GPM+∠CP A=90°,∵∠GPM+∠GMP=90°,∴∠CP A=∠GMP,∵PM=AP,∴△PGM≌△ACP(AAS),∴GM=CP=t,PG=AC=2,∴M(1+t,t+2),∴t+2=﹣(t+1)2+2(t+1)+3,解得t=﹣2或t=1,∵M点在x轴上方,∴t=1,∴M(2,3);当∠P AM=90°时,AM=AP,如图3,过A点作AH⊥x轴,过M点作MH⊥AH交于点H,同理可证△MAH≌△P AC(AAS),∴AH=AC=2,CP=MH=﹣t,∴M(3+t,2),∴2=﹣(t+3)2+2(t+3)+3,解得t=﹣2+或t=﹣2﹣,∴M(2+,2)或(2﹣,2)(舍去);当∠PMA=90°时,PM=AM,如图4,过点M作TS∥x轴交对称轴于点T,过点A作AS⊥ST交于点S,同理可得△MPT≌△AMS(AAS),∴TP=SM,SA=MT,∴M(2+t,1+t),∴1+t=﹣(2+t)2+2(2+t)+3,解得t=﹣3+或t=﹣3﹣(舍去),∴M(,);综上所述:M点坐标为(2,3)或(2+,2)或(,).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,正方形的性质,三角形全等的判定及性质,分类讨论,数形结合是解题的关键.。
人教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.下列方程是一元二次方程的是( )A .222x +=B .221x y -=C .20x =D .11x x=- 3.若关于x 的方程20x m -=有实数根,则m 的取值范围是( )A .0m <B .0m ≤C .0m >D .0m ≥4.二次函数y =﹣3(x +1)2﹣7有( )A .最大值﹣7B .最小值﹣7C .最大值7D .最小值75.将抛物线2y x =向右平移1个单位,再向上平移3个单位后,它的解析式为( )A .2(1)3y x =++B .2(1)3y x =-+C .2(1)3y x =+-D .2(1)3y x =--6.下列事件是随机事件的是( )A .购买一张福利彩票就中奖B .有一名运动员奔跑的速度是50米/秒C .在一个标准大气压下,水加热到100C ︒会沸腾D .在一个仅装有白球和黑球的袋中摸球,摸出红球7.如图,AB 是⊙O 的直径,AC =BC ,则⊙A 的度数等于( )A .30°B .45°C .60°D .90°8.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是黄球的概率为( )A .12 B .15 C .110 D .3109.已知圆心角是60︒,半径为30的扇形的弧长为( )A .5πB .10πC .20πD .25π10.已知圆心角为120︒的扇形的弧长为6π,该扇形的面积为( )A .12πB .21πC .27πD .36π11.已知直线y ax b =+经过一、二、三象限,则抛物线2y ax bx =+大致是( )A .B .C .D .12.如图,O 的半径为5,3OP =,则经过点P 的弦长可能是( )A .3B .5C .9D .12二、填空题 13.一元二次方程()()320x x --=的根是_____.14.抛物线y =﹣x 2+2x ﹣5与y 轴的交点坐标为_____.15.数学老师将全班分成4个小组开展合作学习,采用随机抽签方式确定2个小组进行展示活动,则第1小组和第2小组被抽到的概率是_________.16.如图,ABC 的内切圆⊙O 分别与AB ,AC ,BC 相切于点D ,E ,F .若90C ∠=︒,6AC =,8BC =,则⊙O 的半径等于________.17.如图,在边长为2的正六边形ABCDEF 中,P 是ED 的中点,则AP =_______.18.如图,把ABC 绕点C 顺时针旋转某个角度α得到A B C ''',30A ∠=︒,170∠=︒,则旋转角α的度数为______.三、解答题19.用指定方法解方程:(1)2250--=(公式法);x x(2)2-=(配方法).22x x20.(1)画图:图⊙为正方形网格,画出ABC绕点O顺时针...旋转90︒后的图形.(2)尺规作图:在图⊙中作出四边形ABCD关于点O对称的图形(不写作法,保留作图痕迹,用黑色笔将作图痕迹涂黑).21.已知y是关于x的二次函数,x,y满足下表观察上表(不用求解析式),直接写出该函数如下性质:(1)图象函数名称________,开口方向_______;(2)对称轴表达式_________;(3)顶点坐标_________;(4)y随x的变化情况___________,___________.22.如图1,点P 表示我国古代水车的一个盛水筒.如图2,当水车工作时,盛水筒的运行路径是以轴心O 为圆心,5m 为半径的圆.若O 被水面截得的弦AB 长为8m ,求水车工作时,盛水筒在水面以下的最大深度.23.如图是一张长24cm ,宽12cm 的矩形铁皮,将其剪去一个小正方形和两个矩形,剩余部分(阴影部分)恰好可制成一个有盖的长方体铁盒.(1)a = ;(2)若铁盒底面积是80cm 2,求剪去的小正方形边长.24.某电脑销售店电脑原价为每台5000元,元旦期间开展了促销活动,将原价经过两次下调后,促销价为每台4050元.(1)求平均每次下调的百分率;(2)某校计划以促销价购买100台电脑.该店还给予以下两种优惠方案以供选择:⊙打9.8折销售;⊙不打折,送12个月的免费保修费,免费保修费为每台每月10元.请问哪种方案更优惠?25.如图,ABC 中,90C ∠=︒,BD 平分ABC ∠,点O 是边AB 上一点,以点O 为圆心,以OB 为半径作O ,O 恰好经过点D .(1)求证:直线AC 是O 的切线;(2)若30A ∠=︒,2OB =,求线段CD 的长.26.如图,在平面直角坐标系中,已知点B的坐标为(﹣2,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊙AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.参考答案1.D【解析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键. 2.C【分析】根据一元一次方程的定义依次判断即可.【详解】解:A、该方程是一元一次方程,故本选项不符合题意;B、该方程是二元二次方程,故本选项不符合题意;C、该方程是一元二次方程,故本选项符合题意;D、该方程分式方程,故本选项不符合题意.故选:C.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(a,b,c为常数且a≠0).3.D【分析】用直接开平方法解方程,然后根据平方根的意义求得m的取值范围.【详解】解:20-=x m2=x m⊙关于x的方程20-=有实数根x m⊙0m≥故选:D【点睛】本题考查直接开平方法解方程,注意负数没有平方根是本题的解题关键.4.A【分析】根据顶点式直接写出答案即可.【详解】二次函数y =﹣3(x +1)2﹣7中,k =﹣3<0,⊙二次函数y =﹣3(x +1)2﹣7,当x =﹣1时有最大值﹣7,故选:A .【点睛】本题考查了二次函数的最值,解题的关键是了解二次函数的顶点式,难度不大.5.B【分析】根据二次函数图象的平移方法即可求解.【详解】解:将抛物线2y x 图象向右平移1个单位,再向上平移3个单位,所得图象解析式为2(1)3y x =-+故选择:B .【点睛】此题主要考查二次函数的平移,解题的关键是熟知二次函数平移的方法.6.A【分析】根据随机事件的定义,随机事件:是指在一定条件下可能发生也可能不发生的事件,进行一一排查即可.【详解】解:A. 购买一张福利彩票就中奖,是随机事件,故A 正确;B. 有一名运动员奔跑的速度是50米/秒,是确定事件中不可能事件,故B 不正确;C. 在一个标准大气压下,水加热到100C ︒会沸腾,是确定事件中必然事件,故C 不正确;D. 在一个仅装有白球和黑球的袋中摸球,摸出红球,是确定事件中不可能事件,故D 不正确;故选择:A .【点睛】本题考查随机事件,掌握随机事件的定义,随机事件与确定性事件相比,是不确定的,因为对这种事件不能确定它是发生,还是不发生,即对事件的结果无法确定.7.B【分析】先由AB 是⊙O 的直径得出⊙C=90°,再根据AC=BC ,得出⊙ABC 是等腰直角三角形,由此求出⊙A=45°.【详解】⊙AB 是⊙O 的直径,⊙⊙C=90°,⊙AC=BC,⊙⊙ACB为等腰直角三角形,⊙⊙A=45°.故选B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.同时考查了等腰直角三角形的性质.8.D【分析】根据概率计算公式,直接用黄色小球的个数除以总个数计算即可得结果.【详解】解:搅匀后任意摸出一个球,是黄球的概率为33 23510=++,故选:D.【点睛】本题考查了概率的计算,牢记概率的计算公式是解题的关键.9.B【分析】直接利用弧长公式计算即可得到答案.【详解】扇形圆心角为60︒,半径为30∴该扇形的弧长603010 180180n rlπππ⨯⨯===故选:B.【点睛】本题考查了扇形弧长的计算,熟练掌握弧长公式是解题关键.10.C【分析】设扇形的半径为r.利用弧长公式构建方程求出r,再利用扇形的面积公式计算即可.【详解】解:设扇形的半径为r.由题意:120180rπ=6π,⊙S 扇形=21209360π⨯=27π, 故选择:C .【点睛】本题考查扇形的弧长公式,面积公式等知识,解题的关键是学会构建方程解决问题,属于中考常考题型. 11.A【分析】由直线y ax b =+经过一、二、三象限,可确定00a b >>,,由0a >,抛物线开口向上,可判断D 不正确,由00a b >>,抛物线的对称轴x≠0,可判断C 不正确,由x=02b a-<抛物线对称轴在y 轴左侧可判断D 不正确,A 正确. 【详解】解:⊙直线y ax b =+经过一、二、三象限,⊙00a b >>,,⊙0a >,抛物线开口向上,则D 不正确,⊙00a b >>,,⊙抛物线的对称轴x≠0,则C 不正确,由x=02b a -<, 抛物线对称轴在y 轴左侧,则D 不正确,A 正确,故选择:A .【点睛】本题考查一次函数经过象限确定抛物线的位置,掌握抛物线的性质,特别是抛物线的性质与系数a b ,的关系是解题关键.12.C【分析】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 是垂直时,弦最短为8;判断即可.【详解】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 垂直时,根据垂径定理,得半弦长= ,所以最短弦为8;所以符合题意的弦长为8到10,【点睛】本题考查了直径是最长的弦,垂径定理,熟练运用分类思想,垂径定理,勾股定理是解题的关键.13.123,2==x x【分析】利用因式分解法把方程化为x -3=0或x -2=0,然后解两个一次方程即可.【详解】解:30x -=或20x -=,所以123,2==x x .故答案为123,2==x x .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.14.(0,﹣5)【分析】要求抛物线与y 轴的交点,即令x =0,解方程.【详解】解:把x =0代入y =﹣x 2+2x ﹣5,求得y =﹣5,则抛物线y =﹣x 2+2x ﹣5与y 轴的交点坐标为(0,﹣5).故答案为(0,﹣5).【点睛】本题考查了抛物线与y 轴的交点坐标,正确掌握令0x =或令0y =是解题的关键.15.16【分析】首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【详解】解:如图所示:由图可知,共有12种可能结果,其中第1小组和第2小组被抽的结果有2种,所以第1小组和第2小组被抽到的概率为21= 126.故答案为:16.【点睛】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.16.2【分析】连接OE,OD,OF,由切线长定理可得AE=AD,BF=BD,证明四边形OECF是正方形,根据勾股定理求出AB的长,然后根据AD+BD=AB列方程求解即可.【详解】解:连接OE,OD,OF,设⊙O的半径为r,⊙⊙O分别与边AB、AC、BC相切于点D、E、F,⊙OE⊙AC,OD⊙AB,OF⊙BC,AE=AD,BF=BD,⊙⊙OEC=⊙OFC=90°,⊙⊙C=90°,⊙四边形OECF是矩形,⊙OE=OF,⊙四边形OECF是正方形,⊙EC=FC=r,⊙AE=AD=6-r,BF=BD=8-r,⊙⊙C=90°,6AC=,8BC=,⊙AB=10,⊙AD+BD=AB,⊙6-r+8-r=10,⊙r=2.故答案为:2.【点睛】此题考查了三角形的内切圆的性质、正方形的判定与性质、切线长定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.17【分析】连接AE,过点F作FH⊙AE,根据正六边形的内角和得出⊙AFE=⊙DEF=120°,再根据等腰三角形的性质可得⊙FAE =⊙FEA=30°,得出⊙AEP=90°,由直角三角形的性质和勾股定理求得FH,AE,再利用勾股定理即可得出AP.【详解】解:如图,连接AE,过点F作FH⊙AE,⊙六边形ABCDEF是正六边形,⊙AB=BC=CD=DE=EF=AF=2,⊙AFE=⊙DEF=120°,⊙⊙FAE=⊙FEA=30°,⊙⊙AEP=90°,⊙FH=1AF=1,2⊙AH,⊙AE=2AH=⊙P是ED的中点,DE=1,⊙EP=12⊙AP【点睛】本题考查了正多边形、勾股定理及等腰三角形的性质等知识,掌握相关图形的性质并作辅助线构造出直角三角形是解题的关键.18.40°【分析】根据旋转的性质可得30A A '∠=∠=︒,再根据外角的性质求得ACA '∠,从而得到结果.【详解】由旋转得,30A A '∠=∠=︒,又⊙170A ACA ''∠=∠+∠=︒,⊙1703040ACA A ''∠=∠-∠=︒-︒=︒,即40α∠=︒.故答案为:40°.【点睛】本题考查了旋转的性质及外角的性质,明确旋转角,熟练掌握旋转性质是解题的关键.19.(1)11x =21x =(2)1x =2x =【分析】(1)先确定原方程各项系数的值,再代入求根公式即可得到方程的解;(2)方程整理后,再移项,把二次项系数化为1,最后运用配方法求解即可.【详解】解:(1)2250x x --=⊙1a =,2b =-,5c =-,⊙441(5)240∆=-⨯⨯-=>,则1x ==⊙11x =21x =.(2)222x x -= 把原方程化为2112x x -=. 配方,得2221111244x x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭, 即2117416x ⎛⎫-= ⎪⎝⎭.由此可得14x -=.1x =2x = 【点睛】此题主要考查了一元二次方程的解法,熟练地掌握一元二次方程的解法特别是因式分解法解一元二次方程,可以大大降低计算量.20.(1)见解析;(2)见解析.【分析】(1)连结OA 、OB 、OC ,将OA 、OB 、OC 绕着点O 顺时针旋转90°得OD ,OE ,OF ,顺次连接即可;(2)连结AO 、BO 、CO 、DO 并延长,在延长线上截取A′O=AO ,B′O=BO ,C′O=CO ,D′O=DO ,顺次连接即可.【详解】解:(1)连结OA 、OB 、OC ,将OA 、OB 、OC 绕着点O 顺时针旋转90°得OD ,OE ,OF ,顺次连结DE ,EF ,FD ,如图⊙,则DEF 为所求;(2)连结AO 、BO 、CO 、DO 并延长,在延长线上截取A′O=AO ,B′O=BO ,C′O=CO ,D′O=DO ,顺次连结A′B′、B′C′、C′D′、D′A ',如图⊙,四边形A B C D ''''为所求.【点睛】本题考查旋转作图,中心对称作图问题,掌握旋转作图与中心对称作图的方法与步骤是解题关键.21.(1)抛物线,向下;(2)1x =;(3)(1,1);(4)当1x <时,y 随x 的增大而增大;当1x >时,y 随x 的增大而减小.【分析】根据已知表格和二次函数的性质依次判断即可;【详解】(1)因为y 是关于x 的二次函数,⊙图像名称是抛物线,观察x ,y 的值可知抛物线开口方向向下;故答案是:抛物线,向下;(2)由表可知,图象与x 轴交于点()1,0-,()3,0,故对称轴1312x -+==; 故答案是1x =;(3)因为对称轴为1x =,所以顶点坐标为(1,1);故答案是(1,1);(4)因为对称轴为1x =且开口向下,所以当1x <时,y 随x 的增大而增大;当1x >时,y 随x 的增大而减小.故答案是:当1x <时,y 随x 的增大而增大;当1x >时,y 随x 的增大而减小.【点睛】本题主要考查了二次函数的图像性质,准确分析判断是解题的关键.22.水车工作时,盛水桶在水面以下的最大深度为2m .【分析】如图:过O 点作半径⊥OD AB 于E ,则5OD =,由垂径定理得4AE BE ==,在利用勾股定理可求得3OE =,水深DE OD OE =-,即可求解.【详解】如图:过O 点作半径⊥OD AB 于E118422AE BE AB ∴===⨯=在Rt AEO △中,3OE ==532ED OD OE ∴=-=-=∴水车工作时,盛水桶在水面以下的最大深度为2m【点睛】本题考查了垂径定理的,解题关键在于作辅助线利用勾股定理计算.23.(1)12;(2)2cm【分析】(1)根据题意找到等量关系列出方程组,转化为一元二次方程求解即可;(2)根据题意,得mn =80,结合(1)转化为一元二次方程求解即可.【详解】解:(1)设底面长为mcm ,宽为ncm ,正方形的边长为xcm ,根据题意得:2=12=24x n a x m x m a +⎧⎪=+⎨⎪++⎩①②③,由⊙⊙得2a =24,解得a =12(cm ),故答案为:12cm ;(2)根据题意,得mn =80,由2=12=24x n a x m x m a +⎧⎪=+⎨⎪++⎩①②③,得由⊙得,n =12﹣2x ,把a =12代入⊙得m =12﹣x ,再把m 和n 代入mn =80中,得(12﹣x )(12﹣2x )=80,解得x =2或x =16(舍去).答:剪去的小正方形边长为2cm .【点睛】本题考查了矩形的性质,正方形的性质,方程组,一元二次方程的解法,准确理解剪图的意义,把问题转化为方程组和一元二次方程问题求解是解题的关键.24.(1)平均每次降价的百分率为10%;(2)方案⊙更优惠.【分析】(1)设平均每次降价的百分率是x ,根据题意列方程得25000(1)4050x -= 解方程即可;(2)方案⊙的电脑款是:9.8405010010⨯⨯(元),方案⊙的电脑款是:40501001001012⨯-⨯⨯(元)计算结果比较即可. 【详解】解:(1)设平均每次降价的百分率是x ,根据题意列方程得25000(1)4050x -= ,2(1)0.81x -=, 10.9x -=±,解得10.110%x ==,2 1.9x =(不合题意,舍去),答:平均每次降价的百分率为10% ;(2)方案⊙的电脑款是:9.8405010039690010⨯⨯=(元), 方案⊙的电脑款是:40501001001012393000⨯-⨯⨯=(元), 396900元393000>元,答:方案⊙更优惠.【点睛】本题考查降价率与方案设计问题应用题,掌握减价率一元二次方程应用题的解法,会根据方案列出数式并计算进行决策.25.(1)证明见解析;(2)CD =【分析】(1)连接OD 由BD 平分ABC ∠得DBC DBO ∠=∠ ,由圆的半径OD OB =得ODB DBA ∠=∠ ,利用传递性ODB DBC ∠=∠,利用内错角相等,得//OD BC 利用平行线性质90ODA C ∠=∠=︒即可;(2)在Rt ADO ∆中,30A ∠=︒可得24AO DO ==,可求426AB =+=,132BC AB ==,设DC x =,则2DB x = 由勾股定理222DC BC BD +=,即2294x x +=可,求CD =【详解】(1)证明:连接OD , BD 平分ABC ∠,DBC DBO ∴∠=∠ ,OD OB =,ODB DBA ∴∠=∠ ,ODB DBC ,//OD BC ∴ ,90ODA C ∴∠=∠=︒,∴直线AC 是O 的切线;(2)解:在Rt ADO ∆中,30A ∠=︒,24AO DO ∴== ,426AB ∴=+=,132BC AB ==, 在Rt BCD ∆中,903060ABC ∠=︒-︒=︒,30DBC DBA ∴∠=∠=︒,设DC x =,则2DB x = ,222DC BC BD +=,即2294x x +=,解得x =由x>0,即CD =【点睛】本题考查圆的切线,角平分线,等腰三角形,平行线的判定,含30°角直角三角形的性质,勾股定理,一元二次方程及其解法,本题难度不大,综合运用知识多,是基础知识复习的好题.26.(1)点A 、C 的坐标分别为(8,0)、(0,﹣8);(2)y =12x 2﹣3x ﹣8;(3)最大值为P (4,﹣12)【分析】(1)根据B 点坐标及OA =OC =4OB 结合图象即可确定A 点,C 点的坐标;(2)由(1)可将抛物线的表达式写成交点式,然后代入C 点坐标即可求出解析式;(3)求出直线CA 的解析式,过点P 作y 轴的平行线交AC 于点H ,求出⊙PHD =⊙OCA =45°,设点P (a ,12a 2﹣3a ﹣8),则点H (a ,a ﹣8),写出PD 的表达式根据二次函数的性质求最值即可.【详解】解:(1)⊙B 的坐标为(﹣2,0),⊙OB =2,⊙OA =OC =4OB =8,故点A 、C 的坐标分别为(8,0)、(0,﹣8);(2)由(1)知,抛物线的表达式可写为:y =a (x +2)(x ﹣8)=a (x 2﹣6x ﹣16),把C (0,﹣8)代入得:﹣16a =﹣8,解得:a =12,故抛物线的表达式为:y =12x 2﹣3x ﹣8;(3)⊙直线CA 过点C ,⊙设其函数表达式为:y =kx ﹣8,将点A 坐标代入上式并解得:k =1,故直线CA 的表达式为:y =x ﹣8,过点P 作y 轴的平行线交AC 于点H ,⊙OA =OC =8,⊙⊙OAC =⊙OCA =45°,⊙PH ⊙y 轴,⊙⊙PHD =⊙OCA =45°,设点P (a ,12a 2﹣3a ﹣8),则点H (a ,a ﹣8),⊙PD =HP sin⊙PHD a ﹣8﹣12a 2+3a +8)=2+= 24)a -+⊙当a =4时,其最大值为P (4,﹣12).【点睛】本题主要考查二次函数的综合题,熟练掌握待定系数法求解析式及二次函数的性质结合三角函数是解题的关键.。
2021年苏科版数学九年级上册期末测试 学校________ 班级________ 姓名________ 成绩________ 一、选择题 1.下列四组图形中,相似图形为( ) A. B.C .D.2.某鞋店先后卖出7双某品牌的运动鞋,其尺码依次为(单位:码):40,39,40,41,42,41,41,则这组数据的众数是( )A. 39B. 40C. 41D. 423.若=2x 是一元二次方程230x x a -+=的一个根,则a 的值是( )A. 2B. –2C. 1D. –14.如图,在矩形ABCD 中,4AB =,3AD =,若以A 为圆心,4为半径作⊙A .下列四个点中,在⊙A 外的是()A. 点AB. 点BC. 点CD. 点D5.如图,在ABC ∆中,90ACB ∠=︒,1sin 2A =,CD 平分ACB ∠,则BDC ∠的度数是( )A. 45ºB. 60ºC. 70ºD. 75º6.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为6,则ADE ∆的周长是( )A. 933+B. 1263+C. 1833+D. 1863+7.如图,护林员在离树8m 的A 处测得树顶B 的仰角为45°,已知护林员的眼睛离地面的距离AC 为1.6m ,则树的高度BD 为( )A. 8mB. 9.6mC. (42+1.6)mD. (82+1.6)m 8.如图,二次函数223y x x =--的图像与x 轴交于A 、B 两点,与y 轴交于点C ,则下列说法错误..的是( )A. 4AB =B. 45ABC ∠=︒C. 当0x >时,3y <-D. 当1x >时,y 随x 的增大而增大9.我们把宽与长的比值等于黄金比例512的矩形称为黄金矩形.如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AE AD等于( )A. 22B. 512-C. 352 D. 512+ 10.如图,二次函数2(1)y a x =-的图像经过点(1,4)A -,与y 轴交于点B ,C 、D 分别为x 轴、直线1x =上的动点,当四边形ABCD 的周长最小时,CD 所在直线对应的函数表达式是( )A. 332y x =-B. 31y x =-C. 8455y x =-D. 513y x =- 二、填空题11.有一组数据:1,0,–1,3,2,它们的平均数是___________.12.二次函数23y x =-的顶点坐标为_____________.13.若'''ABC A B C ∆∆,2''AB A B =,ABC ∆的周长为4,则'''A B C ∆的周长为_______.14.一个圆锥的母线长为5cm ,底面圆半径为3 cm ,则这个圆锥的侧面积是____ cm ².(结果保留π). 15.如图,一个圆形飞镖板被等分为四个圆心角相等的扇形.假设飞镖投中游戏板上的每一个点都是等可能的(若投中圆的边界、图中的分割线或没有投中,则重投1次),则任意投掷一次,飞镖投中阴影部分的概率是_______.16.如图,⊙O 弦AC 与半径OB 交于点D ,//BC OA ,AO AD =,则C ∠的度数为______º.17.如图,点A 、B 、C 为正方形网格纸中的3个格点,则tan BAC ∠的值是________.18.如图,用同样长度的篱笆分别围成一个正方形ABCD 和矩形AEFG ,若图中矩形BCHE 的面积比矩形DGFH 的面积多100m 2,则矩形AEFG 的长比宽多_______m.三、解答题19.计算:2sin 45tan 30cos302︒+︒︒20.解方程:2(1)62x x -=+.21.若二次函数2y x bx c =++图像经过(1,0)A -,(3,4)B -两点,求b 、c的值.22.在一个不透明的口袋中有2个红球和2个黄球,4个球除颜色外都相同.(1)搅匀后从中任意摸出1个球,摸到红球的概率为 ; (2)搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出一个球,请用列表或画树状图的方法求出两次都摸到红球的概率.23.某校课程中心为了了解学生对开设3D 打印、木工制作、机器人和电脑编程四门课程的喜爱程度,随机调查了部分学生,每人只能选一项最喜爱的课程.图①是四门课程最喜爱人数的扇形统计图,图②是四门课程男、女生最喜爱人数的条形统计图.(1)求图①中m 的值,补全图②中的条形统计图,标上相应的人数;(2)若该校共有1800名学生,则该校最喜爱3D 打印课程的学生约有多少人?24.如图,在正方形网格纸中,ABC ∆的三个顶点都在格点上.以点O 为位似中心,把ABC ∆按相似比2:1放大,得到对应的'''A B C ∆.(1)请在第一象限内画出'''A B C ∆';设(,)D a b 为线段AC 上一点,则点D 经过上述变换后得到的对应点'D 的坐标为 (用含a 、b 的式子表示);(2)'''A B C ∆的面积为 .25.如图,一艘轮船在A 处测得灯塔P 在船的北偏东30º的方向,轮船沿着北偏东60º的方向航行16km 后到达B 处,这时灯塔P 在船的北偏西75º的方向.求灯塔P 与B 之间的距离(结果保留根号).26.如图,AC 、BD 是以AB 为直径的半圆的两条切线,AD 与半圆交于点E ,连接CE ,过点E 作EF CE ⊥,交AB 于点F .(1)若弧AE 的度数为140º,求D ∠的度数;(2)求证: ACE BFE ∆~∆.27.如图,已知二次函数23y x bx =-++的图像与x 轴交于A 、C 两点(点A 在点C 的左侧),与y 轴交于点B ,且OA OB =.(1)求线段AC 的长度:(2)若点P 在抛物线上,点P 位于第二象限,过P 作PQ AB ⊥,垂足为Q .已知2PQ =,求点P 的坐标.28.如图①,在ABC ∆中,90ACB ∠=︒,6BC =cm ,动点P 以2cm/s 的速度在ABC ∆的边上沿A B →的方向匀速运动,动点Q 在ABC ∆的边上沿C A →的方向匀速运动,P 、Q 两点同时出发,5s 后,点P 到达终点B ,点Q 立即停止运动(此时点Q 尚未到达点A ).设点P 运动的时间为t (s),APQ ∆的面积为S (cm 2),S 与t 的函数图像如图②所示.(1)图①中AC = cm ,点Q 运动速度为 cm/s;(2)求函数S 的最大值;(3)当t 为何值时,以A 、P 、Q 为顶点的三角形与ABC ∆相似?请说明理由.答案与解析一、选择题1.下列四组图形中,相似图形为( ) A. B. C.D.【答案】B【解析】【分析】 根据相似多边形的判定,对应角相等且对应边成比例即可解题.【详解】解:A 图形一个是等边三角形一个是等腰三角形,所以不是相似三角形;B 图形两个都是正方形,是相似图形;C 图形一个是正方形,一个是菱形,不是相似图形;D 图形一个是正方形,一个是长方形,不是相似图形;故选B.【点睛】本题考查了相似多边形的判定,属于简单题,熟悉相似多边形的判定条件是解题关键. 2.某鞋店先后卖出7双某品牌的运动鞋,其尺码依次为(单位:码):40,39,40,41,42,41,41,则这组数据的众数是( )A. 39B. 40C. 41D. 42【答案】C【解析】【分析】众数是指数据中出现次数最多的数据,一组数据的众数可以有多个.【详解】解:这7个数据中41出现的次数最多,出现了3次,所以这组数据的众数是41,故选C.【点睛】本题考查了数据的统计,众数的识别,属于简单题,熟悉众数的概念是解题关键.3.若=2x 是一元二次方程230x x a -+=的一个根,则a 的值是( )A. 2B. –2C. 1D. –1【答案】A【解析】【分析】将x=2代入方程即可求解. 【详解】解:将x =2代入一元二次方程230x x a -+=得,a=2,故选A.【点睛】本题考查了一元二次方程的求解,属于简单题,熟悉代入求值的方法是解题关键.4.如图,在矩形ABCD 中,4AB =,3AD =,若以A 为圆心,4为半径作⊙A .下列四个点中,在⊙A 外的是()A. 点AB. 点BC. 点CD. 点D【答案】C【解析】【分析】 连接AC,利用勾股定理求出AC 的长度,即可解题.【详解】解:如下图,连接AC,∵圆A 的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D 在圆A 内,B 在圆上,C 在圆外,故选 C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC 的长是解题关键.5.如图,在ABC ∆中,90ACB ∠=︒,1sin 2A =,CD 平分ACB ∠,则BDC ∠的度数是( )A. 45ºB. 60ºC. 70ºD. 75º 【答案】D【解析】【分析】 利用特殊的三角函数值求出∠A=30°,∠B=60°,再利用角平分线性质得∠ACD=∠BCD=45°,最后利用三角形内角和即可解题.【详解】解:在直角三角形ABC 中,∵90ACB ∠=︒,1sin 2A =, ∴∠A=30°,∠B=60°, 又∵CD 平分ACB ∠,∴∠ACD=∠BCD=45°, ∠BDC=180°-60°-45°=75°, 故选D.【点睛】本题考查了特殊的三角函数值,角平分线的性质,三角形的内角和,属于简单题,熟悉特殊三角函数值是解题关键.6.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为6,则ADE ∆的周长是( )A. 933+B. 1263+C. 1833+D. 1863+【答案】D【解析】【分析】利用正六边形内接于圆O,证明△AED是特殊的直角三角形,再利用三角函数值即可解题.【详解】解:在正六边形ABCDEF中,每个内角都等于120°,∴∠F=120°,AF=EF,∴∠FAE=∠FEA=30°,∴∠AED=90°,∵正六边形ABCDEF内接于⊙O,∴∠ADE=60°,即△ADE是特殊的直角三角形,AD=2DE,(30°所对直角边等于斜边一半)∵⊙O的半径为6,∴AD=12,DE=6,AE=63,∆∴ADE的周长是1863+, 故选D. 【点睛】本题考查了正六边形的性质,直角三角函数的应用,中等难度,证明△AED是特殊的直角三角形,找到边长之间的关系是解题关键.7.如图,护林员在离树8m的A处测得树顶B的仰角为45°,已知护林员的眼睛离地面的距离AC为1.6m,则树的高度BD为()A. 8mB. 9.6m2+1.6)m2+1.6)m【答案】B【解析】【分析】过点C作CE⊥BD于E,证明△CEB是等腰直角三角形,利用矩形性质即可解题.【详解】解:过点C作CE⊥BD于E,∵∠BCE=45°,∴△CEB是等腰直角三角形,∴CE=BE=8,四边形ACED 是矩形,∴AC=DE=1.6,∴BD=8+1.6=9.6米,故选B.【点睛】本题考查了等腰直角三角形和矩形的性质,属于简单题,正确作辅助线是解题关键.8.如图,二次函数223y x x =--的图像与x 轴交于A 、B 两点,与y 轴交于点C ,则下列说法错误..的是( )A. 4AB =B. 45ABC ∠=︒C. 当0x >时,3y <-D. 当1x >时,y 随x 的增大而增大【答案】C【解析】【分析】 根据已知条件求出抛物线与x 轴的交点坐标,对称轴,利用开口向上时的增减性即可解题.【详解】解:令y=0,即2230x x --=,解得:x 1=3,x 2=-1,∵二次函数223y x x =--的图像与x 轴交于A 、B 两点,与y 轴交于点C , ∴A(-1,0),B(3,0),C(0,-3),∴AB=4,A 项正确,∴△COB 是等腰直角三角形,∴∠ABC=45°,B 项正确,∵抛物线的对称轴为直线x=1,开口向上,∴当1x >时,y 随x 的增大而增大,D 项正确,当0x >时,抛物线对应的图像为y 轴右侧,即函数值能取到最小值,y ≥-4,C 项错误,故选C.【点睛】本题考查了二次函数的图像和性质,中等难度,熟悉二次函数的性质,会求函数与x 轴的交点坐标是解题关键.9.我们把宽与长的比值等于黄金比例51-的矩形称为黄金矩形.如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AE AD等于( )A. 22B. 512C. 352 D. 512【答案】B【解析】【分析】利用黄金矩形的定理求出AD AB =51-,再利用矩形的性质得1AE AB BE AB AD AB AD AD AD AD --===-,代入求值即可解题. 【详解】解:∵矩形ABCD 中,AD=BC,根据黄金矩形的定义可知AD AB =512, ∵BE BC =,∴511151AE AB BE AB AD AB AD AD AD AD ---===-=-=- 故选B【点睛】本题考查了黄金矩形这一新定义,属于黄金分割概念的拓展,中等难度,读懂黄金矩形的定义,表示出边长比是解题关键.10.如图,二次函数2(1)y a x =-的图像经过点(1,4)A -,与y 轴交于点B ,C 、D 分别为x 轴、直线1x =上的动点,当四边形ABCD 的周长最小时,CD 所在直线对应的函数表达式是( )A. 332y x =-B. 31y x =-C. 8455y x =-D. 513y x =- 【答案】D【解析】【分析】 利用对称性和两点之间线段最短,作出辅助线,将A 代入求出函数解析式,进而求出G(3,4),B(0,1),H (0,-1),待定系数法即可求出直线解析式.【详解】解:如下图,取A 关于抛物线的对称轴的对应点G ,B 关于x 轴的对称点H,连接HG ,与抛物线的对称轴交于点D,与x 轴的交点为点C,连接AD,CD,BC,利用对称的性质可知DA=DG ,CB=CH,∵两点之间线段最短,并且此时H,C,D,G 四点共线,∴此时的四边形ABCD 是周长最小的,将()1,4A -代入()21y a x =-中得,a=1, ∴抛物线的解析式为()21y x =-,∴抛物线的对称轴为直线x=1,∴G(3,4),B(0,1),H (0,-1)设直线CD 的解析式为y=kx+b,(k ≠0)代入G(3,4), H (0,-1)得 431k b b =+⎧⎨-=⎩解得:5 31kb⎧=⎪⎨⎪=-⎩,∴直线CD的解析式为513y x=-故选D.【点睛】本题考查了二次函数的图像和性质,待定系数法求直线解析式,对称的实际应用,难度较大,首先利用对称性作出辅助线,再用待定系数法求解析式是解题关键.二、填空题11.有一组数据:1,0,–1,3,2,它们的平均数是___________.【答案】1【解析】【分析】根据平均数计算公式即可解题.【详解】解:平均数=1013215+-++=,所以它们的平均数是1.【点睛】本题考查了平均数的计算,属于简单题,熟悉平均数的计算方法是解题关键.12.二次函数23y x=-的顶点坐标为_____________.【答案】(0,-3).【解析】【分析】利用顶点式即可直接找到顶点坐标.【详解】解:由顶点式可知23y x=-的顶点为(0,-3).【点睛】本题考查了二次函数的顶点坐标,属于简单题,熟悉二次函数的性质是解题关键.13.若'''ABC A B C∆∆,2''AB A B=,ABC∆的周长为4,则'''A B C∆的周长为_______.【答案】2【解析】【分析】利用相似三角形的周长比等于相似比即可解题.【详解】解:∵'''ABC A B C ∆~∆,2''AB A B =,∴2:1AB A B ''=:,∵ABC ∆的周长为4,∴'''A B C ∆的周长为2.【点睛】本题考查了相似三角形的性质,属于简单题,熟悉相似三角形的周长比等于相似比是解题关键. 14.一个圆锥的母线长为5cm ,底面圆半径为3 cm ,则这个圆锥的侧面积是____ cm ².(结果保留π).【答案】15π【解析】【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】解:圆锥的侧面积=π×3×5=15πcm 2故答案为:15π.【点睛】本题考查圆锥侧面积公式的运用,掌握公式是关键.15.如图,一个圆形飞镖板被等分为四个圆心角相等的扇形.假设飞镖投中游戏板上的每一个点都是等可能的(若投中圆的边界、图中的分割线或没有投中,则重投1次),则任意投掷一次,飞镖投中阴影部分的概率是_______.【答案】12【解析】【分析】 将阴影部分进行平移,利用阴影部分的面积占总面积的一半即可解题.【详解】解:由题可知,图形被四等分,各圆心角的度数等于90°, 所以将阴影部分进行平移可得,阴影部分的面积占整个圆的面积的一半,∴任意投掷一次,飞镖投中阴影部分的概率是12. 【点睛】本题考查了几何概型,属于简单题,对阴影部分进行平移是解题关键.16.如图,⊙O 的弦AC 与半径OB 交于点D ,//BC OA ,AO AD =,则C ∠的度数为______º.【答案】36°. 【解析】【分析】利用同弧所对的圆心角的度数是圆周角度数的2倍得∠O=2∠C,再利用平行线性质得∠O=∠B 即可证明OA=AD,最后利用三角形内角和即可解题.【详解】解:设∠C=x,由图可知∠O=2∠C=2x,(同弧所对的圆心角的度数是圆周角度数的2倍)∵//BC OA ,∴∠O=∠B=2x,∵AO AD =,∴∠O=∠ADO=∠CDB=2x,在△CDB 中,5x=180°,(三角形内角和) 解得:x=36°, ∴∠C=36°. 【点睛】本题考查了圆周角和圆心角的关系,平行线的性质,三角形内角和的性质,中等难度,熟悉圆周角的性质是解题关键.17.如图,点A 、B 、C 为正方形网格纸中的3个格点,则tan BAC ∠的值是________.【答案】2【解析】【分析】作辅助线, 取AC得中点D,连接BD,利用格点三角形的性质求出各边边长,证明△BAC是等腰三角形,再利用三线合一性质证明直角三角形,最后运用正切值等于对边比邻边即可解题.【详解】解:取AC得中点D,连接BD,设相邻两点之间的距离为1,利用格点三角形特征可得:AB=5,BC=5,AC=25,∴△BAC是等腰三角形,AD=5,∴∠BDA=90°,(三线合一)BD=25,∴25tan5BDBACAD∠===2.【点睛】本题考查了解直角三角形,中等难度,作辅助线证明直角三角形,利用边长之间的关系求正切值是解题关键.18.如图,用同样长度的篱笆分别围成一个正方形ABCD和矩形AEFG,若图中矩形BCHE的面积比矩形DGFH的面积多100m2,则矩形AEFG的长比宽多_______m.【答案】20【解析】【分析】分别设AD=y,DG=x,利用矩形BCHE的面积比矩形DGFH的面积多100m2,列出方程,根据实际情况进行取舍,即可解题.【详解】解:设AD=y,DG=x,由图可知,AB=y,BE=x,AE=y-x,∵矩形BCHE的面积比矩形DGFH的面积多100m2,∴xy-(y-x)x=100,解得:x=10,或x=-10(不合题意,舍)∵矩形AEFG 的长为AG=x+y,宽为GF=y-x,∴长-宽= x+y-(y-x )=2x=20,∴矩形AEFG 的长比宽多20m.【点睛】本题考查了矩形的性质,中等难度,用方程思想进行解题是解题关键.三、解答题19.计算:2sin 45tan 30cos30︒+︒︒【答案】12 【解析】【分析】利用特殊的三角函数值即可解题.【详解】解:原式12 =12【点睛】本题考查了特殊的三角函数值,属于简单题,熟悉特殊的三角函数值是解题关键.20.解方程:2(1)62x x -=+.【答案】x 1=5,x 2=-1.【解析】【分析】先将一元二次方程变成一般式,再利用十字相乘的方法即可解题.【详解】解:()2162x x -=+x 2-2x+1=62x +x 2-4x-5=0(x-5)(x+1)=0∴x 1=5,x 2=-1.【点睛】本题考查了一元二次方程的求解,中等难度,熟悉十字相乘的方法是解题关键.21.若二次函数2y x bx c =++图像经过(1,0)A -,(3,4)B -两点,求b 、c 的值.【答案】b=-3,c=-4.【解析】【分析】将()1,0A -,()3,4B -代入2y x bx c =++中,求解二元一次方程组即可解题.【详解】解:将()1,0A -,()3,4B -代入2y x bx c =++中得, 10493b c b c-+=⎧⎨-=++⎩ 解得:34b c =-⎧⎨=-⎩∴b=-3,c=-4.【点睛】本题考查了含参数的二次函数的求解,属于简单题,熟悉求解二元一次方程组的方法是解题关键. 22.在一个不透明的口袋中有2个红球和2个黄球,4个球除颜色外都相同.(1)搅匀后从中任意摸出1个球,摸到红球的概率为 ;(2)搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出一个球,请用列表或画树状图的方法求出两次都摸到红球的概率. 【答案】111224()(). 【解析】【分析】(1)利用概率等于红球的个数除以全部球的个数即可解题;(2)树状图见下图.【详解】解:1()∵4个球中一共有2个红球,∴P (红)=24=12, 2()树状图见下图,由树状图可知一共有16种可能,其中两次都摸中红球的有4种,∴P (红)=416=14.【点睛】本题考查了概率的实际应用,树状图的画法,属于简单题,熟悉概率的计算方法和树状图的画法是解题关键.23.某校课程中心为了了解学生对开设的3D打印、木工制作、机器人和电脑编程四门课程的喜爱程度,随机调查了部分学生,每人只能选一项最喜爱的课程.图①是四门课程最喜爱人数的扇形统计图,图②是四门课程男、女生最喜爱人数的条形统计图.(1)求图①中m的值,补全图②中的条形统计图,标上相应的人数;(2)若该校共有1800名学生,则该校最喜爱3D打印课程的学生约有多少人?【答案】(1)m=30,图形见详解(2)630【解析】【分析】(1)用100%分别减去电脑编程,3D打印,木工制作的百分比即可求出m,根据喜爱机器人的总人数为36,用36除以30%即可求出总人数,再由总人数分别计算出木工制作和电脑编程的人数即可;(2)用1800×35%即可解题.【详解】解:(1)1-15%-35%-20%=30%,∴m=30,∴总人数=36÷30%=120人,其中木工制作=120×15%=18人,所以女生有18-9=9人,电脑编程=120×20%=24人, 所以女生有24-14=10人,补全统计图见下图,(2)1800×35%=630人, ∴该校最喜爱3D 打印课程的学生约有630人.【点睛】本题考查了扇形统计图和条形统计图的使用,统计的实际应用,中等难度,从统计图中提取有效信息是解题关键.24.如图,在正方形网格纸中,ABC ∆的三个顶点都在格点上.以点O 为位似中心,把ABC ∆按相似比2:1放大,得到对应的'''A B C ∆.(1)请在第一象限内画出'''A B C ∆';设(,)D a b 为线段AC 上一点,则点D 经过上述变换后得到的对应点'D 的坐标为 (用含a 、b 的式子表示); (2)'''A B C ∆的面积为 .【答案】1'D ()的坐标为(2a,2b) (2)12 【解析】 【分析】(1)位似图形见下图,根据相似比即可求出对应坐标;(2)三角形的面积等于矩形的面积减去四周三个直角三角形的面积.【详解】解:1()位似图形见下图, ∵相似比2:1,∴横纵坐标都扩大2倍,∵(),D a b∴'D 的坐标为(2a,2b )(2)将'''A B C ∆放进矩形中, 则S '''A B C ∆=8×4-12×4×4-12×4×2-12×8×2=12. 【点睛】本题考查了位似图形的作图,相似三角形的性质,中等难度,熟悉相似三角形的性质是解题关键. 25.如图,一艘轮船在A 处测得灯塔P 在船的北偏东30º的方向,轮船沿着北偏东60º的方向航行16km 后到达B 处,这时灯塔P 在船的北偏西75º的方向.求灯塔P 与B 之间的距离(结果保留根号).【答案】62【解析】 【分析】作辅助线得到两个特殊的直角三角形,利用三角函数即可解题. 【详解】解.过点P 作PQ ⊥AB 于Q, 由方位角的性质可知∠ABC=30°, ∵∠PBC=15°, ∴∠PBQ=45°,∴△PQB 是等腰直角三角形, 设PQ=x,则BQ=x, ∵∠PAQ=30°, ∴AQ=30PQtan ︒=3x ,∵AB=16,即x+3x =16, 解得:x=83-8 ∴PB=()228388682x =-=-【点睛】本题考查了三角函数的实际应用,属于简单题,熟悉三角函数的概念和特殊三角函数值是解题关键. 26.如图,AC 、BD 是以AB 为直径的半圆的两条切线,AD 与半圆交于点E ,连接CE ,过点E 作EF CE ⊥,交AB 于点F .(1)若弧AE 的度数为140º,求D ∠的度数; (2)求证: ACE BFE ∆~∆.【答案】(1)∠D=70°, (2)见详解. 【解析】【分析】(1)连接OE,利用切线证明∠DBA=∠CAB=90°,根据已知得∠AOE=140°,在直角三角形ABD 中即可解题;(2)利用同角的余角相等证明∠CEA=∠FEB, ∠CAE=∠EBA 即可证明三角形相似. 【详解】解:(1)设圆的圆心为点O,连接OE(作图略), ∵AC 、BD 是以AB 为直径的半圆的两条切线, ∴∠DBA=∠CAB=90°, ∵弧AE 的度数为140º,即∠AOE=140°, ∵OA=OE, ∴∠EAO=20°, 在直角三角形ABD 中,∠D=70°, (2)∵AB 为直径,∴∠AEB=90°,(直径所对圆周角是90°) ∵EF CE ⊥, ∴∠CEF=90°, ∴∠CEA=∠FEB (同角的余角相等) 又∵∠CAE+∠EAF=∠EBA+∠EAF ∴∠CAE=∠EBA (同角的余角相等)∴ACE BFE ∆~∆(有两个角对应相等的三角形是相似三角形)【点睛】本题考查了圆的性质,相似三角形的判定,中等难度,熟悉圆的性质和三角形相似的判定方法是解题关键.27.如图,已知二次函数23y x bx =-++的图像与x 轴交于A 、C 两点(点A 在点C 的左侧),与y 轴交于点B ,且OA OB =.(1)求线段AC 的长度:(2)若点P 在抛物线上,点P 位于第二象限,过P 作PQ AB ⊥,垂足为Q .已知PQ =,求点P 的坐标.【答案】(1)AC=4 (2)P (-1,4)或(-2,3). 【解析】 【分析】(1)求出B 点坐标,再利用OA=OB 求出A 点坐标,代入二次函数求出解析式,再令y=0即可求出与x 轴的交点坐标,进而即可解题;(2)作PF ∥x 轴于F,利用∠BAO=45°,证明三角形PQF 是等腰直角三角形,求出PF=2,再设出P,F 的坐标,代入直线解析式求解方程即可解题.【详解】解:(1)由23y x bx =-++可知二次函数与y 轴的交点为B (0,3) ∵OA=OB, ∴A (-3,0),将A 点代入二次函数解析式得:b=-2,即二次函数解析式为223y x x =--+, 令y=0,即2230x x --+=解得:x 1=-3,x 2=1, ∴C (1,0) ∴AC=4,(2)过点P 作PF ∥x 轴于F,由A,B 坐标可得直线AB 的解析式为y=x+3, ∴∠BAO=45°, 又∵PQ AB ⊥, PF ∥x 轴 ∴三角形PQF 是等腰直角三角形, 设P(a,b), ∵P 在抛物线上, ∴b=-a 2-2a+3,∵2PQ =∴PF=2(勾股定理), ∴F (a+2, -a 2-2a+3)将F 代入y=x+3,即-a 2-2a+3=a+5, 解得a 1=-1,a 2=-2, ∴P (-1,4)或(-2,3).【点睛】本题考查了二次函数的图像和性质,等腰直角三角形的性质,二次函数与动点问题,难度较大,熟悉函数的性质,求出解析式是解(1)的关键;设出坐标,将动点问题转换成求解一元二次方程的问题是(2)的解题关键.28.如图①,在ABC ∆中,90ACB ∠=︒,6BC =cm ,动点P 以2cm/s 的速度在ABC ∆的边上沿A B →的方向匀速运动,动点Q 在ABC ∆的边上沿C A →的方向匀速运动,P 、Q 两点同时出发,5s 后,点P 到达终点B ,点Q 立即停止运动(此时点Q 尚未到达点A ).设点P 运动的时间为t (s),APQ ∆的面积为S (cm 2),S 与t 的函数图像如图②所示.(1)图①中AC = cm ,点Q 运动的速度为 cm/s; (2)求函数S 的最大值;(3)当t 为何值时,以A 、P 、Q 为顶点的三角形与ABC ∆相似?请说明理由.【答案】(1)AC=8cm,点Q 运动的速度为5÷5=1cm/s;(2)当t=4时,函数S的最大值S=48 5(3) t=40 13或t=167【解析】【分析】(1)由勾股定理求得AC的长,再利用APQ∆的面积为9,得92AQ CP⨯=,即可解题;(2)过点P作PH⊥AC 于H,证明△AHP∽△ACB得AP ABPH BC=,求出边长表示S△APQ=2AQ PH⨯=68t?52t-,整理成顶点式即可解题;(3)分两种情况讨论当∠PQA=90°时,当∠QPA=90°时,见详解.【详解】解:(1)∵动点P以2cm/s的速度运动了5秒到B点, 如下图,∴AB=10cm,∵90ACB∠=︒,6BC=cm,∴AC=8cm(勾股定理)由图2可知当时间为5秒时,APQ∆的面积为9,即92AQ CP⨯=,∵BC=CP=6,∴AQ=3,CQ=8-3=5,∴点Q运动的速度为5÷5=1cm/s;(2)如下图,过点P作PH⊥AC于H,易证△AHP∽△ACB,∴AP ABPH BC=,∴2106tPH=,解得:PH=65t∵CQ=t,∴AQ=8-t,∴S △APQ=2AQ PH ⨯=68t?52t -=()2232434845555t t t -+=--+ ∴当t=4时,函数S 的最大值S=485(3)分两种情况,当∠PQA=90°时,如下图, △AQP ∽△ACB, ∴AP AB AQ AC =,21088t t =-,解得:t=4013;当∠QPA=90°时,如下图, △AQP ∽△ABC, ∴AP AC AQ AB =,28810t t =-,解得:t=167;综上, t=4013或t=167时以A 、P 、Q 为顶点的三角形与ABC ∆相似. 【点睛】本题考查了相似三角形的综合性质,动点与相似三角形的性质,二次函数与动点问题,难度大,综合性强,熟悉相似三角形的判定与性质,建立边长之间的关系, 用代数式表示出边长是解题关键.。
A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。
天津市滨海新区2022年九年级上学期《数学》期末试卷及答案一、选择题本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 一元二次方程化成一般形式后,它的二次项系数和一次项系数分别是()A. B. C. D. 【答案】A【详解】一元二次方程化成一般形式为:它的二次项系数和一次项系数分别是5,-4故选:A .2. 抛物线的开口方向、对称轴分别是( )A. 向上,轴B. 向上,轴C. 向下,轴D. 向下,轴【答案】B【详解】 ,所以抛物线开口向上,,所以对称轴为 ,对称轴为轴.故选:B .2514x x -=54-,45-,51-,1-4,2514x x -=25410x x --=∴213y x =x y x y 13a = 0b = 02bx a =-=y3. 下列语句描述的事件为随机事件的是()A. 通常加热到时,水沸腾B. 经过有交通信号灯的路口,遇到红灯C. 任意画一个三角形,其内角和是D. 从三张扑克牌J ,Q ,K 中取出一张是A【答案】B 【详解】A. 通常加热到时,水沸腾是必然事件,不符合题意;B. 经过有交通信号灯的路口,遇到红灯是随机事件,符合题意;C. 任意画一个三角形,其内角和是是不可能事件,不符合题意;D. 从三张扑克牌J ,Q ,K 中取出一张是A 是不可能事件,不符合题意.故选:B .4. 下列标志既是轴对称图形又是中心对称图形的是( )A. B.C. D.【答案】C【详解】A .此图案是轴对称图形,不是中心对称图形,不符合题意;B .此图案仅是中心对称图形,不符合题意;C .此图案既是轴对称图形,又是中心对称图形,符合题意;D .此图案既不是轴对称图形,又不是中心对称图形,不符合题意;故选:C.100C ︒360︒100C ︒360︒5. 抛物线y=2(x+3)2+5的顶点坐标是( )A. (3,5)B. (﹣3,5)C. (3,﹣5)D. (﹣3,﹣5)【答案】B【详解】抛物线y=2(x+3)2+5的顶点坐标是(﹣3,5),故选B .6. 下列各点中与点关于原点对称的是()A. B. C. D. 【答案】B【详解】与点关于原点对称的点的坐标是:.故选:B .7. 不透明袋子中装有5个红球、3个绿球,这些球除了颜色外无其他差别,从袋子中随机摸出个球,摸出红球的概率是()A. B. C. D.【答案】D【详解】红球数量为5个,总的球数量为8个,∴从中随机摸出一球为红球的概率是.故选:D .(2,1)A -(2,1)(2,1)-(2,1)--(1,2)-(2,1)A -(2,1)-185833858588. 如图,在中,,,则的度数是( )A. B. C. D. 【答案】A【详解】在中,,故选:A .9. 如图,在中,,,则的度数是()A. B. C. D. 【答案】DO e »»=A B A C 75C ∠=︒A ∠30°40︒50︒60︒O e »»=A B A C 75C ∠=︒75B C ∴∠=∠=︒180A B C ∠+∠+∠=︒ 18030A B C ∴∠=︒-∠-∠=︒O e OA BC ⊥50AOC ∠=︒ADB ∠50︒30°20︒25︒【详解】连接OB,,,,故选:D .10. 如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A. 1米B. 2米C. 3米D. 4米【答案】C 【详解】设道路的宽为x,根据题意得20x+33x−x 2=20×33−510整理得x 2−53x+150=0解得x=50(舍去)或x=3所以道路宽为3米.故选C.OA BC ⊥ 50AOC ∠=︒50AOB ∴∠=︒1252ADB AOB ∴∠=∠=︒11. 如图,在△中,,,点是的内心,则的度数是( )A. B. C. D. 【答案】A 【详解】∵点是的内心,∴BO 平分,CO 平分,∴,,∴.故选A .12. 如图,二次函数的图象经过点,且与轴交点的横坐标为,其中,.下列结论:①,②,③中,正确的结论有()ABC 60ABC ∠=︒50∠=°ACB O ABC V BOC ∠125︒120︒130︒135︒O ABC V ABC ∠ACB ∠1230C CBO AB ∠=∠=︒1225B BCO AC ∠=∠=︒012518CBO BCO BOC ∠=︒-∠=∠-︒20y ax bx c a =++≠()(1,2)-x 12x x ,121x --<<201x <<420a b c -+<20a b -<284b a ac +>A. 0个B. 1个C. 2个D. 3个【答案】D【详解】根据题意得:当x=-2时,y <0,∴,故①正确;∵二次函数的图象与轴交点的横坐标为,其中,.开口向下,∴抛物线的对称轴,a <0,∴,∴,故②正确;∵二次函数的图象经过点,且对称轴在直线x=-1的右侧,∴抛物线的顶点的纵坐标大于2,∴,∵a<0,∴,∴,故③正确;∴正确的有①②③,共3个.故选:D420a b c -+<20y ax bx c a =++≠()x 12x x ,121x --<<201x <<12bx a =->-2b a >20a b -<20y ax bx c a =++≠()(1,2)-2424ac b a ->248ac b a -<284b a ac +>二、填空题本大题共6小题,每小题3分,共18分.13. 抛物线可以由抛物线先向左平移个单位,再向下平移___________个单位得到的.【答案】3【详解】抛物线向左平移2个单位,向下平移3个单位得到的函数图象的解析式为:.故答案为:3.14. 在数学考试中,单项选择题(每个题目只有4个备选答案)是试卷的重要组成部分,当你遇到完全不会做的选择题时,如果你随便选择一个答案,那么你答对的概率为_________.【答案】【详解】根据题意得:答对的概率为.故答案为:15. 关于的一元二次方程有两个不相等的实数根,则的取值范围是_________.【答案】【详解】∵一元二次方程有两个不相等的实数根,∴∆,解得<2.故答案为:k<2.()223y x =+-2y x =22y x =()223y x =+-141414x 22230x x k ++-=k 2k <()224230k =-->k16. 中,,则的内切圆的半径长是_________.【答案】2【详解】设△ABC 的内切圆为⊙O,内切圆的半径为r ,∵AB=13,AC =5,BC =12,∴AB 2=AC 2+ BC 2,根据勾股定理的逆定理得△ABC 是直角三角形,∠C=90°,∴,根据三角形的面积公式可得:,∴15r=30,即r=2,故答案为:2.17. 当或()时,代数式的值相等,则时,代数式的值为_________.【答案】3【详解】由抛物线,∴抛物线的对称轴为直线x=2,∵当或()时,代数式的值相等,∴当或()时,抛物线的函数值相等,∴以a 、b 为横坐标的点关于直线x=2对称,∴,ABC V 13,5,12AB AC BC ===ABC V 1302ABC S AC BC =⋅=V 1115131215222ABC AOC AOB BOC S S S S r r r r =++=⨯+⨯+⨯=V V V V x a =x b =a b ¹243x x -+x a b =+243x x -+()224321y x x x =-+=--x a =x b =a b ¹243x x -+x a =x b =a b ¹243y x x =-+22a b +=∴a+b=4,∵,∴x=4,当x=4时,,即时,代数式的值为3.故答案为:318. 如图,为边长为的等边三角形,点分别为和的中点,点为内部一点,且,连接,将线段绕点按逆时针方向旋转得到,连接.(1)当三点共线时,线段的长度为_________;(2)在旋转过程中,线段的最小值为_________.【答案】①. ②. 1【详解】(1)是等边三角形,边长为,,为的中点,x a b =+244433y =-⨯+=x a b =+243x x -+ABC V 6DE ,AC BCF ABC V 2DF =BF BF B 60︒BG EG B F D 、、BFEG 2ABC ∆ 66AB AC ∴==D Q AC,,,,点、、三点共线,,,线段的长度为;(2)如图,作线段的中点,连接,作,连接,将线段绕点按逆时针方向旋转得到,连接,此时的值最小,是等边三角形,边长为,, ,点为的中点,点为的中点,点为的中点,,,,,,,132AD CD AC ∴===BD AC ⊥90ADB ∴∠=︒BD ∴=== B F D 2DF =2BF BD DF ∴=-=-∴BF 2-AB H DH 2DF =BF BF B 60︒BG EG EG ABC ∆ 66AB AC ∴==60ABC ∠=︒ D AC E BC H AB BD AC ∴⊥132BE BC ==132BH AB ==90ADB ∴∠=︒BH BE =132DH AB ∴==,,由旋转可知: ,,,,在和中,,,,在旋转过程中,线段的最小值为1.三、解答题本大题共7小题,共66分.解答应写出文字说明、演算步骤或证明过程.19. (1)因式分解法解方程:;(2)配方法解方程:.【答案】(1);(2)【详解】(1),解:提公因式,得,于是得,.2DF = 321HF DH DF ∴=-=-=BF BG =60FBC ∠=︒60ABC FBG ∴∠=∠=︒HBF EBG ∴∠=∠BHF ∆BEG ∆BH BEHBF EBGBF BG=⎧⎪∠=∠⎨⎪=⎩()BHF BEG SAS ∴∆≅∆1HF EG ∴==∴EG 220x x -=21090x x ++=121=02x x =,12=9=1x x --,220x x -=2-10x x =()02-10x x ==或121=02x x =,(2),解:移项,得,配方,得,,由此可得,.20. 如图,在半径为的中,弦的长为.(1)求的度数;(2)求点到的距离.【答案】(1) (2)到的距离为【小问1详解】解:在,,∵,∴为等边三角形,∴;【小问2详解】过点 作于点,21090x x ++=210=9x x +﹣22210+5=-95x x ++25=16x +()54x +=±12=9=1x x --,4O e AB 4AOB ∠O AB 60AOB ∠=︒OAB O e 4OA OB ==4AB =OAB V 60AOB ∠=︒O OC AB ⊥C在,于点,∴,∵ ,∴,在中,,,∴,∴到的距离为21. 甲口袋中装有个相同的小球,它们分别写有数字和,乙口袋中装有个相同的小球,它们分别写有数字,和.从两个口袋中各随机取一个小球.请用画树状图或列表的方法求:(1)取出的个小球上的数字之和是奇数的概率是多少?(2)取出的个小球上的数字全是偶数的概率是多少?【答案】(1) (2)【小问1详解】解:根据题意,可以画出如下的树状图O e OC AB ⊥C 12AC AB =4AB =2AC =Rt OAC △4AO =2AC =OC ==O AB 2123345221216所有可能出现的结果共有种等可能结果,取出个小球上的数字之和是奇数有种,∴取出的个小球上的数字之和是奇数的概率是;【小问2详解】解:取出个小球上的数字全是偶数有种,∴取出的个小球上的数字全是偶数的概率是.【点睛】本题主要考查了利用树状图或列表法求概率,明确题意,准确画出树状图或列出表格是解题的关键.22. 已知:内接于,.(1)如图①,点在上,若,求和的大小;(2)如图②,点在外,是的直径,与⊙相切于点,若,求的大小.【答案】(1) (2)62323162=21216ABD △O e »»AB AD =C e O 60BCD ∠=︒ABD ∠ADB ∠C e O BD e O BC O B 50BCD ∠=︒CDA ∠30ABD ADB ∠=∠=︒85CDA ∠=︒【小问1详解】解:∵四边形内接于,,∴,∵,∴,∴;【小问2详解】解:∵与相切于点,∴,∴∵在中,,∴∵是的直径,∴,∵,∴,,∴.23. 某村种的水稻2018年平均每公顷产8000kg ,2020年平均每公顷产9680kg ,求该村水稻每公顷产量的年平均增长率.ABCD O e 60BCD ∠=︒180120BAD BCD ∠=︒-∠=︒»»=AB AD AB AD =1(180)302ABD ADB BAD ∠=∠=︒-∠=︒BC O e B BD BC ⊥90CBD ∠=︒Rt BCD ∆50BCD ∠=︒9040BDC BCD ∠=︒-∠=︒BD O e 90BAD ∠=︒»»=AB AD AB AD =190452ABD ADB ∴∠=∠=⨯︒=︒454085CDA ADB BDC ∠=∠+∠=︒+︒=︒解题方案:设该村水稻每公顷产量的年平均增长率为x .(1)用含的代数式表示:①2019年种的水稻平均每公顷的产量为_________kg ;②2020年种的水稻平均每公顷的产量为_________kg ;(2)根据题意,列出相应方程_________;(3)解这个方程,得_________;(4)检验:_________;(5)答:该村水稻每公顷产量的年平均增长率为_________%.【答案】(1),(2)(3)(4)当x =-2.1时,不合题意,故舍去(5)10【小问1详解】解:根据题意,①2019年种的水稻平均每公顷的产量为kg ;②2020年种的水稻平均每公顷的产量为kg ;故答案为:;;【小问2详解】解:由题意,可列出方程:;x ()80001x +()280001x +()2800019680x +=120.1 2.1x x ==-,()80001x +()280001x +()80001x +()280001x +()2800019680x +=故答案为:;【小问3详解】解:,解得:;故答案为:;【小问4详解】解:检验:当x =-2.1时,不合题意,故舍去;故答案为:当x =-2.1时,不合题意,故舍去;【小问5详解】解:该村水稻每公顷产量的年平均增长率为;故答案为:10;24. 四边形和四边形均为正方形,正方形绕点A 顺时针旋转.(1)正方形绕点A 顺时针旋转到如图①位置时,且三点在同一直线上,则和的数量关系是_________;和的位置关系是_________;(2)正方形绕点A 顺时针旋转到如图②位置时,且点落在线段上.①求证:;②若,求的长;的()2800019680x +=()2800019680x +=120.1 2.1x x ==-,120.1 2.1x x ==-,0.110%x ==ABCD AEFG AEFG AEFG D A E 、、DG BE DG BE AEFG F DG ABE ADG V V ≌10,2AB DF ==BF(3)如图③,若,,正方形绕点A 顺时针旋转过程中,取的中点,连接,记的面积为S ,求S 的取值范围(直接写出结果即可).【答案】(1),(2)①见解析;②(3)【小问1详解】根据题意,得:∵四边形和四边形均为正方形∴,,和中∴∴,如图,延长DG ,交BE 于点K∵10AB =6AG =AEFG DG M CM CDM V DG BE =DG BE ⊥14BF =1040S ≤≤90DAB BAE ∠=∠=︒ABCD AEFG AD AB =AG AE =90BAE ∠=︒DAG △BAE V 90AD ABDAB BAE AG AE=⎧⎪∠=∠=︒⎨⎪=⎩()DAG BAE SAS V V ≌DG BE =ADG ABE ∠=∠90BAE ∠=︒∴∴∴故答案为:,【小问2详解】①∵四边形和均为正方形,∴∴,即在和中∴;②∵∴,∵∴点三点在一条直线上设正方形边长为,则,在中,由勾股定理得,即,整理得:,解得:.90ABE AEB ∠+∠=︒()18090DKE ABE AEB ∠=︒-∠+∠=︒DG BE⊥DG BE =DG BE⊥ABCD AEFG =90AB AD AE AG BAD EAG ===,,∠∠BAD EAD EAG EAD ∠-∠=∠-∠BAE DAG∠=∠ABE △ADG V =AB ADBAE DAGAE AG=⎧⎪∠∠⎨⎪=⎩()ABE ADG SAS V V ≌ABE ADGV V ≌90AEB AGD ∠=∠=︒90AEF ∠=︒,,B E F AEFG x 2DG BE x ==+Rt ADG V 222AD AG DG =+()22210=2x x ++22480x x +-=()1268x x ==-,舍∴;【小问3详解】如图,过点G 作,交延长线于点Q ,过点M 作∴∵点为的中点∴为的中位线∴∵,,正方形形∴,∵∴∴当点G 在直线AB 左侧时,∴当点G 在直线AB 右侧时,∴8614BF BE EF =+=+=GQ DA ⊥DA MP DA ⊥//MP GQ M DG MP DQG V 12DP DQ =10AB =6AG =ABCDcos 6cos AQ AG GAQ GAQ =⨯∠=⨯∠10DA CD AB ===0GAQ ∠≥0cos 1GAQ ≤∠≤06AQ ≤≤10DQ DA AQ AQ=-=-410DQ ≤≤10DQ DA AQ AQ=+=+1016DQ ≤≤综上,∴∵ ∴.25. 在平面直角坐标系中,抛物线与轴交于,两点,与轴交于点,连接,点是第一象限的抛物线上一动点.(1)求抛物线的解析式;(2)过点作于点.①若,求点坐标;②过点作轴于点,交于点,连接,当的周长取得最大值时,抛物线上是否存在一点,使,如果存在,请求出点的坐标,如果不存在,请说明理由.【答案】(1)(2)①点D 的坐标为(2,3);②存在,点P 的坐标为,,【小问1详解】解:把两点代入抛物线则,416DQ ≤≤28DP ≤≤152S CD DP DP =⨯=1040S ≤≤23y ax bx =++x ()3,0A ()1,0B -y C AC D D DE AC ⊥E DE CE =D D DH x ⊥H AC F 、DC DA DEF V P PAC ACD S S =△△P 2y x 2x 3=-++315,24⎛⎫ ⎪⎝⎭()()3,01,0A B -,23y ax bx =++933030a b a b ++=⎧⎨-+=⎩解得.∴抛物线的解析式为;【小问2详解】解:①连接CD ,当x =0时,y =3,即OC =3,∵OC=OA =3,∠AOC=90°,∴△AOC 为等腰直角三角形,∠CAO=45°.∵DE⊥AC,DE =CE ,∴△CDE 为等腰直角三角形,∠DCE=45°,∴∠DCE=∠OAC=45°,即CD∥OA.∴点C 和D 的纵坐标都等于3.把y =3代入抛物线解析式得,,解得(舍去),,∴点D 的坐标为(2,3).12a b =-⎧⎨=⎩2y x 2x 3=-++2y x 2x 3=-++2233x x -++=10x =22x =②∵DF⊥x 轴,∴DH⊥OA,∵∠CAO=45°,∴∠AFH=45°,∵DE⊥AC,∠DFE=∠AFH=45°,∴△DEF 为等腰直角三角形,∴则△DEF 的周长等于.∵,∴直线AC 的解析式为y =-x +3.设点D 的坐标为,,则.∴当时,DF 取得最大值,此时△DEF 的周长取得最大值.点D 的坐标为.∵,∴点P 和D 到直线AC 的距离相等.容易得知点P 和D 重合时符合题意,此时P 的坐标为.作直线l 和k 都和直线AC 平行,且到直线AC 的距离都相等,则直线l 的解析式为DE EF DF=)1DE EF DF DF ++=+()()3,00,3A C ,()2,23m m m -++(),3F m m -+()22239233324DF m m m m m m ⎛⎫=-++--+=-+=--+ ⎪⎝⎭32m =315,24⎛⎫⎪⎝⎭PAC ACD S S =△△315,24⎛⎫⎪⎝⎭,直线k 的解析式为.联立直线与抛物线得,解得,则点P 的坐标为,.综上所述:符合题意得点P 的坐标为,,.214y x=-+34y x =-+34y x =-+2y x 2x 3=-++23922x ⎛⎫-= ⎪⎝⎭12x x ==315,24⎛⎫ ⎪⎝⎭。
九年级数学(上)期末考试试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣37.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是米.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.14.写出一个图象位于二、四象限的反比例函数的表达式,y=.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:,你的理由是:.三、解答题(本题共30分,每小题5分)17.计算:|.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.28.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(﹣5,6)的“关联点”为点(﹣5,﹣6).(1)①点(2,1)的“关联点”为;②如果点A(3,﹣1),B(﹣1,3)的“关联点”中有一个在函数的图象上,那么这个点是(填“点A”或“点B”).(2)①如果点M*(﹣1,﹣2)是一次函数y=x+3图象上点M的“关联点”,那么点M的坐标为;②如果点N*(m+1,2)是一次函数y=x+3图象上点N的“关联点”,求点N的坐标.(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,其“关联点”Q的纵坐标y′的取值范围是﹣4<y′≤4,那么实数a的取值范围是.29.在菱形ABCD中,∠BAD=120°,射线AP位于该菱形外侧,点B关于直线AP的对称点为E,连接BE、DE,直线DE与直线AP交于F,连接BF,设∠PAB=α.(1)依题意补全图1;(2)如图1,如果0°<α<30°,判断∠ABF与∠ADF的数量关系,并证明;(3)如图2,如果30°<α<60°,写出判断线段DE,BF,DF之间数量关系的思路;(可以不写出证明过程)(4)如果60°<α<90°,直接写出线段DE,BF,DF之间的数量关系.参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.【考点】比例的性质.【分析】根据等式的性质:两边都除以同一个不为零的数(或整式),结果不变,可得答案.【解答】解:两边都除以ab,得=,故A正确;B、两边都除以20,得=,故B错误;C、两边都除以4b,得=,故C错误;D、两边都除以5a,得=,故D错误.故选:A.【点评】本题考查了比例的性质,利用两边都除以同一个不为零的数(或整式),结果不变是解题关键.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据在直角三角形中,锐角的余弦为邻边比斜边,可得答案.【解答】解:cosB===,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定【考点】点与圆的位置关系.【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=8>5,∴点P与⊙O的位置关系是点在圆外.故选:C.【点评】此题主要考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.【考点】概率公式;条形统计图.【专题】计算题.【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,然后根据概率公式求解.【解答】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,所以小明抽到红色糖果的概率==.故选B.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了条形统计图.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象的增减性来比较m与n的大小.【解答】解:∵反比例函数中系数2>0,∴反比例函数的图象位于第一、三象限,且在每一象限内y随x的增大而减小.又∵点A(1,m)与点B(3,n)都位于第一象限,且1<3,∴m>n.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,解答该题时,也可以把点A、B的坐标分别代入函数解析式求得相应的m、n的值,然后比较它们的大小即可.8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】根据得A、B的坐标求出OB、AB的长,根据位似的概念得到比例式,计算求出OD、CD 的长,得到点C的坐标.【解答】解:∵A(6,3)、B(6,0),∴OB=6,AB=3,由题意得,△ODC∽△OBA,相似比为,∴==,∴OD=2,CD=1,∴点C的坐标为(2,1),故选:D.【点评】本题考查的是位似变换的概念和性质以及坐标与图形的性质,掌握位似的两个图形一定是相似形和相似三角形的性质是解题的关键.9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】计算题.【分析】连结BC,如图,根据圆周角定理得到∠ACB=90°,则利用勾股定理得到BC=,再利用面积法可得到y=,CD为半径时最大,即y的最大值为2,此时x=2,由于y与x函数关系的图象不是抛物线,也不是一次函数图象,则可判断A、C错误;利用y最大时,x=2可对B、D进行判断.【解答】解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∴BC==,∵CD•AB=AC•BC,∴y=,∵y的最大值为2,此时x=2.故选B.【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用圆周角定理得到∠ACB=90°.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是1:9.【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】解:∵两个相似三角形的相似比是1:3,又∵相似三角形的面积比等于相似比的平方,∴这两个三角形面积的比是1:9.故答案为:1:9.【点评】本题考查了相似三角形的性质,注意:相似三角形的面积比等于相似比的平方.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是12米.【考点】正多边形和圆.【分析】由正六边形的半径为2,则OA=OB=2米;由∠AOB=60°,得出△AOB是等边三角形,则AB=OA=OB=2米,即可得出结果.【解答】解:如图所示:∵正六边形的半径为2米,∴OA=0B=2米,∴正六边形的中心角∠AOB==60°,∴△AOB是等边三角形,∴AB=OA=OB,∴AB=2米,∴正六边形的周长为6×2=12(米);故答案为:12.【点评】本题考查了正六边形的性质、等边三角形的判定与性质;解决正多边形的问题,常常把多边形问题转化为等腰三角形或直角三角形来解决.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.【考点】弧长的计算.【专题】应用题.【分析】首先根据题意,可得,然后根据圆的周长公式,求出直径是2m的圆的周长是多少;最后用直径是2m的圆的周长除以3,求出的长是多少即可.【解答】解:根据题意,可得,∴(m),即的长是m.故答案为:.【点评】此题主要考查了弧长的计算,以及圆的周长的计算方法,要熟练掌握,解答此题的关键是判断出,并求出直径是2m的圆的周长是多少.14.写出一个图象位于二、四象限的反比例函数的表达式,y=答案不唯一,如y=﹣x等.【考点】正比例函数的性质.【专题】开放型.【分析】根据正比例函数的系数与图象所过象限的关系,易得答案.【解答】解:根据正比例函数的性质,其图象位于第二、四象限,则其系数k<0;故只要给出k小于0的正比例函数即可;答案不唯一,如y=﹣x等.【点评】解题关键是掌握正比例函数的图象特点.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26.【考点】垂径定理的应用.【专题】压轴题.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:否,你的理由是:y<﹣2.【考点】反比例函数的性质.【分析】根据反比例函数图象所经过的象限和函数的增加性解答.【解答】解:否,理由如下:∵反比例函数,且x>1,∴反比例函数的图象位于第四象限,∴y<﹣2.故答案是:否;y<﹣2.【点评】本题考查了反比例函数的性质.注意在本题中,当x>0时,y<0.三、解答题(本题共30分,每小题5分)17.计算:|.【考点】实数的运算;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=×﹣+﹣1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.【考点】相似三角形的判定与性质.【分析】(1)根据相似三角形的判定,由已知可证∠A=∠DCB,又因为∠ACB=∠BDC=90°,即证△ABC∽△CBD,(2)根据勾股定理得到AB=5,根据三角形的面积公式得到CD=,然后根据勾股定理即可得到结论.【解答】(1)证明:∵CD⊥AB,∴∠BDC=90°.∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠DCB+∠ACD=90°.∴∠A=∠DCB.又∵∠ACB=∠BDC=90°,∴△ABC∽△CBD;(2)解:∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴CD=,∵CD⊥AB,∴BD===.【点评】本题考查了相似三角形的判定,解直角三角形,熟练掌握相似三角形的判定定理是解题的关键.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.【考点】二次函数的三种形式;二次函数的性质.【分析】(1)运用配方法把一般式化为顶点式;(2)根据二次函数的性质解答即可;(3)根据二次函数的开口方向和对称轴解答即可.【解答】解:(1)y=x2﹣6x+5=(x﹣3)2﹣4;(2)二次函数的图象的对称轴是x=3,顶点坐标是(3,﹣4);(3)∵抛物线的开口向上,对称轴是x=3,∴当x≤3时,y随x的增大而减小.【点评】本题考查的是二次函数的三种形式和二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键,注意二次函数的性质的应用.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.【考点】作图-旋转变换.【专题】作图题.【分析】(1)在BA上截取BC′=BC,延长CB到A′使BA′=BA,然后连结A′C′,则△A′BC′满足条件;(2)先利用勾股定理计算出AB=2,再利用旋转的性质得BA=BA′,∠ABA′=90°,然后根据等腰直角三角形的性质计算AA′的长即可.【解答】解:(1)如图,△A′BC′为所作;(2)∵∠ABC=90°,B C=1,AC=,∴AB==2,∵△ABC沿逆时针方向旋转90°得到△A′BC′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=AB=2.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先把A(﹣1,n)代入y=﹣2x求出n的值,确定A点坐标为(﹣1,2),然后把A(﹣1,2)代入y=可求出k的值,从而可确定反比例函数的解析式;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,则B点坐标为(﹣1,0),C点坐标为(0,2),由于PA=OA,然后利用等腰三角形的性质易确定满足条件的P点坐标.【解答】解:(1)把A(﹣1,n)代入y=﹣2x得n=﹣2×(﹣1)=2,∴A点坐标为(﹣1,2),把A(﹣1,2)代入y=得k=﹣1×2=﹣2,∴反比例函数的解析式为y=﹣;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,如图,∵点A的坐标为(﹣1,2),∴B点坐标为(﹣1,0),C点坐标为(0,2)∴当P在x轴上,其坐标为(﹣2,0);当P点在y轴上,其坐标为(0,4);∴点P的坐标为(﹣2,0)或(0,4).【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了等腰三角形的性质.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意得出DC=BC,进而利用tan30°=求出答案.【解答】解:由题意可得:AB=46m,∠DBC=45°,则DC=BC,故tan30°===,解得:DC=23(+1).答:永定楼的高度CD为23(+1)m.【点评】此题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解.四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.【考点】抛物线与x轴的交点.【专题】证明题.【分析】(1)令y=0,使得二次函数变为一元二次方程,然后求出方程中△的值,即可证明结论;(2)令y=0,使得二次函数变为一元二次方程,然后对方程分解因式,又因此二次函数的图象与x 轴两个交点的横坐标都是整数,从而可以求得符合要求的正整数m的值.【解答】解:(1)证明:∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2(m≠0),△=[﹣(m+2)]2﹣4×m×2=m2+4m+4﹣8m=m2﹣4m+4=(m﹣2)2≥0∴0=mx2﹣(m+2)x+2(m≠0)有两个实数根,即二次函数y=mx2﹣(m+2)x+2(m≠0)的图象与x轴总有交点;(2)∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2=(mx﹣2)(x﹣1),∴,又∵此二次函数的图象与x轴两个交点的横坐标都是整数,∴正整数m的值是:1或2,即正整数m的值是1或2.【点评】本题考查抛物线与x轴的交点,解题的关键是建立二次函数与一元二次方程之间的关系,然后找出所求问题需要的条件.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.【考点】平行四边形的判定与性质.【分析】(1)由平行四边形的定义即可得出四边形AECD为平行四边形;(2)作FM⊥CD于M,由平行四边形的性质得出DF=EF=2,由已知条件得出△DFM是等腰直角三角形,DM=FM=DF=2,由含30°角的直角三角形的性质和勾股定理得出CF=2FM=4,CM=2,得出DC=DM+CM=2+2即可.【解答】(1)证明:∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形;(2)解:作FM⊥CD于M,如图所示:则∠FND=∠FMC=90°,∵四边形AECD为平行四边形,∴D F=EF=2,∵∠FCD=30°,∠FDC=45°,∴△DFM是等腰直角三角形,∴DM=FM=DF=2,CF=2FM=4,∴CM=2,∴DC=DM+CM=2+2.【点评】本题考查了平行四边形的判定与性质、等腰直角三角形的判定与性质、含30°角的直角三角形的性质、勾股定理;熟练掌握平行四边形的判定与性质,通过作辅助线构造直角三角形是解决问题(2)的关键.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.【考点】抛物线与x轴的交点;二次函数与不等式(组).【分析】(1)由二次函数的图象与x轴有两个交点得出判别式△>0,得出不等式,解不等式即可;(2)二次函数y1=x2+2x+m﹣5的图象经过把点B坐标代入二次函数解析式求出m的值,即可得出结果;点B(1,0);(3)由图象可知:当y2<y1时,比较两个函数图象的位置,即可得出结果.【解答】解:(1)∵二次函数y1=x2+2x+m﹣5的图象与x轴有两个交点,∴△>0,∴22﹣4(m﹣5)>0,解得:m<6;(2)∵二次函数y1=x2+2x+m﹣5的图象经过点(1,0),∴1+2+m﹣5=0,解得:m=2,∴它的表达式是y1=x2+2x﹣3,∵当x=0时,y=﹣3,∴C(0,﹣3);(3)由图象可知:当y2<y1时,x的取值范围是x<﹣3或x>0.【点评】本题考查了二次函数图象上点的坐标特征、抛物线与x轴的交点;由题意求出二次函数的解析式是解决问题的关键.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.【考点】切线的判定.【分析】(1)要证AD是⊙O的切线,连接OA,只证∠DAO=90°即可.(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的直径.【解答】(1)证明:连接OA;∵BC为⊙O的直径,BA平分∠CBF,AD⊥BF,∴∠ADB=∠BAC=90°,∠DBA=∠CBA;∵∠OAC=∠OCA,∴∠DAO=∠DAB+∠BAO=∠BAO+∠OAC=90°,∴DA为⊙O的切线.(2)解:∵BD=1,tan∠BAD=,∴AD=2,∴AB==,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC===5.∴⊙O的直径为5.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了三角函数的知识.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)把A点和B点坐标代入得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;(2)利用配方法得到y=(x﹣1)2+,则抛物线的对称轴为直线x=1,利用点C与点A关于直线x=1对称得到C点坐标为(2,2);然后利用二次函数图象上点的坐标特征求D点坐标;(3)画出抛物线,如图,先利用待定系数法求出直线BC的解析式为y=x+1,再利用平移的性质得到图象G向下平移1个单位时,点A在直线BC上;图象G向下平移3个单位时,点D在直线BC上,由于图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,所以1<t≤3.【解答】解:(1)把A(0,2)和B(1,)代入得,解得,所以抛物线解析式为y=x2﹣x+2;(2)∵y=x2﹣x+2=(x﹣1)2+,∴抛物线的对称轴为直线x=1,∵点C与点A关于此抛物线的对称轴对称,∴C点坐标为(2,2);当x=4时,y=x2﹣x+2=8﹣4+2=6,∴D点坐标为(4,6);(3)如图,。
沪科版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.对于抛物线2-1y x =+,下列判断正确的是()A .顶点坐标为(-1,1)B .开口向下C .与x 轴无交点D .有最小值12.如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔2海里的点A 处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB 长是()A .2cos55o 海里B .2sin 55︒海里C .2sin55∘海里D .2cos55︒海里3.如图,二次函数2-3y ax bx =+图象的对称轴为直线x=1,与x 轴交于A 、B 两点,且点B 坐标为(3,0),则方程2-3ax bx =的根是()A .123x x ==B .1213x x ==,C .121-3x x ==,D .12-13x x ==,4.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm ,水的最大深度是2cm ,则杯底有水面AB 的宽度是()cm.A .6B .C .D .5.如图,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 与CE 相交于O ,则图中线段的比不能表示sinA 的式子为()A .BD ABB .CD OCC .AE ADD .BE OB6.如图,在 ABCD 中,AB=3,AD=5,AE 平分∠BAD ,交BC 于F ,交DC 延长线于E ,则AEEF的值为()A .53B .52C .32D .27.已知二次函数y =ax 2+bx+c 中,自变量x 与函数y 之间的部分对应值如表:x …0123…y…﹣1232…在该函数的图象上有A (x 1,y 1)和B (x 2,y 2)两点,且﹣1<x 1<0,3<x 2<4,y 1与y 2的大小关系正确的是()A .y 1≥y 2B .y 1>y 2C .y 1≤y 2D .y 1<y 28.在平面直角坐标系中,A (-30),,B (30),,C (34),,点P 为任意一点,已知PA ⊥PB ,则线段PC 的最大值为()A .3B .5C .8D .109.在△ABC 中,∠C=90°,若∠A=30°,则sinA+cosB 的值等于()A .1B .132C .132D .1410.如图,在Rt ACB 中,900.5C sinB ∠=︒=,,若6AC =,则BC 的长为()A .8B .12C .D .二、填空题11.锐角α满足cosα=0.5,则α=__________;12.双曲线(0)k y k x=≠经过点(m ,2)、(5,n ),则m n =__________;13.在Rt ABC ∆中,∠C=90°,tan A =3,tanB=________14.已知:在Rt △ABC 中,∠C=90°,∠A=30°,则tanA=__.15.如图,在△ABC 中,AB=AC ,AH ⊥BC ,垂足为点H ,如果AH=BC ,那么tan ∠BAH 的值是_____.三、解答题16.已知抛物线2-2y ax x c =+与x 轴的一个交点为30A (,),与y 轴的交点为0-3B(,).(1)求抛物线的解析式;(2)求顶点C 的坐标.17.如图,在方格网中已知格点△ABC 和点O .(1)以点O 为位似中心,在△ABC 同侧画出放大的位似△A 1B 1C 1,△ABC 与△A 1B 1C 1的相似比为1∶2;(2)以O 为旋转中心,将△ABC 逆时针旋转90°得到△A 2B 2C 2.18.已知关于x 的二次函数2-(-2)y x k x k =++.(1)试判断该函数的图象与x 轴的交点的个数;(2)当3k =时,求该函数图象与x 轴的两个交点之间的距离.19.从一幢建筑大楼的两个观察点A ,B 观察地面的花坛(点C ),测得俯角分别为15°和60°,如图,直线AB 与地面垂直,AB =50米,试求出点B 到点C 的距离.(结果保留根号)20.如图,在△ABC 中,D 为BC 上一点,已知AD 平分∠BAC ,AD=DC .(1)求证:△ABC ∽△DBA ;(2)S △ABD =6,S △ADC =10,求CDAC.21.如图,在平面直角坐标系xOy 中,函数-5y x =+的图象与函数(0)ky k x=<的图象相交于点A ,并与x 轴交于点C ,S △AOC =15.点D 是线段AC 上一点,CD :AC=2:3.(1)求k 的值;(2)求点D 的坐标;(3)根据图象,直接写出当0x <时不等式5kx x+>的x 的解集.22.如图,已知AB 为⊙O 的直径,CD 切⊙O 于C 点,弦CF ⊥AB 于E 点,连结AC.(1)求证:∠ACD=∠ACF ;(2)当AD ⊥CD ,BE=2cm ,CF=8cm ,求AD 的长.23.小明同学利用寒假30天时间贩卖草莓,了解到某品种草莓成本为10元/千克,在第x 天的销售量与销售单价如下(每天内单价和销售量保持一致):销售量m (千克)40-m x=销售单价n (元/千克)当115x ≤≤时,1202n x =+当1630x ≤≤时,30010n x=+设第x 天的利润w 元.(1)请计算第几天该品种草莓的销售单价为25元/千克?(2)这30天中,该同学第几天获得的利润最大?最大利润是多少?注:利润=(售价-成本)×销售量24.如图,设D 为锐角△ABC 内一点,∠ADB=∠ACB+90°,过点B 作BE ⊥BD ,BE=BD ,连接EC .(1)求∠CAD+∠CBD 的度数;(2)若••AC BD AD BC ,①求证:△ACD ∽△BCE ;②求••AB CDAC BD的值.参考答案1.B 【详解】根据二次函数图像的特点进行解答即可.解:A.顶点坐标为(0,1),故不正确;B.∵-1<0,∴开口向下,故正确;C.∵∆=4>0,∴与x 轴有两个交点,故不正确;D.有最大值1,故不正确;故答案为B.【点睛】本题考查了二次函数图像的特点,即对于二次函数y=ax 2+bx+c (a≠0),a 的正负决定了开口方向;b 2-4ac 决定了是否与x 轴有交点;函数的顶点决定了函数的最值.2.A 【分析】由题意得∠NPA=55°,AP=2海里,∠ABP=90°,再由AB//NP ,根据平行线的性质得出∠A=∠NPA=55°.然后解Rt △ABP ,得出AB=APcos ∠A=2cos55°海里.【详解】解:如图,由题意可知∠NPA=55°,AP=2海里,∠ABP=90°.∵AB ∥NP ,∴∠A=∠NPA=55°.在Rt △ABP 中,∵∠ABP=90°,∠A=55°,AP=2海里,∴AB=APcos ∠A=2cos55°海里.故选A .【点睛】本题考查了解直角三角形的应用一方向角问题,掌握平行线的性质、三角函数的定义、方向角的定义是解答本题的关键.3.D 【分析】由二次函数2-3y ax bx =+图像的对称轴为直线x=1且函数图像与x 轴的一个交点为B(3,0),可求另一交点坐标为(-1,0),则可求方程23ax bx =-的解.【详解】解:二次函数2-3y ax bx =+图象的对称轴为直线x=1,与轴交于A 、B 两点,且点B 坐标为(3,0),则点A 的坐标为(-1,0),∴方程23ax bx =-的根是x 1=-1,x 2=3.故答案为D.【点睛】本题考查了二次函数图像与一元二次方程的联系,即理解二次函数图像与x 轴的交点的横坐标为对应一元二次方程的解.4.C 【分析】作OD ⊥AB 于C ,交小圆于D ,可得CD=2,AC=BC ,由AO 、BO 为半径,则OA=OD=4;然后运用勾股定理即可求得AC 的长,即可求得AB 的长.【详解】解:作OD ⊥AB 于C ,交小圆于D ,则CD=2,AC=BC ,∵OA=OD=4,CD=2,∴OC=2,∴=∴AB=2AC=故答案为C.【点睛】本题考查的是垂径定理的应用及勾股定理,作出辅助线、构造出直角三角形是解答本题的关键.5.C 【分析】先根据正弦的概念进行判断,然后根据余角的定义找与∠A 相等的角再结合正弦定义解答即可.【详解】解:∵BD ⊥AC 于D ,CE ⊥AB 于E ,∴sinA=BD ECAB AC=,故A正确;∵∠A+∠ACE=90°,∠ACE+∠COD=90°,∴∠A=∠COD,∴sinA=sin∠COD=CDOC,故B正确;∵∠BOE=∠COD,∴∠A=∠BOE,∴sinA=sin∠BOE=BEBO.故D正确故答案为C.【点睛】本题考查了正弦的定义以及根据直角三角形的性质寻找相等的角,其中根据直角三角形的性质寻找与∠A相等的角是解答本题的关键.6.B【分析】由平行四边形的性质可得AB//DE,AD//BC,进而得到∠BAE=∠E,再结合∠EAD=∠BAE 得到∠E=∠EAD,即AD=DE=5;再由线段的和差可得CE=2;然后根据BC//AD得到△AED∽△FEC,最后运用相似三角形的性质解答即可.【详解】解:∵四边形ABCD是平行四边形,∴AB//DE,AD//BC,∴∠BAE=∠E,∵AE平分∠BAD,∴∠EAD=∠BAE,∴∠E=∠EAD,∴AD=DE=5,∴CE=DE-CD=5-3=2,∵BC//AD,∴△AED∽△FEC∴25 EF EC AE DE==∴52AEEF .故答案为B.【点睛】本题考查了平行四边形的性质、等腰三角形的性质以及相似三角形的判定和性质,其中掌握相似三角形的判定和性质是解答本题的关键.7.D【解析】试题分析:抛物线的对称轴为直线x=2,∵﹣1<x1<0,3<x2<4,∴点A(x1,y1)到直线x=2的距离比点B(x2,y2)到直线x=2的距离要大,而抛物线的开口向下,∴y1<y2.故选D.考点:二次函数图象上点的坐标特征.8.C【分析】连接OC、OP、PC由PA⊥PB可得点P在以O为圆心,AB长为直径的圆上;再根据三角形的三边关系可得CP≤OP+OC,则当当点P,O,C在同一直线上,CP的最大值为OP+OC 的长,然后进行计算即可.【详解】解:如图所示,连接OC、OP、PC∵PA⊥PB,∴点P在以O为圆心,AB长为直径的圆上,∵△COP∴CP≤OP+OC,∴当点P,O,C在同一直线上,且点P在CO延长线上时,CP的最大值为OP+OC的长,又∵A(-3,0),B(3,0),C(3,4),∴AB=6,OC=5,OP=12AB=3,∴线段PC的最大值为OP+OC=3+5=8,故答案为C.【点睛】本题考查了90°所对的弦为圆的直径、三角形的三边关系以及最短路径问题,其中确定最短路径是解答本题的关键.9.A【分析】根据特殊角三角函数值,可得答案.【详解】在△ABC中,∠C=90°,若∠A=30°,得∠B=90°﹣30°=60°.sinA+cosB=sin30°+cos60°=12+12=1,故选:A.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.10.C【分析】利用正弦的定义得出AB的长,再用勾股定理求出BC.【详解】解:∵sinB=ACAB=0.5,∴AB=2AC,∵AC=6,∴AB=12,∴=故选C.本题考查了正弦的定义,以及勾股定理,解题的关键是先求出AB 的长.11.60【分析】根据特殊角的三角函数值即可完成解答.【详解】解:∵cosA=0.5=12,∠A 为锐角,∴∠A=60°,故答案为60;【点睛】本题考查了特殊角的三角函数值,牢记特殊角的三角函数值是解答本题的关键.12.52【分析】将(m ,2)、(5,n )代入k y x =得到一个方程组,然后解方程组即可.【详解】解:∵曲线(0)k y k x=≠经过点(m,2)、(5,n),∴25k m n m ⎧=⎪⎪⎨⎪=⎪⎩解得m=2k ,n=5k ,∴5225k m k n ==;故答案为52;【点睛】本题考查了反比例函数图像上的点的性质,即理解函数图像上的点满足函数解析式是解答本题的关键.13.13根据解直角三角形,由tan 3a A b==,即可得到tanB.【详解】解:在Rt ABC ∆中,∠C=90°,∴tan 3a A b ==,∴1tan 3b B a ==.故答案为13.【点睛】本题考查了解直角三角形,解题的关键是掌握正切值等于对边比邻边.14【分析】直接利用特殊角的三角函数值计算得出答案.【详解】解:∵在Rt △ABC 中,∠C=90°,∠A=30°,∴.【点评】此题主要考查了特殊角的三角函数值,正确记忆特殊角的三角函数值是解题关键.15.12【分析】设AH=BC=2x ,根据等腰三角形三线合一的性质可得BH=CH=12BC=x ,然后得出tan ∠BAH 的值.【详解】解:设AH=BC=2x ,∵AB=AC ,AH ⊥BC ,∴BH=CH=12BC=x ,∴tan ∠BAH=BH x 1AH 2x 2==,故答案为:12【点睛】本题考查了解直角三角形、等腰三角形的性质、锐角三角函数,根据等腰三角形三线合一的性质可得BH=CH=12BC=x 是解题的关键.16.(1)223y x x =--;(2)(1,-4)【分析】(1)根据与坐标轴的两个交点,使用待定系数法进行解答即可;(2)将(1)求得的解析式,化成顶点式即可完成解答。
九年级数学上学期期末检测试题(含答案)注意事项:本试题共8页,满分为150分,考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并将考点、姓名、准考证号和座号填写在试题规定的位置.考试结束后,仅交回答题卡....... 第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.) 1.sin30︒的值为( ) A.1223 D.12.如图中几何体的左视图为( )A. B.C. D.3.如果25a b =,那么下列比例式中正确的是( ) A.25a b = B.25a b= C.52a b = D.25a b = 4.下列的各点中,在反比例函数1y x=图象上的点是( ) A.()2,4B.()1,5C.1,22⎛⎫⎪⎝⎭D.11,23⎛⎫⎪⎝⎭5.关于x 的一元二次方程2210kx x ++=有两个相等的实数根,则k 的值为( )A.2-B.1-C.0D.16.若点()11,y -,()21,y ,()32,y 在反比例函数ky x=(0k <)的图象上,则下列结论中正确的是( ) A.123y y y >> B.132y y y >>C.312y y y >>D.321y y y >>7.如图,在64⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC △的顶点均是格点,则sin ABC ∠的值是( )510 25D.458.一次函数y cx a =-(0c ≠)和二次函数2y ax x c =++(0a ≠)在同一平面直角坐标系中的图象可能是( )A. B.C. D.9.如图,在矩形ABCD 中,连接BD ,分别以B 、D 为圆心,大于12BD 的长为半径画弧,两弧交于P 、Q 两点,作直线PQ ,分别与AD 、BC 交于点M 、N ,连接BM 、DN .若3AB =,6BC =,则四边形MBND 的周长为( )A.15B.9C.154D.9410.如图,已知开口向上的抛物线2y ax bx c =++与x 轴交于点()1,0-,对称轴为直线1x =.下列结论:①0abc >;②20a b +=;③若关于x 的方程210ax bx c +++=一定有两个不相等的实数根;④13a >.其中正确的个数有( )A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题4分,共24分.)11.如图,四边形ABCD ∽四边形A B C D '''',若55B ∠=︒,80C ∠=︒,110A ∠'=︒,则D ∠=______°.12.在一个不透明的袋子里装有若干个红球和6个黄球,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则估计袋子中红球的个数是______个. 13.如图,若点A 在反比例函数ky x=(0k ≠)的图象上,AM x ⊥轴于点M ,AMO △的面积为8,k =______.14.将抛物线()2213y x =-+向右移3单位,上移2单位所得到的新抛物线解析式为______. 15.定义一种运算:()sin sin cos cos sin αβαβαβ+=+,()sin sin cos cos sin αβαβαβ-=-. 例如:当60α=︒,45β=︒时,()321262sin 604522224-︒=⨯-⨯︒=, 则sin75︒的值为______.16.如图,在正方形ABCD 中,点M 、N 为边BC 和CD 上的动点(不含端点),45MAN ∠=︒, 下列四个结论:①当2MN MC =时,则22.5BAM ︒∠=;②90AMN MNC ︒∠+∠=;③MNC △的周长不变;④若2DN =,3BM =,则ABM △的面积为15.其中正确结论的序号是______.三、解答题(本大题共10小题,共86分) 17.(6分)计算:()0π12sin60123︒---. 18(6分)2670x x +-=.19.(6分)如图,在菱形ABCD 中,CE AB ⊥于点E ,CF AD ⊥于点F ,求证:AE AF =.20.(8分)如图,12∠=∠,B D ∠=∠,9AE =,12AD =,20AB =.求AC 的长度.21.(8分)某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A .音乐;B .体育;C .美术;D .阅读;E .人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了______名学生; ②补全条形统计图(要求在条形图上方注明人数); ③扇形统计图中圆心角a =______度;(2)若该校有2800名学生,估计该校参加D 组(阅读)的学生人数;(3)学校计划从E 组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.22.(8分)为进一步加强疫情防控工作,长清区某学校决定安装红外线体温检测仪,对进入测温区域的人员进行快速测温(如图1),其红外线探测点O 可以在垂直于地面的支杆OP 上下调节(如图2),已知探测最大角(OBC ∠)为61°,探测最小角(OAC ∠)为37°.若该校要求测温区域的宽度AB 为1.4米,请你帮助学校确定该设备的安装高度OC .(参考数据:sin610.87≈︒,cos610.48︒≈,tan61 1.8≈︒,sin370.6≈︒,cos370.8≈︒tan370.75︒︒≈)23.(10分)某商店准备进一批季节性小家电,单价40元,经市场预测,销售定价为52元时,可售出180个.现在采取提高商品定价减少销售量的办法增加利润,定价每增加1元,销售量净减少10个. (1)商店若将准备获利2000元,则定价应增加多少元?(2)若商店要获得最大利润,则定价应增加多少元?最大利润是多少? 24.(10分)如图,一次函数1y x =-的图象与反比例函数ky x=(0x >)的图象交于点()3,B a ,与x 轴交于点A .点C 在反比例函数ky x=(0x >)的图象上的一点,CD x ⊥轴,垂足为D ,CD 与AB 交于点E ,OA AD =.(1)求a ,k 的值;(2)若点P 为x 轴上的一点,求当PB PC +最小时,点P 的坐标;(3)F 是平面内一点,是否存在点F 使得以A 、B 、C 、F 为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点F 的坐标;若不存在,请说明理由. 25.(12分)【发现问题】(1)如图1,已知CAB △和CDE △均为等边三角形,D 在AC 上,E 在CB 上,易得线段AD 和BE 的数量关系是______.(2)将图1中的CDE △绕点C 旋转到图2的位置,直线AD 和直线BE 交于点F . ①判断线段AD 和BE 的数量关系,并证明你的结论; ②图2中AFB ∠的度数是______. 【探究拓展】(3)如图3,若CAB △和CDE △均为等腰直角三角形,90ABC DEC ︒∠=∠=,AB BC =,DE EC =,直线AD 和直线BE 交于点F ,分别写出AFB ∠的度数,线段AD 、BE 间的数量关系,并说明理由.26.(12分)综合与探究:如图,抛物线23y ax bx =+-(0a ≠)与x 轴交于点()3,0A -和点()1,0B ,与y 轴交于点C .(1)求此抛物线的函数表达式;(2)若点D 是第三象限抛物线上一动点,连接AD ,CD ,AC ,求ACD △面积的最大值,并求出此时点D 的坐标;(3)若点E 在抛物线的对称轴上,线段EB 绕点E 逆时针旋转90°后,点B 的对应点B '恰好也落在此抛物线上,请直接写出点E 的坐标.参考答案一、选择题(本大题共10小题,每小题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 答案ADCCDBABAD11. 115 12. 2 13.16- 14.()2245y x =-+ 15.426+ 16.①③. 三.解答题(本大题共10小题,共86分)17.(6分)计算:()03π12sin601231223332--︒+-=-= 18.(6分)2670x x +-=.公式法:算出64=△,11x ∴=,27x =-因式分解法:()()170x x -+=,11x ∴=,27x =- 配方法:()2316x +=,11x ∴=,27x =- 19.(6分) 证明:菱形ABCD ,AB AD BC CD ∴===,B D ∠=∠CE AB ⊥,CF AD ⊥.90BEC DFC ∴∠=∠=︒()BCE DCF AAS ∴△≌△(或者连接AC ,证()ACE ACF AAS △≌△) AE AF ∴=.20.(8分) 证明:12∠=∠,12BAE BAE ∴∠+∠=∠+∠,DAE BAC ∴∠=∠B D ∠=∠,DAE BAC ∴△∽△ AD AE AB AC ∴=,12920AC∴=,15AC ∴= 21.(8分)根据图中信息,解答下列问题: (1)①400;②60,60;③54 (2)1402800980400⨯=(人) 答:参加D 组(阅读)的学生人数为280人 (3)列表或画树状图正确共有12中等可能的结果,其中恰好抽到A ,C 两人同时参赛的有两种P ∴(恰好抽中甲、乙两人)21126== 22.(8分)方法1:解:在Rt OBC △中,8tan tan 6 1.1O B OBC CC∠==︒=, ∴设BC x =,则 1.8OC x =在Rt OAC △中,1tan ta 5n 37.80.71.4OC C AC O xA x=+==∠︒=, 1x ∴=.经检验,1x =是原方程的解1.8 1.8OC x ∴==方法2:解:在Rt OAC △中,7tan tan 330.547O C A C A O C ∠=︒===∴设3OC x =,则4AC x =在Rt OBC △中,3 1.81tan .t 4n 614a O C C x BC OB x ==-∠=︒=0.6x ∴=经检验,0.6x =是原方程的解3 1.8OC x ∴==23.(10分)(1)解:设定价应增加x 元()()5240180102000x x -+-=解得18x =,22x =-采取提高商品定价减少销售量的办法增加利润22x ∴=-不合题意舍去,8x ∴=答:定价应增加8元.(1)设定价增加x 元时获利y 元()()215240108016010026y x x x x -+=-+-=+当3x =时,y 有最大值,为2250元.答:若商店要获得最大利润,则定价应增加3元,最大利润是2250元. 24.(10分)(1)求出2a =,6k =;(2)求出()2,3C ,画图找到P 点,求出点P 的坐标1305⎛⎫⎪⎝⎭,; (3)()14,5F ,()22,1F -,()30,1F 25.(12分)【发现问题】 (1)AD BE =(2)①AD BE =,证明过程 ②60度 (3)写出45AFB ∠=度,2AD BE =证明过程26.(12分)(1)解出1a =,2b =,∴抛物线的函数表达式223y x x =+- (2)求出点()0,3C -,AC 直线关系式3y x =--设点()2,23D m m m +-,过点D 作x 轴的垂线,交AC 于点F , 则点(),3F m m --,()()223233DE m m m m m ∴=---+-=--23922m m S --∴=当32m =-时,S 有最大值为827,此时315,24D ⎛⎫-- ⎪⎝⎭,(3)()11,3E -,()21,2E --。
人教版九年级上册数学期末考试试题一、单选题1.下列图形中,是中心对称图形的是( )A .B .C .D .2.已知2x =是一元二次方程220x mx ++=的一个根,则m 的值是( )A .3-B .3C .0D .0或3-3.下列事件中,是必然事件的是( )A .从一个只有白球的盒子里摸出一个球是白球B .掷一枚硬币,正面朝上C .任意买一张电影票座位是3D .汽车经过红绿灯路口时前方正好是绿灯4.把抛物线y =﹣(x+1)2向左平移1个单位,然后向上平移3个单位,则平移后抛物线为( )A .y =﹣(x+2)2﹣3B .y =﹣x 2﹣3C .y =﹣x 2+3D .y =﹣(x+2)2+35.如图,点A ,B ,C 在O 上,若BC ,AB ,AC 分别是O 内接正三角形.正方形,正n 边形的一边,则n =( )A .9B .10C .12D .156.若二次函数y =ax 2的图象经过点(1,﹣2),则它也经过( )A .(﹣1,﹣2)B .(﹣1,2)C .(1,2)D .(2,1) 7.如图,在ABC 中,64C ∠=︒,将ABC 绕着点A 顺时针旋转后,得到AB C '',且点C '在BC 上,则B C B ∠''的度数为( )A .42°B .48°C .52°D .58°8.一台机器原价100万元,若每年的折旧率是x ,两年后这台机器约为y 万元,则y 与x 的函数关系式为( )A .2100(1)y x =-B .100(1)y x =-C .2100y x =-D .2100(1)y x =+ 9.如图,圆锥侧面展开得到扇形,此扇形半径6CA =,圆心角120ACB ∠=︒,则此圆锥高OC 的长度是( )A .2B .C .D .10.如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;①方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;①3a +c >0;①当y >0时,x 的取值范围是-1≤x <3;①当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个二、填空题11.在平面直角坐标系中点A (2,1)关于原点对称点的坐标是 ___.12.已知一元二次方程x 2+2x ﹣m =0有两个不相等的实数根,则m 的取值范围是 _____.13.如图:四边形ABCD 内接于①O ,E 为BC 延长线上一点,若①A =72°,则①DCE =______°.14.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时同地测得一栋楼的影长为90m ,则这栋楼的高度为________m .15.如图,一名男生推铅球,铅球行进高度y (m )与水平距离x (m )之间的关系是y =﹣22531312x x ++,则他将铅球推出的距离是 _____m .16.如图,反比例函数的图象与一次函数y =﹣2x+3的图象相交于点P ,点P 到y 轴的距离是1,则这个反比例函数的解析式是__________________.17.方程x (x ﹣2)﹣x+2=0的正根为_____.三、解答题18.如图,①ABC 绕着顶点A 逆时针旋转到①ADE ,①B =40°,①E =60°,AB//DE ,求①DAC 的度数.19.如图,AB 是①O 直径,弦CD 交AB 于点E ,OE =DE ,①BOD =α,求①AOC (用含α的式子表示).20.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.(1)随机摸取一个小球的标号是奇数,该事件的概率为_______;(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出的小球标号相同的概率.21.如图所示,点D是①ABC的AB边上一点,且AD=1,BD=2,AC①ACD①①ABC.22.如图,墙壁EF长24米,需要借助墙壁围成一个矩形花园ABCD,现有围栏40米,设AB长x米.(1)BC的长为米(用含x的式子表示);(2)求这个花园的面积最大值.23.如图1,AB是①O的直径,弦CD与AB相交于点E,①C+①D=90°,BF①CD.(1)求证:BF是①O的切线;(2)延长AC交直线FB于点P(如图2),若点E为OB中点,CD=6,求PC的长.24.如图,AB是①O的直径,AC是弦,P为AB延长线上一点,①BCP=①BAC,①ACB 的平分线交①O于点D,交AB于点E,(1)求证:PC是①O的切线;(2)求证:①PEC是等腰三角形;(3)若AC+BC=2时,求CD的长.25.如图,抛物线2=++与x轴交于A,B两点,与y轴交于C点,OA=1,OB=OC=3.y ax bx c(1)求抛物线的表达式;(2)如图1,点D为第一象限抛物线上一动点,连接DC,DB,BC,设点D的横坐标为m,①BCD的面积为S,求S的最大值;(3)如图2,点P(0,n)是线段OC上一点(不与点O、C重合),连接PB,将线段PB以点P为中心,旋转90°得到线段PQ,是否存在n的值,使点Q落在抛物线上?若存在,请求出满足条件的n的值,若不存在,请说明理由.26.如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1.(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.①当t>0时,①BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.参考答案1.C【详解】解:A、不是中心对称图形,选项说法错误,不符合题意;B、不是中心对称图形,选项说法错误,不符合题意;C、是中心对称图形,选项说法正确,符合题意;D、不是中心对称图形,选项说法错误,不符合题意;故选:C.2.A【详解】解:①x=2是一元二次方程x2+mx+2=0的一个解,①4+2m+2=0,①m=3 .故选:A.3.A【详解】解:A 、“从一个只有白球的盒子里摸出一个球是白球”是必然事件,此项符合题意;B 、“掷一枚硬币,正面朝上”是随机事件,此项不符题意;C 、“任意买一张电影票座位是3”是随机事件,此项不符题意;D 、“汽车经过红绿灯路口时前方正好是绿灯”是随机事件,此项不符题意;故选:A .4.D【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“上加下减,左加右减”的原则可知,平移后的抛物线解析式为2(11)3y x =-+++即为2(2)3y x =-++故选D5.C【分析】分别连接OB 、OA 、OC ,根据正多边形的中心角=360n︒,可分别求得①BOC 、①AOB 的度数,从而可得①AOC 的度数,再根据正多边形的中心角=360n ︒,可求得边数n . 【详解】分别连接OB 、OA 、OC ,如图所示①BC 是O 内接正三角形的一边 ①①BOC=3601203︒=︒ 同理,可得:①AOB=90°①①AOC=①BOC−①AOB=30°①AC 是O 正n 边形的一边①36030n︒=︒ ①n=12故选:C .【点睛】本题考查了正多边形与圆,正多边形的中心角=360n︒,掌握这一知识是解决本题的关键.6.A【分析】先根据题意求出a 的值,然后逐项分析判断即可.【详解】解:①二次函数2y ax =的图象经过点(1,﹣2),①将(1,﹣2)代入2y ax =得:2a =-,①二次函数的解析式为:22y x =-,当1x =-时,2y =-,即原函数图象经过点(﹣1,﹣2),当2x =时,8y =-,即原函数图象经过点(2,﹣8),当1x =时,2y =-,即原函数图象经过点(1,﹣2),故选:A .【点睛】本题考查二次函数2y ax =的图象与性质,掌握函数图象上点坐标的特征,准确求解函数解析式是解题关键.7.C【分析】根据旋转的性质可以得到AC AC =',然后根据64C ∠=︒,即可得到旋转角的度数,然后三角形内角和,即可得到B C B ∠''的度数. 【详解】解:将ABC 绕着点A 顺时针旋转后,得到AB C '',64C ∠=︒, AC AC ∴=',CAC BAB ∠'=∠',B B ∠=∠',64C AC C ∴∠=∠'=︒,18052CAC C AC C ∴∠'=︒-∠-∠'=︒,52BAB ∴∠'=︒,52B AD ∴∠'=︒,B B ∠=∠',BDC B DA ∠'=∠',52BC D B AD ∴∠'=∠'=︒,即B C B ∠''的度数为52︒,故选:C.【点睛】本题考查旋转的性质、三角形内角和、等腰三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.8.A【分析】原价为100万元,一年后的价格是100×(1-x),二年后的价格是为:100×(1-x)×(1-x)=100(1-x)2,则函数解析式求得.【详解】解:由题意得:二年后的价格是为:100×(1-x)×(1-x)=100(1-x)2,则函数解析式是:y=100(1-x)2.故选A.【点睛】本题考查了根据实际问题列二次函数关系式的知识,需注意第二年的价位是在第一年的价位的基础上降价的.9.C【分析】设圆锥底面圆的半径为r,根据圆锥的侧面展开图求出圆锥的底面圆的周长,进而求得OA,最后用勾股定理求出CA即可.【详解】解:设圆锥底面圆的半径为r①AC=6,①ACB=120°①12062180l AB rππ⨯==,即:r=OA=2在Rt①AOC中,OA=2,AC=6,由勾股定理得,OC==故填:【点睛】本题主要考查了扇形的弧长公式、勾股定理等知识点,根据弧长公式和圆的周长公式求得OA是解答本题的关键.10.B【详解】解:①抛物线与x轴有2个交点,①b2﹣4ac>0,所以①正确;①抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),①方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3,所以①正确;①x=﹣2b a=1,即b=﹣2a ,而x=﹣1时,y=0,即a ﹣b+c=0, ①a+2a+c=0,所以①错误;①抛物线与x 轴的两点坐标为(﹣1,0),(3,0),①当﹣1<x <3时,y >0,所以①错误;①抛物线的对称轴为直线x=1,①当x <1时,y 随x 增大而增大,所以①正确.故选:B .11.(-2,-1)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【详解】解:点A (2,1)关于原点的对称点的坐标是(-2,-1),故答案为:(-2,-1).【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.12.m>-1【分析】根据一元二次方程根的判别式,当①>0时,方程有两个不相等的实数根,列不等式求出m 的范围即可.【详解】①方程有两个不相等的实数根①①>0①22 -4×1• (-m)>04+4m>0m>-1①m 的取值范围是m>-1故答案为:m>-1【点睛】本题主要考查一元二次方程根的判别式,对于一元二次方程ax 2+bx+c=0, ①>0时,方程有两个不相等的实数根;①=0时,方程有两个相等的实数根;①<0时方程没有实数根.掌握以上知识是解题的关键.13.72【分析】根据圆内接四边形对角和为180°再结合补角的性质即可得到①DCE=①A .【详解】解:①四边形ABCD 内接于①O ,①①A+①BCD=180°①①BCD+①DCE=180°①①DCE=①A=72°,故答案为:72.【点睛】本题考查的是圆内接四边形的性质和补角性质,掌握圆这些是本题关键. 14.54【分析】根据同一时刻物高与影长成正比即可得出结论.【详解】解:设这栋楼的高度为hm ,①在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一栋楼的影长为60m , ①1.8390h =, 解得h=54(m ).故答案为54.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.15.10【分析】成绩就是当高度y=0时x 的值,所以解方程可求解.【详解】解:当y=0时,-22531312x x ++=0, 解之得x 1=10,x 2=-2(不合题意,舍去),所以推铅球的距离是10米.故答案为10【点睛】此题把函数问题转化为方程问题来解,渗透了函数与方程相结合的解题思想方法.16.5y x=- 【分析】根据点P 到到y 轴的距离及其象限,确定横坐标,代入一次函数解析式,得到其纵坐标,再将点P 的坐标代入反比例函数解析式k y x=中求得k 值,即可得解; 【详解】解:①点P 到y 轴的距离是1,且由图可知,点P 在第二象限,①点P 的横坐标为x=-1,代入一次函数y =﹣2x+3中得到:y =﹣2×(-1)+3=5,①点P 的坐标为(-1,5), 设反比例函数的解析式为:k y x=,点P 在反比例函数图象上, ①51k =-, ①k=-5,①反比例函数解析式为:5y x=-, 故答案为:5y x=- 【点睛】本题考查了一次函数与反比例函数的交点问题,利用待定系数法,熟练掌握待定系数法是解本题的关键.17.x =1或x =2【分析】利用提取公因式法解方程即可得答案.【详解】①x (x ﹣2)﹣(x ﹣2)=0,①(x ﹣2)(x ﹣1)=0,①x ﹣2=0或x ﹣1=0,解得:x =2或x =1,故答案为:x =1或x =2【点睛】本题考查解一元二次方程,一元二次方程的常用方法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.18.40°【分析】根据旋转的性质可知,①B =①D ,①C =①E ;根据三角形内角和即可求出①BAC 的度数;再根据AB①DE ,可得①BAD =①D ,因此可求解①DAC 的度数.【详解】①①ABC 旋转到①ADE ,①B =40°,①E =60°①①B =①D =40°,①C =①E =60°①①BAC =180°-40°-60°=80°①AB①DE①①BAD =①D =40°①①DAC =①BAC -①BAD =80°-40°=40°【点睛】本题考查了旋转的性质、平行线的性质、三角形的内角和定理,运用旋转的性质得出①C的度数是本题的关键.19.①AOC=3α【分析】利用等腰三角形的性质得到①D=①BOD=α,利用三角形外角性质得到①CEO=2α,由于OC=OD,则①C=①D=α,然后根据三角形外角性质得到①AOC=3α.【详解】解:①OE=DE,①①D=①BOD=α,①①CEO=①D+①BOD,①①CEO=2α,①OC=OD,①①C=①D=α,①①AOC=①C+①CEO,①①AOC=3α.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆心角、弧、弦的关系.20.(1)23(2)P(两次取出的小球标号相同)1 3【分析】(1)直接由概率公式求解即可;(2)画树状图,共有9种等可能的结果,两次取出小球标号相同的结果有3种,再由概率公式求解即可.(1)①在1,2,3三个数中,其中奇数有1,3共2个数,①随机摸取一个小球的标号是奇数,该事件的概率为23故答案为:23;(2)画树状图如下:由树状图可知,随机摸取一个小球后放回,再随机摸取一个小球,共有9种等可能的结果,其中两次取出的小球标号相同的结果共有3种,①P (两次取出的小球标号相同)3193==. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.21.见解析 【分析】首先利用已知得出AD AC AC AB=,进而利用相似三角形的判定方法得出即可.【详解】证明:①AD AC =,AC AB ==,, ①AD AC AC AB =, ①①A=①A ,①①ACD①①ABC .【点睛】本题主要考查了相似三角形的判定,正确把握相似三角形的判定方法是解题关键.22.(1)(40-2x )(2)200平方米【分析】(1)由AB+BC+CD=40米,AB=CD=x 米可得答案;(2)根据矩形的面积公式得出y=x (40-2x )=-2x 2+40x=-2(x -10)2+200,再利用二次函数的性质求解即可.(1)解:由题意知AB+BC+CD=40米,AB=CD=x 米,所以BC 的长为(40-2x )米,故答案为:(40-2x );(2)解:设这个花园的面积为y 平方米,由题意得:y=x (40-2x )=-2x 2+40x=-2(x -10)2+200,①-2<0,①当x=10时,y 取得最大值,最大值为200,答:这个花园的面积最大值为200平方米.【点睛】本题考查二次函数的应用,关键是根据等量关系写出函数解析式.23.(1)见解析(2)PC=2【分析】(1)根据圆周角定理以及已知条件可得①BEC=①A+①C=90°,根据平行线的性质得①ABF=①BEC=90°,则AB①BF,即可得BF是①O的切线;(2)由垂径定理得DE=CE=3,根据线段垂直平分线的性质得OD=BD,可证明①OBD是等可得边三角形,可得①BDE=30°,BD=2BE,根据勾股定理求出(1)证明:①①A=①D,①C+①D=90°,①①BEC=①A+①C=90°,①BF∥CD,①①ABF=①BEC=90°,①AB①BF,①BF是①O的切线;(2)解:连接OD,①①BEC=90°,①AB①CD,①点E为OB中点,CD=6,①CE=DE=3,OD=BD,①OB=OD=BD,①①OBD 是等边三角形,①①OBD=60°,①BDE=30°,①BD=2BE ,①A=①BDE=30°,在Rt①BDE 中,BD 2=BE 2+DE 2,①(2BE )2=BE 2+32,解得①点E 为OB 中点,在Rt①ACE 中,AC 2=CE 2+AE 2=32+(2=36,①AC=6=2CE ,①BP=4,AP=8,①PC=8-6=2.24.(1)见解析;(2)见解析;(3【分析】(1)连接OC ,根据圆周角定理可得①ACB=90°,根据等腰三角形等边对等角以及已知条件证明①BCP +①OCB=90°即可;(2)根据题意以及角平分线定义求得①PEC=①PCE 即可得出结论;(3)连接BD ,作DM AC ⊥,DN CB ⊥,垂足为M ,N ,先证明()AMD BND HL ≌,然后证明四边形CMDN 为正方形,结合已知可得出结论.【详解】解:连接OC,①AB 为直径,①①ACB=90°,①①ACO+①OCB=90°,①OA=OC ,①①BAC=①ACO ,①①BCP =①BAC ,①①BCP=①ACO①①BCP +①OCB=90°,即①OCP=90°,①PC 是①O 的切线;(2)①①BCP =①BAC ,① ①ACB 的平分线交①O 于点D ,①①ACD =①BCD ,①①PCE =①PCB+ ①BCD ,①PEC =①BAC+①ACD ,①①PEC=①PCE ,①①PEC 是等腰三角形;(3)连接BD ,作DM AC ⊥,DN CB ⊥,垂足为M ,N ,①CD 平分ACB ∠,DM AC ⊥,DN CB ⊥,①DM DN =,AD BD =,①AD BD =,①90AMD BND ∠=∠=︒,①()AMD BND HL ≌,①90DMC MCN CND ∠=∠=∠=︒,①四边形CMDN 为矩形,①DM DN =,①矩形CMDN 为正方形,①CN =, ①2AC BC CM AM CB CN +=++=, ①AC BC +=,①2AC BC +=, ①CD25.(1)2y x 2x 3=-++;(2)278;(3)存在,n=1或 【分析】(1)通过待定系数法求解函数解析式即可;(2)作DF①x 轴于点F ,交BC 于点E ,根据12S DE OB =⋅求得S 关于m 的解析式,根据二次函数的性质求解即可;(3)过点P 作PB 的垂线,交抛物线于点1Q 和2Q ,作1Q M y ⊥轴于点M ,2Q N y ⊥轴于点N ,利用全等三角形的性质求解即可.【详解】解:(1)设函数关系式为2y ax bx c =++由题意,得A(-1,0),B(3,0),C(0,3)①(1)(3)y a x x =+-把C(0,3)代入得,1a =-①2y x 2x 3=-++(2)作DF①x 轴于点F ,交BC 于点E设直线BC 关系式为y=kx +b ,代入(3,0),(0,3)得k=-1,b=3,①y=-x +3①点D 的横坐标为m ,则DF=223m m -++,EF=-m +3①DE=23m m -+22133327(3)()22228S DE OB m m m =⋅=-+=--+ ①302-<,①S 的最大值是278(3)过点P 作PB 的垂线,交抛物线于点1Q 和2Q ,作1Q M y ⊥轴于点M ,2Q N y ⊥轴于点N①1290Q MP Q NP BOP ∠=∠=∠=︒①1190Q PM PQ M ∠+∠=︒,190Q PM BPO ∠+∠=︒,①1PQ M BPO ∠=∠又①1BP PQ =,①1Q PM PBO △≌△①1MQ OP n ==,3MP OB ==,①1()3Q n n +,代入抛物线,得2323n n n +=-++解得11n =,20n =(舍去)同理,2PN Q PBO ≌,①2Q (-n ,n -3)代入抛物线,得2323n n n =-+--解得1n =2n =舍去)综上,存在n 的值,n=1或 【点睛】此题考查了二次函数与几何的综合应用,涉及了待定系数法求解析式,二次函数的性质,全等三角形的判定与性质,解题的关键是熟练掌握二次函数以及全等三角形的判定与性质.26.(1),B 点坐标为(3,0);(2)①;①.【分析】(1)由对称轴公式可求得b ,由A 点坐标可求得c ,则可求得抛物线解析式;再令y=0可求得B 点坐标;(2)①用t 可表示出ON 和OM ,则可表示出P 点坐标,即可表示出PM 的长,由矩形的性质可得ON=PM ,可得到关于t 的方程,可求得t 的值;①由题意可知OB=OA ,故当①BOQ 为等腰三角形时,只能有OB=BQ 或OQ=BQ ,用t 可表示出Q 点的坐标,则可表示出OQ 和BQ 的长,分别得到关于t 的方程,可求得t 的值.【详解】(1)①抛物线2y x bx c =-++对称轴是直线x=1,①﹣2(1)b ⨯-=1,解得b=2, ①抛物线过A (0,3),①c=3,①抛物线解析式为2y x 2x 3=-++,令y=0可得2230x x -++=,解得x=﹣1或x=3, ①B 点坐标为(3,0);(2)①由题意可知ON=3t ,OM=2t ,①P 在抛物线上,①P (2t ,2443t t -++),①四边形OMPN 为矩形,①ON=PM ,①3t=2443t t -++,解得t=1或t=﹣34(舍去), ①当t 的值为1时,四边形OMPN 为矩形;①①A (0,3),B (3,0),①OA=OB=3,且可求得直线AB 解析式为y=﹣x+3,①当t>0时,OQ≠OB,①当①BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,①Q(2t,﹣2t+3),﹣3|,又由题意可知0<t<1,当OB=QB|2t﹣3|=3,解得当OQ=BQ﹣3|,解得t=34;综上可知当t34时,①BOQ为等腰三角形.21。
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列电视台的台标,是中心对称图形的是()A.B.C.D.2.一元二次方程x2+2x=0的根是()A.x=0或x=﹣2B.x=0或x=2C.x=0D.x=﹣23.直径分别为8和6的两圆相切,则这两圆的圆心距等于()A.14B.2C.14或2D.7或14.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1B.k≥﹣1且k≠0C.k≤﹣1D.k≤1且k≠05.若两圆的半径分别为5和2,圆心距是4,则这两圆的位置关系是()A.外离B.外切C.相交D.内含6.如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3B.4C.D.7.当x0>时,函数5yx=-的图象在()A.第四象限B.第三象限C.第二象限D.第一象限8.从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为()A.12B.13C.14D.159.方程(x+1)(x-3)=5的解是A.x1=1,x2=-3B.x1=4,x2=-2C .x 1=-1,x 2=3D .x 1=-4,x 2=210.某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间既周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的12,设人行通道的宽度为x 千米,则下列方程正确的是()A .(2﹣3x )(1﹣2x )=1B .12(2﹣3x )(1﹣2x )=1C .12(2﹣3x )(1﹣2x )=1D .12(2﹣3x )(1﹣2x )=2二、填空题11.在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是________.12.已知点(m -1,y 1),(m -3,y 2)是反比例函数y =mx(m <0)图象上的两点,则y 1____y 2(填“>”“=”或“<”).13.如图,在Rt AOB 中,OA=OB=O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为_____.14.如图,在平面直角坐标系中,抛物线()22y a x k =-+(a 、k 为常数且0a ≠)与x 轴交于点A 、B ,与y 轴交于点C ,过点C 作//CD x 轴与抛物线交于点D .若点A 的坐标为()4,0-,则OBCD的值为____.15.如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO为_____.161x-x的取值范围是_______.173x-x的取值范围是_______.18.边长为1的正三角形的内切圆半径为________三、解答题19.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E.(1)求证:D为BC的中点;(2)过点O作OF⊥AC,于F,若AF=74,BC=2,求⊙O的直径.20.已知x2+(a+3)x+a+1=0是关于x的一元二次方程.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根为x1,x2,且x12+x22=10,求实数a的值.21.如图,已知圆内接四边形ABCD的对角线AC、BD交于点N,点M在对角线BD上,且满足∠BAM=∠DAN,∠BCM=∠DCN.求证:(1)M为BD的中点;(2)AN AM CN CM=.22.一对姐弟中只能有一人参加夏季夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.试用列表法或树状图分析这种方法对姐弟俩是否公平.23.如图,已知直线PT与⊙O相交于点T,直线PO与⊙O相交于A、B两点,已知PTA B∠=∠.(1)求证:PT是⊙O的切线;(2)若PT BT==24.如图,二次函数y=﹣2x2+x+m的图象与x轴的一个交点为A(1,0),另一个交点为B,且与y轴交于点C.(1)求m 的值;(2)求点B 的坐标;(3)该二次函数图象上是否有一点D (x ,y )使S △ABD =S △ABC ,求点D 的坐标.25.如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,连接PB 、AB ,∠PBA=∠C ,(1)求证:PB 是⊙O 的切线;(2)连接OP ,若OP ∥BC ,且OP=8,⊙O 的半径为,求BC 的长.26.如图,直线y =﹣13x +m 与x 轴,y 轴分别交于点B 、A 两点,与双曲线相交于C 、D 两点,过C 作CE ⊥x 轴于点E ,已知OB =3,OE =1.(1)求直线AB 和双曲线的表达式;(2)设点F 是x 轴上一点,使得2CEF COB S S △△=,求点F 的坐标.参考答案1.D 【详解】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,因此,四个选项中只有D 符合.故选D .2.A 【解析】∵x 2+2x=0,∴x (x+2)=0,∴x=0或x+2=0,∴x 1=0或x 2=﹣2,故选A .3.D 【解析】当两圆外切时,则圆心距等于8÷2+6÷2=7;当两圆内切时,则圆心距等于8÷2-6÷2=1.故选D .4.A 【分析】分两种情况讨论:(1)当0k =时,方程为一元一次方程,必有实数根;(2)当0k ≠时,方程为一元二次方程,当0∆≥时,必有实数根.【详解】(1)当0k =时,方程为一元一次方程,必有实数根;(2)当0k ≠时,方程为一元二次方程,当0∆≥时,必有实数根:()4410k ∆=--≥,解得1k ≥-,综上所述,1k ≥-.故选:A .【点睛】本题考查了根的判别式,要注意,先进行分类讨论,当方程是一元一次方程时,总有实数根;当方程为一元二次方程时,根的情况要通过判别式来判定.5.C 【解析】∵两圆的半径分别为5和2,圆心距为4.则5-2=3<4<5+2=7,∴两圆相交.故选C 6.C 【详解】连接OB ,OD ,OP ,过O 作OM AB ⊥,交AB 于点M ,过O 作ON CD ⊥,交CD 于点N .∵AB =CD =8,∴BM=DN=4,由垂径定理,勾股定理得:,∵AB ,CD 是互相垂直的两条弦,∴∠DPB=90°∵OM AB ⊥,ON CD ⊥,∴∠OMP=∠ONP=90°∴四边形MONP 是正方形,∴=选C 7.A 【分析】根据反比例函数()ky k 0x=≠的性质:当k 0>时,图象分别位于第一、三象限;当k 0<时,图象分别位于第二、四象限.【详解】∵反比例函数5yx=-的系数50-<,∴图象两个分支分别位于第二、四象限.∴当x0>时,图象位于第四象限.故选A.8.C【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从四条线段中任意选取三条,所有的可能有:1,3,5;1,3,7;1,5,7;3,5,7共4种,其中构成三角形的有3,5,7共1种,∴能构成三角形的概率为:1 4,故选C.点睛:此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.9.B【解析】(x+1)(x-3)=5,x²-3x+x-3-5=0,x²-2x-8=0,(x+2)(x-4)=0,x1=-2,x2=4,故选B.10.A【解析】人行通道的宽度为x千米,则矩形绿地的长为:12(2﹣3x)千米,宽为(1﹣2x)千米,由题意可列方程:2×12(2﹣3x)(1﹣2x)=12×2×1,即:(2﹣3x)(1﹣2x)=1,故选A.【点睛】本题考查了一元二次方程的应用,正确分析,根据题意找到等量关系列出方程是解题的关键.11.29【详解】根据题意,画出树形图如下:∵从树形图可以看出,摸出两球出现的所有等可能结果共有9种,两个球号码之和为5的结果有2种,∴两次摸取的小球标号之和为5的概率是2 9.12.>【解析】分析:m<0,在每一个象限内,y随x的增大而增大.详解:因为m<0,所以m-3<m-1<0,这两个点都在第二象限内,所以y2<y1,即y1>y2.故答案为>.点睛:对于反比例函数图象上的几个点,如果知道横坐标去比较纵坐标的大小或知道纵坐标去比较横坐标的大小,通常的做法是:(1)先判断这几个点是否在同一个象限内,如果不在,则判断其正负,然后做出判断;(2)如果在同一个象限内,则可以根据反比例函数的性质来进行解答.13.【详解】试题分析:连接OP、OQ,∵PQ是⊙O的切线,∴OQ⊥PQ.根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短.此时,∵在Rt△AOB中,OA=OB=,∴AB=OA=6.∴OP=AB=3.∴.14.2【分析】由抛物线解析式可知抛物线对称轴直线x=2,由A、C的横坐标可知B、D的横坐标,进而求出OB=8,CD=4,即可解答OB.【详解】解:∵抛物线的解析式为y=a(x-2)2+k,∴抛物线的对称轴为直线x=2.∵点A的横坐标为-4,点C的横坐标为0,∴点B的横坐标为8,点D的横坐标为4,∴OB=8,CD=4,∴824OBCD==.故答案为2.【点睛】本题考查了抛物线与x轴的交点,根据抛物线的对称轴找出点B、D的横坐标是解题的关键.15.4【分析】要求圆锥的高,关键是求出圆锥的母线长,即圆锥侧面展开图中的扇形的半径.已知圆锥的底面半径就可求得底面圆的周长,即扇形的弧长,已知扇形的面积和弧长就可求出扇形的半径,即圆锥的高.【详解】解:由题意知:展开图扇形的弧长是2×3π=6π,设母线长为L,则有12×6πL=15π,解得:L=5,∵由于母线,高,底面半径正好组成直角三角形,∴在直角△AOC中高AO4.故填:4.【点睛】此题考查了圆锥体的侧面展开图的计算,揭示了平面图形与立体图形之间的关系,难度一般.x≥16.1【详解】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.∴x-1≥0,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于0.17.x≥3【分析】直接利用二次根式的有意义的条件得到关于x的不等式,解不等式即可得答案.【详解】由题意可得:x﹣3≥0,解得:x≥3,故答案为x≥3.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.18【解析】如图,∵内切圆的半径、外接圆的半径和半边组成一个30°的直角三角形,则∠OBD=30°,BD=12,∴tan∠OBD=O O=∴内切圆半径12=,【点睛】本题主要考查了三角形的内切圆,根据等边三角形的三线合一,可以发现其内切圆的半径、外接圆的半径和半边正好组成了一个30°的直角三角形是解决本题的关键.19.(1)证明见解析;(2)⊙O的直径为4.【解析】试题分析:(1)连接AD,根据直径所对的圆周角是直角,以及三线合一定理即可证得;(2)先根据垂径定理,求得AE=2AF=72;再运用圆周角定理的推论得∠ADB=∠ADC=∠BEA=∠BEC=90°,从而可证得∴△BEC∽△ADC,即CD:CE=AC:BC,根据此关系列方程求解即可得⊙O的直径.试题解析:(1)连接AD∵AB是⊙O的直径,∴AD⊥BC,又∵AB=AC,∴点D是BC的中点;(2)∵OF⊥AC于F,AF=7 4,∴AE=2AF=7 2,连接BE,∵AB为直径D、E在圆上,∴∠ADB=∠ADC=∠BEA=∠BEC=90°,∴在△BEC、△ADC中,∠BEC=∠ADC,∠C=∠C,∴△BEC∽△ADC,即CD:CE=AC:BC,∵D为BC中点,∴CD=12 BC,又∵AC=AB,∴12BC2=CE•AB,设AB=x,可得x(x﹣72)=2,解得x1=﹣12(舍去),x2=4,∴⊙O的直径为4.20.(1)证明见解析;(2)a的值为﹣或﹣2【解析】【试题分析】(1)欲证明方程总有两个不相等的实数根,只需证明根的判别式大于0即可.△=(a+3)2﹣4(a+1)=a2+6a+9﹣4a﹣4=a2+2a+5=(a+1)2+4>0,从而得证;(2)根据韦达定理,将x12+x22=10转化为两根之和与两根之积的形式,代入得到关于a的方程,从而求出a即可.x12+x22=(x1+x2)2﹣2x1x2=10,即(a+3)2﹣2(a+1)=10,解得a1=﹣2+,a2=﹣2﹣.【试题解析】(1)证明:△=(a+3)2﹣4(a+1)=a2+6a+9﹣4a﹣4=a2+2a+5=(a+1)2+4,∵(a+1)2≥0,∴(a+1)2+4>0,即△>0,∴方程总有两个不相等的实数根;(2)根据题意得x1+x2=﹣(a+3),x1x2=a+1,∵x12+x22=10,∴(x1+x2)2﹣2x1x2=10,∴(a+3)2﹣2(a+1)=10,整理得a2+4a﹣3=0,解得a1=﹣2+,a2=﹣2﹣,即a的值为﹣2+或﹣2﹣.【方法点睛】本题目是一道一元二次方程的题目,涉及到根的判别式与韦达定理.在证明一元二次方程根的情况时,通常通过证明根的判别式与0的大小关系解决问题.在涉及到两根的等量关系时,通常转化为两根之和与两根之积的形式,从而求出参数.21.(1)证明见解析;(2)证明见解析.【详解】试题分析:(1)要证M为BD的中点,即证BM=DM,由∠BAM=∠DAN,∠BCM=∠DCN,及圆周角的性质易证明△BAM∽△CBM,△DAM∽△CDM得出比例的乘积形式,可证明BM=DM;(2)欲证AN AMCN CM=,可以通过平行线的性质证明,需要延长AM交圆于点P,连接CP,证明PC∥BD,得出比例式,相应解决MP=CM的问题即可.试题解析:(1)根据同弧所对的圆周角相等,得∠DAN=∠DBC,∠DCN=∠DBA,又∵∠DAN=∠BAM,∠BCM=∠DCN,∴∠BAM=∠MBC,∠ABM=∠BCM,∴△BAM∽△CBM,∴BM AMCM BM=,即BM2=AM•CM,①又∠DCM=∠DCN+∠NCM=∠BCM+∠NCM=∠ACB=∠ADB,∠DAM=∠MAC+∠DAN=∠MAC+∠BAM=∠BAC=∠CDM,∴△DAM∽△CDM,则DM AMCM DM=,即DM2=AM•CM,②由式①、②得:BM=DM,即M为BD的中点;(2)如图,延长AM交圆于点P,连接CP,∴∠BCP=∠PAB=∠DAC=∠DBC,∵PC∥BD,∴AN AM NC PM=,③又∵∠MCB=∠DCA=∠ABD,∠DBC=∠PCB,∴∠ABC=∠MCP,而∠ABC=∠APC,则∠APC=∠MCP,有MP=CM,④由式③、④得:AN AM CN CM=.22.不公平.【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及抽取的两张卡片上的数字之和是5的倍数的情况与抽取的两张卡片上的数字之和是3的倍数的情况,再利用概率公式求得其概率,比较概率的大小,即可知这种方法对姐弟俩是否公平.试题解析:画树状图得:∵共有16种等可能的结果,抽取的两张卡片上的数字之和是5的倍数有4种情况,抽取的两张卡片上的数字之和是3的倍数有5中情况,∴P(姐姐参加)=416=14,P(弟弟参加)=516,∴不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.(1)证明见解析;(2)6π【分析】(1)先根据圆周角定理得:∠ATB=90°,则∠B+∠OAT=90°,根据同圆的半径相等和等腰三角形的性质得:∠OAT=∠2,从而得∠PTA+∠2=90°,即∠OTP=90°,所以直线PT与⊙O 相切;(2)利用TP=TB得到∠P=∠B,而∠OAT=2∠P,所以∠OAT=2∠B,则利用∠ATB=90°可计算出∠B=30°,∠POT=60°,利用含30度的直角三角形三边的关系得到AT=12 AB,△AOT为等边三角形,然后根据扇形的面积公式和图中阴影部分的面积=S扇形OA T-S△AOT进行计算.【详解】(1)证明:连接OT,∵AB是⊙O的直径,∴∠ATB=90°,∴∠B+∠OAT=90°,∵OA=OT,∴∠OAT=∠2,∵∠PTA=∠B,∴∠PTA+∠2=90°,即∠OTP=90°,∴直线PT与⊙O相切;(2)∵PT BT==∴∠P=∠B=∠PTA,∵∠TAB=∠P+∠PTA,∴∠TAB=2∠B,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,在Rt△ABT中,设AT=a,则AB=2AT=2a,∴a 22=(2a)2,解得:a=1,∴AT=1,∵OA=OT ,∠TAO=60°,∴△AOT 为等边三角形,11224AOT S ∴=⨯⨯= .∴阴影部分的面积2Δ 601360464AOT AOT S S ππ⨯=-=-=-扇形.【点睛】本题考查了切线的判定、勾股定理,此类题常与方程结合,列方程求圆的半径和线段的长,也考查了扇形的面积公式.24.(1)1;(2)B (﹣12,0);(3)D 的坐标是(12,1)或(14,﹣1)或(14,﹣1)【分析】(1)把点A 的坐标代入函数解析式,利用方程来求m 的值;(2)令y =0,则通过解方程来求点B 的横坐标;(3)利用三角形的面积公式进行解答.【详解】解:(1)把A (1,0)代入y =﹣2x 2+x+m ,得﹣2×12+1+m =0,解得m =1;(2)由(1)知,抛物线的解析式为y =﹣2x 2+x+1.令y =0,则﹣2x 2+x+1=0,故x 134-±-,解得x 1=﹣12,x 2=1.故该抛物线与x 轴的交点是(﹣12,0)和(1,0).∵点为A (1,0),∴另一个交点为B 是(﹣12,0);(3)∵抛物线解析式为y =﹣2x 2+x+1,∴C (0,1),∴OC =1.∵S △ABD =S △ABC ,∴点D 与点C 的纵坐标的绝对值相等,∴当y =1时,﹣2x 2+x+1=1,即x (﹣2x+1)=0解得x =0或x =12.即(0,1)(与点C 重合,舍去)和D (12,1)符合题意.当y =﹣1时,﹣2x 2+x+1=﹣1,即2x 2﹣x ﹣2=0解得x =14.即点(14,﹣1)和(14,﹣1)符合题意.综上所述,满足条件的点D 的坐标是(12,111).【点睛】本题考查了抛物线的图象和性质,解答(3)题时,注意满足条件的点D 还可以在x 轴的下方是解题关键.25.(1)证明见解析;(2)BC=2.【详解】试题分析:(1)连接OB ,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB ,得出∠BAC=∠OBA ,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC ∽△PBO ,得出对应边成比例,即可求出BC 的长.试题解析:(1)证明:连接OB ,如图所示:∵AC 是⊙O 的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为,∴,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴BC AC OB OP=,8=,∴BC=2.考点:切线的判定26.(1)y=﹣13x+1,y=﹣43x;(2)F(﹣7,0)或(5,0);【分析】(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)根据三角形面积公式求得EF的长,即可求得点F的坐标;【详解】解:(1)∵OB =3,OE =1,∴B (3,0),C 点的横坐标为﹣1,∵直线y =﹣13x +m 经过点B ,∴0=﹣13×3+m ,解得m =1,∴直线为:y =﹣13x +1,把x =﹣1代入y =﹣13x +1得,y =﹣13×(﹣1)+1=43,∴C (﹣1,43),∵点C 在双曲线y =kx (k ≠0)上,∴k =﹣1×43=﹣43,∴双曲线的表达式为:y =﹣43x ;(2)∵OB =3,CE =43,∴S △COB =12×3×43=2,∵S △CEF =2S △COB ,∴S △CEF =12×EF ×43=4,∴EF =6,∵E (﹣1,0),∴F (﹣7,0)或(5,0).【点睛】此题主要考查反比例函数与几何综合,解题的关键是熟知待定系数法的运用.。
湘教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.已知32 )0,(0a b a b =≠≠,下列变形错误的是( ) A .23a b = B .23b a = C .32b a = D .23a b =2.下列关于反比例函数8y x=-,结论正确的是( ) A .图象必经过()2,4 B .图象在二,四象限内 C .在每个象限内,y 随x 的增大而减小 D .当1x >-时,则8y >3.甲、乙、丙、丁四人各进行了10次射击测试,他们的平均成绩相同,方差分别是22221.2, 1.1,0.6,0.9S S S S ====甲乙丁丙则射击成绩最稳定的是( ) A .甲B .乙C .丙D .丁4.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14x -=C .2(6)44x -=D .2(3)1x -= 5.将抛物线 22y x = 的图象先向右平移2个单位,再向上平移3个单位后,得到的抛物线的解析式是( )A .()2223y x =-- B .()2223y x =-+ C .()2223y x =+- D .()2223y x =++6.已知关于x 的一元二次方程2cos 0x α+=有两个相等的实数根,则锐角α等于A .15B .30C .45D .607.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( ) A .()9121x -=B .()2911x -=C .()9121x +=D .()2911x +=8.如图,在ABC 中,//DE AB ,且34AD BD =,则AEAC的值为( )A .37B .43C .47 D .349.如图,等腰Rt ABC ∆与等腰Rt CDE ∆是以点O 为位似中心的位似图形,位似比为1:3,90,4k ACB BC =∠==,则点D 的坐标是( )A .()18,12B .()16,12C .()12,18D .()12,16二、填空题10.方程2x x =的根是____________. 11.已知ABC∆DEF ∆,相似比为2,且ABC ∆的面积为4,则DEF ∆的面积为__________.12.如图,某水坝的坡比为坡长AB 为20米,则该水坝的高度BC 为__________米.13.ABC ∆中, 如果锐角,A B ∠∠满足2cos 1 0tanA B ⎛+= ⎝⎭-,则C ∠=_________度 14.已知m 是方程2210x x +-=的一个根,则代数式()21m +的值为__________. 15.抛物线2y cx bx c =++经过点()()2, 54, 5,,则这条抛物线的对称轴是直线__________. 16.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数ky x=(k >0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为____.17.如图,ABCD 的对角线AC BD ,交于点,O CE 平分BCD ∠交AB 于点E ,交BD 于点F ,且60,2ABC AB BC ∠==,连接OE .下列结论:①tan CAB ∠=②AOD COF ∆∆;③3AOD OCF S S ∆∆=:④2.FB OF DF =其中正确的结论有__________(填写所有正确结论的序号)三、解答题18.计算:()114sin 6020192π-⎛⎫+-- ⎪⎝⎭19.已知二次函数的图象顶点是(12)-,, 且经过()1, 3-,求这个二次函数的表达式.20.如图,已知ABC ∆中,90ACB ∠=︒, 点D 是边AB 上一点,且CDECAB ∆∆()1求证:CADCBE ∆∆;()2求证:EB AB ⊥. 21.某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查将他们的得分按优秀、良好、合格、不合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.请根据图表信息,解答下列问题:()1本次调查随机抽取了____ 名学生:表中m = ;n =()2补全条形统计图:()3若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀"和“良好”等级的学生共有多少人22.如图①是图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂40AC cm =,灯罩30CD cm =,灯臂与底座构成的60CAB ∠=︒.CD 可以绕点C 上下调节一定的角度.使用发现:当CD 与水平线所成的角为30°时,台灯光线最佳.现测得点D 到桌面的距离为49.6cm .请通过计算说明此时台灯光线是否为最佳?( 1.73).23.如图,在矩形ABCD 中,24BC cm P Q M N =,、、、分别从A B C D 、、、同时出发,分别沿边AD BC CB DA 、、、移动,当有一个点先到达所在边的另一个端点时,其它各点也随之停止移动.己知移动段时间后,若()0,2,3BQ xcm x AP xcm CM xcm =≠==,2DN x cm =.当x 为何值时,以P Q M N 、、、为顶点的四边形是平行四边形?24.从三角形(不是等腰三角形)一个顶点引出一条射线 与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.()1如图1,在ABC ∆中,44, A CD ∠=是ABC ∆的完美分割线,且AD CD =, 则ACB ∠的度数是()2如图2,在ABC ∆中,CD 为角平分线,40 60A B ∠=∠=,,求证: CD 为ABC ∆的完美分割线.()3如图2,ABC ∆中,2, AC BC CD =是ABC ∆的完美分割线,且ACD ∆是以CD 为底边的等腰三角形,求完美分割线CD 的长.25.如图,反比例函数ky x=的图象经过点()A -,射线AB 与反比例函数的图象的另一个交点为()1, B a -,射线AC 与x 轴交于点E ,与y 轴交于点,75C BAC AD y ∠=⊥,轴, 垂足为D .()1求反比例函数的解析式;()2求DC 的长()3在x轴上是否存在点P,使得APE∆与ACD∆相似,若存在,请求出满足条件点P的坐标,若不存在,请说明理由.参考答案1.B【解析】根据比例式的性质,即可得到答案.【详解】∵23ab=⇔32a b=,23ba=⇔23a b=,32ba=⇔32a b=,23a b=⇔32a b=,∴变形错误的是选项B.故选B . 【点睛】本题主要考查比例式的性质,掌握比例式的内项之积等于外项之积,是解题的关键. 2.B 【分析】根据反比例函数的图象和性质,逐一判断选项,即可得到答案. 【详解】 ∵2488⨯=≠-, ∴A 错误,∵k=-8<0,即:函数8y x=-的图象在二,四象限内, ∴B 正确,∵k=-8<0,即:在每个象限内,y 随x 的增大而增大, ∴C 错误,∵当1x >-时,则8y >或0y <, ∴D 错误, 故选B . 【点睛】本题主要考查反比例函数的图象和性质,掌握比例系数k 的意义与增减性,是解题的关键. 3.C 【分析】根据方差的意义,即可得到答案. 【详解】 ∵丙的方差最小, ∴射击成绩最稳定的是丙, 故选C . 【点睛】本题主要考查方差的意义,掌握方差越小,一组数据越稳定,是解题的关键. 4.A 【分析】利用配方法把方程2680x x --=变形即可. 【详解】用配方法解方程x 2﹣6x ﹣8=0时,配方结果为(x ﹣3)2=17, 故选A . 【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键. 5.B 【分析】根据“左加右减,上加下减”的规律求解即可. 【详解】y =2x 2向右平移2个单位得y=2(x ﹣2)2,再向上平移3个单位得y =2(x ﹣2)2+3. 故选B. 【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a (x -h )2+k (a ,b ,c 为常数,a ≠0),确定其顶点坐标(h ,k ),在原有函数的基础上“h 值正右移,负左移; k 值正上移,负下移”. 6.D 【分析】根据一元二次方程根的判别式等于零,求出cos α的值,进而即可得到答案. 【详解】∵关于x 的一元二次方程2cos 0x α+=有两个相等的实数根,∴∆=2(41cos 0α-⨯⨯=,解得:1cos 2α=, ∴α=60. 故选D . 【点睛】本题主要考查一元二次方程根的判别式以及特殊角三角函数,掌握一元二次方程根的判别式与根的关系,是解题的关键. 7.B【分析】等量关系为:2016年贫困人口()212018⨯-=下降率年贫困人口,把相关数值代入计算即可. 【详解】解:设这两年全省贫困人口的年平均下降率为x ,根据题意得: ()2911x -=,故选B . 【点睛】本题考查由实际问题抽象出一元二次方程,得到2年内变化情况的等量关系是解决本题的关键. 8.A 【分析】由DE 与BC 平行,得到三角形ADE 与三角形ABC 相似,由相似得比例即可求出所求; 【详解】 解: ∵//DE BC∴,ADE B AED C ∠=∠∠=∠, ∴ADE ABC ∽ ∴34AD AE BD EC == ∴37AE AC = 故选A 【点睛】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键. 9.A 【分析】根据位似比为1:34k BC ==,,可得13OC BC OE DE ==,从而得:CE=DE=12,进而求得OC=6,即可求解. 【详解】∵等腰Rt ABC ∆与等腰Rt CDE ∆是以点O 为位似中心的位似图形,位似比为1:3,90,4k ACB BC =∠==,∴13OC BC OE DE ==,即:DE=3BC=12, ∴CE=DE=12, ∴1123OC OC =+,解得:OC=6,∴OE=6+12=18,∴点D 的坐标是:()18,12. 故选A . 【点睛】本题主要考查位似图形的性质,掌握位似图形的位似比等于相似比,是解题的关键. 10.0和1 【分析】观察本题形式,用因式分解法比较简单,在移项提取x 后,左边将变成两个式子相乘为0的情况,让每个式子分别为0,即可求出x . 【详解】移项得:20x x -=, 即()10x x -=, 解得:1201x x ==,. 故答案为:0和1 . 【点睛】本题考查了因式分解法解一元二次方程,因式分解法是解一元二次方程的一种简便方法,要会灵活运用.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法. 11.1 【分析】根据相似三角形的性质,即可求解. 【详解】 ∵ABC∆DEF ∆,相似比为2,∴ABC ∆与DEF ∆,的面积比等于4:1, ∵ABC ∆的面积为4,∴DEF ∆的面积为1.故答案是:1.【点睛】本题主要考查相似三角形的性质定理,掌握相似三角形的面积比等于相似比的平方,是解题的关键.12.10【分析】根据坡度的定义,可得:BC AC =∠A=30°,进而即可求解.【详解】∵水坝的坡比为∠C=90°,∴:BC AC =tan ∠∴∠A=30°,∵AB 为20米,∴BC 为10米.故答案是:10.【点睛】本题主要考查坡度的定义和三角函数的定义,掌握坡度的定义,是解题的关键. 13.105【分析】根据绝对值与偶数次幂的非负性,可得=1 tanA 且cos B ∠A ,∠B 的值,即可得到答案.【详解】∵2cos 1 0tanA B ⎛+= ⎝⎭-,∴0 1 tanA -=且2cos =0B ⎛ ⎝⎭,∴=1 tanA 且cos B ∴∠A=45°,∠B=30°,∵在ABC ∆中, ++180A B C ∠∠=︒∠,∴C ∠=105°.故答案是:105°.【点睛】本题主要考查绝对值与偶数次幂的非负性,特殊三角函数以及三角形内角和定理,掌握绝对值与偶数次幂的非负性,是解题的关键.14.2【分析】根据方程的根的定义,得2210m m +-=,结合完全平方公式,即可求解.【详解】∵m 是方程2210x x +-=的一个根,∴2210m m +-=,即:221m m +=∴()22121m m m +=++=1+1=2.故答案是:2.【点睛】本题主要考查方程的根的定义以及完全平方公式,,掌握完全平方公式,是解题的关键. 15.3x =【分析】根据抛物线的轴对称性,即可得到答案.【详解】∵抛物线2y cx bx c =++经过点()()2, 54, 5,,且点()2, 5,点()4, 5关于直线x=3对称, ∴这条抛物线的对称轴是:直线x=3.故答案是:3x =.【点睛】本题主要考查二次函数的图象与性质,掌握抛物线的轴对称性,是解题的关键. 16.3y x =. 【详解】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(3a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=6.∵正方形的中心在原点O,∴直线AB的解析式为:x=3.∵点P(3a,a)在直线AB上,∴3a=3,解得a=1.∴P(3,1).∵点P在反比例函数3yx(k>0)的图象上,∴k=3×1=3.∴此反比例函数的解析式为:.17.①③④【分析】由四边形ABCD是平行四边形,∠ABC=60°,EC平分∠DCB,得△ECB是等边三角形,结合AB=2BC,得∠ACB=90°,进而得∠CAB=30°,即可判断①;由∠OCF<∠DAO,∠OFC>∠ADO,即可判断②;易证△OEF∽△BCF,得OF=13OB,进而得S△AOD=S△BOC=3S△OCF,即可判断③;设OF=a,得DF=4a,BF=2a,即可判断④.【详解】∵四边形ABCD是平行四边形,∴CD∥AB,OD=OB,OA=OC,∴∠DCB+∠ABC=180°,∵∠ABC=60°,∴∠DCB=120°,∵EC平分∠DCB,∴∠ECB=12∠DCB=60°,∴∠EBC=∠BCE=∠CEB=60°,∴△ECB是等边三角形,∴EB=BC= EC,∵AB=2BC,∴EA=EB=EC,∴∠ACB=90°,∴∠CAB=30°,即:tan CAB∠故①正确;∵AD∥BC,∴∠ADO=∠CBO,∠DAO=∠BCO,∵∠OCF<∠BCO,∠OFC>∠CBO,∴∠OCF<∠DAO,∠OFC>∠ADO,∴AOD COF∆∆错误,故②错误;∵OA=OC,EA=EB,∴OE∥BC,∴△OEF∽△BCF,∴12 OE OFBC BF==,∴OF=13 OB,∴S△AOD=S△BOC=3S△OCF,故③正确;设OF=a,∵OF=13 OB,∴OB=OD=3a,∴DF=4a,BF=2a,∴BF2=OF•DF,故④正确;故答案为:①③④.【点睛】本题主要考查平行四边形的性质定理,相似三角形的判定和性质,三角函数的定义,以及直角三角形的判定和性质,掌握平行四边形的性质定理,相似三角形的判定和性质,是解题的关键.18.原式1=-【分析】根据特殊角三角函数以及实数的混合运算法则,即可求解.【详解】原式=412--=12--=-1【点睛】本题主要考查特殊角三角函数以及实数的混合运算法则,掌握实数的混合运算法则是解题的关键.19.()25124y x =-++ 【分析】根据二次函数解析式的顶点式以及待定系数法,即可得到答案.【详解】 把顶点()12-,代入()2y a x h k =-+得:()212y a x =++, 把()1,3-代入()212y a x =++得:54a =-, ∴二次函数的表达式为:()25124y x =-++. 【点睛】本题主要考查二次函数的待定系数法,掌握二次函数解析式的顶点式是解题的关键. 20.(1)详见解析;(2)详见解析【分析】(1)根据相似三角形的性质和判定定理,即可得到结论;(2)由CADCBE ∆∆得CAD CBE ∠=∠,进而即可得到结论.【详解】(1)CDECAB ∆∆, CA CB CD CE∴=,ACB DCE ∠=∠, ACB DCB DCE DCB ∴∠-∠=∠-∠,即:ACD BCE ∠=∠,∴CAD CBE ∆∆;()2 CAD CBE ∆∆,CAD CBE ∴∠=∠.90ACB ∠=︒,∴90CAD CBA ∠+∠=︒,90CBE CBA ∴∠+∠=︒,即:∠DBE=90°,EB AB ∴⊥.【点睛】本题主要考查相似三角形的判定和性质定理以及直角三角形的性质定理,掌握两边对应成比例,夹角相等的两个三角形是相似三角形,是解题的关键.21.(1)50,20,0.12;(2)详见解析;(3)1640.【分析】(1)根据总数×频率=频数,即可得到答案;(2)根据统计表的数据,即可画出条形统计图;(3)根据全校总人数×达到“优秀"和“良好”等级的学生的百分比,即可得到答案.【详解】()1本次调查随机抽取了2142%50÷=名学生,65040%20, 0.1250m n =⨯===. 故答案为: 50200.12,,; ()2补全条形统计图如图所示:()321202000164050+⨯=(人), 答:该校掌握垃圾分类知识达到“优秀"和“良好”等级的学生共有1640多少人.【点睛】本题主要考查频数统计表和条形统计图,掌握统计表和条形统计图的特征,是解题的关键.22.此时台灯光线是最佳【解析】【分析】如图,作CE AB ⊥于E ,DH AB ⊥于H ,CF DH ⊥于F .解直角三角形求出DCF ∠即可判断.【详解】解:如图,作CE AB ⊥于E ,DH AB ⊥于H ,CF DH ⊥于F .∵90CEH CFH FHE ∠=∠=∠=︒,∴四边形CEHF 是矩形,∴CE FH =,在Rt ACE △中,∵40,60AC cm A =∠=︒,∴·60()34.6CE AC sin cm =︒=,∴34.6()FH CE cm ==∵49.6DH cm =,∴49.63461).5(DF DH FH cm =-=-=,在Rt CDF 中,151sin 302DF DCF CD ∠===, ∴30DCF ∠=︒,∴此时台灯光线为最佳.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,属于中考常考题型.23.2或3-【分析】根据平行四边形的性质,得PN QM =,分两种情况: ①当点P 在点N 的左侧时,②当点P 在点N 的右侧时,分别列出关于x 的方程,即可求解.【详解】∵在矩形ABCD 中,AD ∥BC ,∴以P Q M N 、、、为顶点的四边形是平行四边形时,PN QM =.①当点P 在点N 的左侧时,由PN QM =,得:2242243x x x x --=--,解得:10x = (舍去),22x =;②当点P 在点N 的右侧时,由PN QM =,得:()2224243x x x x +-=--,解得:1233x x =-=-舍去);综上所述:当x =2或3-P Q M N 、、、为顶点的四边形是平行四边形.【点睛】本题主要考查一元二次方程与平行四边形的性质综合,根据等量关系,列出方程,时是解题的关键.24.(1)88°;(2)详见解析;(3【分析】(1) C D 是ABC ∆的完美分割线,且AD CD =,得∠ACD=44°,∠BCD=44°,进而即可求解;(2)由4060A B ∠=∠=,,得80ACB ∠=,由CD 平分ACB ∠,40ACD BCD ∠=∠=,得ACD ∆为等腰三角形,结合BCD BAC ∆∆,即可得到结论;(3)由 CD 是ABC ∆的完美分割线,得BCDBAC ∆∆,从而得BC BD BA BC =,设BD x =,列出方程,求出x 的值,再根据CDBDAC BC =,即可得到答.【详解】(1) ∵ C D 是ABC ∆的完美分割线,且AD CD =,∴ABC CBD ,∠A=∠ACD=44°,∴∠A=∠BCD=44°,∴88ACB ∠=.故答案是:88°;()24060A B ∠=∠=,,80ACB ∴∠=,ABC ∆∴不是等腰三角形, CD 平分ACB ∠,1402ACD BCD ACB ∴∠=∠=∠=,40ACD A ∴∠=∠=,ACD ∴∆为等腰三角形.40DCB A ∠=∠=,CBD ABC ∠=∠,BCD BAC ∴∆∆,CD ∴是ABC ∆的完美分割线.()3∵ACD ∆是以CD 为底边的等腰三角形,∴2AC AD ==,∵CD 是ABC ∆的完美分割线,∴BCD BAC ∆∆,BC BD BA BC∴=,设BD x =,则()22x x =+,0x ,1x ∴=,CD BD AC BC ∴==2CD ∴== 【点睛】本题主要考查等腰三角形的性质与相似三角形的判定和性质定理,掌握相似三角形的性质定理,是解题的关键.25.(1)y =;(2)2;(3)1 ()P -,2P ⎛⎫ ⎪ ⎪⎝⎭【分析】(1)根据待定系数法,即可求解;(2)过点B 作BM AD ⊥于点M ,求出点B 的坐标,从而得45BAM ∠=,进而得30DAC ∠=,即可求解; (3)分两种情况讨论:①当1AP x ⊥轴时,1APE CDA ∆∆, ②当2AP AE ⊥时,2AP E DCA ∆∆,分别求出点P 的坐标,即可.【详解】 ()1∵反比例函数k y x=的图象经过点()A -,∴(1k =-⨯=-∴反比例函数的解析式为:y = ()2过点B 作BM AD ⊥于点M ,把()1, B a -代入y =,得:a =∴ 1AM BM ==,45BAM ∴∠=,21 75BAC ∠=,754530DAC ∴∠=-=∴2DC ==; ()3∵AD ⊥y 轴,∴AD ∥x 轴,∴∠1=∠OEC=∠DAC=30°,①当1AP x ⊥轴时,1APE CDA ∆∆,此时:1()P -; ②当2AP AE ⊥时,2AP E DCA ∆∆,1211903060AP AP P =∠=-=,,211P P ∴=,∴2P ⎛⎫ ⎪ ⎪⎝⎭.综上所述:1 ()P -,2P ⎛⎫ ⎪ ⎪⎝⎭.【点睛】本题主要考查反比例函数与相似三角形的综合,掌握反比例函数的性质与相似三角形的性质,是解题的关键.。
山东省菏泽市成武县育青中学2022-2023学年九年级上学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,D是ABC的边BC上的任意一点,已知4AB=,2AD=,DAC B∠=∠,若ABD△的面积为a,则ACD的面积为()A.a B.12a C.13a D.25a2.如果Rt∆ABC的各边长都扩大为原来的3倍,那么锐角A的正弦、余弦值是()A.都扩大为原来的3倍B.都缩小为原来的1 3C.没有变化D.不能确定3.如图,点A,B,C,D,E都是⊙O上的点,弧AC=弧AE,⊙D=128°,则⊙B的度数为()A.128°B.126°C.118°D.116°4.用配方法解一元二次方程x2+8x+7=0,则方程可化为()A.(x+4)2=9B.(x﹣4)2=9C.(x+8)2=23D.(x﹣8)2=9 5.将抛物线y=2(x﹣1)2﹣3先向上平移2个单位长度,再向左平移3个单位长度,得到的抛物线的解析式为()A.y=2(x+2)2﹣1B.y=2(x+2)2﹣5C.y=2(x﹣4)2﹣1D.y=2(x﹣4)2﹣56.如图所示,四边形ABCD 中,//AD BC ,CA 是BCD ∠的平分线,且AB AC ⊥,4AB =,6AD =,则tan B 等于( )A .B .C .114D .7.如图,在长为30m ,宽20m 的矩形田地中开辟两条宽度相等的道路,已知剩余田地的面积为2551m ,求道路的宽度.设道路的宽度为m x ,则可列方程( )A .(20)(30)551x x ++=B .(20)(30)551x x --=C .20302030551x x ⨯--=D .220302030551x x x ⨯---=8.二次函数2y ax bx c =++的自变量x 与函数值y 的部分对应值如下表:下列说法正确的是( )A .抛物线的开口向上 B .当1x >时,y 随x 的增大而增大 C .二次函数的最大值是2D .抛物线与x 轴只有一个交点二、填空题9.若关于x 的一元二次方程()224140k x k x +-+=有两个不同的实数根,则k 的取值范围是______.10.如图,以点O 为位似中心,把⊙AOB 缩小后得到⊙COD ,使⊙COD ⊙⊙AOB ,且相似比为13,已知点A (3,6),则点C 的坐标为 _____.11.如图,若二次函数()20y ax bx c a =++≠的图象的对称轴为直线1x =,与y 轴交于点C ,与x 轴交于点A 、点()1,0B -,则下列结论:⊙0abc >;⊙二次函数的最大值为a b c ++;⊙<0a b c -+;⊙240b ac -<;⊙当0y >时,13x -<<.⊙30a c +=;其中正确的结论有________.12.如图,正方形ABCD 中,扇形ABC 与扇形BCD 的弧交于点E ,2cm AB =,则图中阴影部分的面积为________2cm ;(不求近似值)13.抛物线2y ax bx c =++经过点()0,3A -,()2,3B -,()2,5C -,则该抛物线上纵坐标为5的另一个点D 的坐标是______.14.列车从甲地驶往乙地.行完全程所需的时间()h t 与行驶的平均速度()km/h v 之间的反比例函数关系如图所示.若列车要在2.5h 内到达,则速度至少需要提高到__________km/h .三、解答题15.计算:202212|-.16.如图,数学兴趣小组成员在热气球A 上看到正面为横跨河流两岸的大桥BC ,并测得B C ,两点的角分别为53°和45°,已知大桥BC 与地面在同一水平面上,其长度为75米,又知此时地面气温为20⊙,海拔每升高100米,气温会下降约0.6⊙,试求此时热气球(体积忽略不计)附近的温度. (参考数据:4sin 535≈,3cos535≈,4tan 533≈)17.如图,已知AB 是O 的直径,点C 在O 上,过点C 的直线与AB 的延长线交于点P ,,2AC PC COB PCB =∠=∠.()1求证:PC 是的切线; ()2求证:12BC AB =; ()3点M 是弧AB 的中点,CM 交AB 于点N ,若8AB =,求MN MC ⋅的值.18.由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包16.9元. (1)求出这两次价格上调的平均增长率;(2)在有关部门大力调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包.当销售额为315元时,且让顾客获得更大的优惠,应该降价多少元?19.如图,△ABC 是等腰三角形,AB =AC ,AD ⊥BC ,以AD 为直径作⊙O ,分别交AB 、AC 于点E 、F ,连接EF .判断EF 和BC 的位置关系,并证明.20.已知抛物线22y ax bx =+-经过(2,2),且顶点在y 轴上. (1)求抛物线解析式;(2)直线y kx c =+与抛物线交于A ,B 两点.⊙点P 在抛物线上,当0k =,且⊙ABP 为等腰直角三角形时,求c 的值;⊙设直线y kx c =+交x 轴于点(,0)M m ,线段AB 的垂直平分线交y 轴于点N ,当1c =,6m >时,求点N 纵坐标n 的取值范围.21.如图,一次函数=+y x m 的图象与反比例函数=ky x的图象交于A B 、两点,且与x 轴交于点C ,点A 的坐标为(2,1).(1)求m 及k 的值;(2)连接OA 、OB ,求AOB △的面积; (3)结合图象直接写出不等式组0xkx m <+≤的解集. 22.有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜. (1)请你通过列表(或画树状图)计算甲获胜的概率. (2)你认为这个游戏公平吗?为什么?23.已知抛物线2y x bx c =-++(b 、c 为常数),若此抛物线与某直线相交于()10A -,,()23C ,两点,与y 轴交于点N ,其顶点为D(1)求抛物线的函数解析式和顶点D 的坐标;(2)若点P 是抛物线上位于直线AC 上方的一个动点,求APC △的面积的最大值及此时点P 的坐标;(3)点(),H n t 为抛物线上的一个动点,H 关于y 轴的对称点为1H ,当点1H 落在第二象限内,且21H A 取得最小值时,求n 的值参考答案:1.C【分析】先根据相似三角形的判定与性质得出2()ACD BCA S AD S AB∆∆=,再根据BCA ABD ACD S S S ∆∆∆=+计算即可得.【详解】在ACD 和BCA 中,DAC B C C∠=∠⎧⎨∠=∠⎩ ACD BCA ∴~2221()()44ACD BCA S AD S AB ∴===△△ ,BCA ABD ACD ABD S S S S a =+=△△△△14ACD ACD S a S ∴=+△△13ACD S a ∆∴=故选:C .【点睛】本题考查了相似三角形的判定与性质,熟记相似三角形的面积比等于相似比的平方是解题关键. 2.C【分析】根据相似三角形的判定定理、正弦、余弦的概念解答. 【详解】三角形各边长度都扩大为原来的3倍, ⊙得到的三角形与原三角形相似, ⊙锐角A 的大小不变, ⊙锐角A 的正弦、余弦值不变, 故选:C .【点睛】三角形的形状没有改变,边的比值没有发生变化. 3.D【分析】连接AC 、CE ,根据圆内接四边形的性质求出⊙CAE ,根据三角形内角和定理求出⊙CEA ,根据圆内接四边形的性质计算即可. 【详解】解:连接AC 、CE ,⊙点A 、B 、C 、E 都是O 上的点, ⊙⊙CAE =180°-⊙D =52°, ⊙弧AC =弧AE , ⊙AC =AE , ⊙⊙AEC =⊙ACE =()1180=642CAE -∠ , ⊙⊙B =180°-⊙AEC =116°, 故选D .【点睛】本题考查圆内接四边形的性质,圆周角定理,三角形内角和定理,掌握圆内接四边形的对角互补是解题关键. 4.A【分析】根据题意先把常数项7移到方程右边,再把方程两边都加上16,然后把方程左边写成完全平方的形式即可. 【详解】解:x 2+8x +7=0 移项,得x 2+8x =-7配方,得2816716x x ++-+= 即(x +4)2=9. 故选:A.【点睛】本题考查解一元二次方程-配方法:将一元二次方程配成(x +m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. 5.A【分析】根据“左加右减,上加下减”的法则进行解答即可.【详解】解:将抛物线y =2(x ﹣1)2﹣3先向上平移2个单位长度,再向左平移3个单位长度,得到的抛物线的解析式为y =2(x ﹣1+3)2﹣3+2,即y =2(x +2)2﹣1;【点睛】本题考查的是二次函数的图象与几何变换,熟知二次函数图象平移的法则是解答此题的关键. 6.B【分析】过点D 作DE⊙AC 于E ,根据等腰三角形三线合一的性质可得AE=12AC ,根据两组角对应相等的两个三角形相似求出⊙ABC⊙⊙EDC ,再根据相似三角形对应边成比例求出BC ,然后利用勾股定理求出AC 的长,从而⊙B 的正切值即可得解. 【详解】解:⊙AD⊙BC , ⊙⊙DAC=⊙BCA , 又⊙CA 是BCD ∠的平分线 ⊙⊙DCA=⊙ACB , ⊙⊙DAC=⊙DCA , ⊙AD=CD=6,过点D 作DE⊙AC 于E ,则AE=CE=12AC , ⊙⊙DCA=⊙ACB ,⊙BAC=⊙DEC , ⊙⊙ABC⊙⊙EDC , ⊙CD CEBC AC =,即612BC =, ⊙BC=12,在直角⊙ABC 中,⊙tan =AC B AB == 故选:B【点睛】本题考查了相似三角形的判定与性质,平行线的性质,等腰三角形三线合一的性质,勾股定理以及求锐角三角函数,作辅助线构造出相似三角形并求出BC 的长度是解题的关键. 7.B【分析】设道路的宽度为m x ,根据题意,剩余田地的面积为2551m ,列出一元二次方程,【详解】解:设道路的宽度为m x ,根据题意得,(20)(30)551x x --=,故选B .【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题的关键. 8.C【分析】利用表格中的数据可求得二次函数的解析式,再化为顶点式,根据函数图象性质逐一判断即可得解.【详解】解:⊙当0x =时,1y =;当2x =时,1y =;2x =-时,7y =- ⊙1421427c a b c a b c =⎧⎪++=⎨⎪-+=-⎩⊙121a b c =-⎧⎪=⎨⎪=⎩⊙二次函数的解析式为:()222112y x x x =-++=--+⊙1a =-;对称轴是:直线1x =;顶点坐标是()1,2;当0y =时,11x =-21x =- ⊙抛物线的开口向下;当1x >时,y 随x 的增大而减小;二次函数的最大值是2;抛物线与x 轴有两个交点⊙选项中只有C 是正确的. 故选:C【点睛】本题主要考查了待定系数法、二次函数一般式转化为顶点式、二次函数的图象性质、抛物线与x 轴交点情况等,利用待定系数法求得二次函数解析式是解题的关键. 9.18k <,且0k ≠【分析】根据一元二次方程的定义及根的判别列出不等式组求解即可;【详解】解:根据题意可知,()22241160k k k ⎧≠⎪⎨-->⎪⎩ 解得:18k <,且0k ≠,故答案为:18k <,且0k ≠. 【点睛】本题主要考查一元二次方程的定义及根的判别,根据题意列出不等式组是解题的关键.10.()1,2或()12--,【分析】由位似知共有两种情况:情况⊙:由COD AOB ∽知COD △如图,作,AE OB CF OB ⊥⊥,垂足分别为,E F ,有COD AOB ∠=∠,13OC OA =,证明COF AOE ∽,可得13OF CF CO OE AE AO ===,进而可知C 点坐标,情况⊙:由位似可知,在位似中心O 的左侧仍存在,且此时的C 点与情况⊙中的C 点坐标关于原点O 中心对称,进而可知C 点坐标.【详解】解:由位似知共有两种情况:情况⊙:由COD AOB ∽知COD △如图,作,AE OB CF OB ⊥⊥,垂足分别为,E F⊙COD AOB ∽⊙COD AOB ∠=∠,13OC OA = 又⊙90CFO AEO ∠=∠=︒⊙COF AOE ∽ ⊙13OF CF CO OE AE AO === ⊙12OF CF ==,⊙C 点坐标为()1,2;情况⊙:由位似可知,在位似中心O 的左侧仍存在COD AOB ∽,且此时的C 点与情况⊙中的C 点坐标关于原点O 中心对称⊙此时C 点坐标为()12--,; 综上所述C 点坐标为()12,或()12--, 故答案为:()1,2或()12--,.【点睛】本题考查了位似图形的点坐标.解题的关键在于对位似知识的熟练掌握.11.⊙⊙⊙【分析】根据对称轴在y 轴的右侧,与y 轴相交在正半轴,可判定⊙;由顶点坐标即可判断⊙;由()1,0B -即可判断⊙;由抛物线与x 轴有两个交点即可判断⊙;有抛物线与x 轴交点的横坐标即可判断⊙;由对称轴方程得到2b a =-,由1x =时函数值为0即可判断⊙.【详解】解:二次函数对称轴在y 轴的右侧,与y 轴相交在正半轴,0,0,0ab c abc ∴<><,故⊙不正确;二次函数()20y ax bx c a =++≠的图象的对称轴为直线1x =,∴顶点坐标为(1,)a b c ++,且开口向下,二次函数的最大值为a b c ++,故⊙正确;抛物线过()1,0B -,1x ∴=-时,0y =,即0a b c -+=,故⊙不正确;抛物线与x 轴有两个交点,240b ac ∴->,故⊙正确;对称轴为直线1x =,()1,0B -,(3,0)A ∴,有图象可知,13x -<<时,0y >,故⊙正确;12b x a=-=,即2b a =-, 而=1x -时,0y =,即0a b c -+=,20a a c ∴++=,30a c ∴+=,故⊙正确,故答案为:⊙⊙⊙.【点睛】本题考查了二次函数的图象与系数的关系、二次函数图象与x 轴的交点等知识点,熟练掌握二次函数的性质是解题的关键.12.3π 【分析】根据正方形的性质,可得边相等,角相等,根据扇形BAC 与扇形CBD 的弧交于点E ,可得⊙BCE 的形状,根据图形的割补,可得阴影的面积是扇形,根据扇形的面积公式,可得答案.【详解】正方形ABCD 中,⊙⊙DCB =90°,DC =AB =2cm .扇形BAC 与扇形CBD 的弧交于点E ,⊙⊙BCE 是等边三角形,⊙ECB =60°,⊙⊙DCE =⊙DCB -⊙ECB =30°.根据图形的割补,可得阴影的面积是扇形DCE ,S 扇形DCE =23023603ππ⨯⨯= 故答案为:3π 【点睛】本题主要考查正方形的性质、扇形面积的计算,掌握相关知识并灵活应用是解题的关键.13.()4,5【分析】根据A B ,坐标求二次函数对称轴,然后求出C 关于对称轴对称的点坐标即可.【详解】解:由3(0)A -,,(23)B -,得抛物线的对称轴为直线0212x +== ⊙()25C -,设()5D x ,由题意知C D ,关于对称轴对称 则(2)12x +-= 解得4x =⊙()45D ,故答案为:()45,. 【点睛】本题考查了二次函数的对称性.解题的关键在于求出二次函数的对称轴. 14.240 【分析】由设,k t v=再利用待定系数法求解反比例函数解析式,把 2.5t =h 代入函数解析式求解v 的值,结合图象上点的坐标含义可得答案. 【详解】解:由题意设,k t v= 把()200,3代入得:2003600,k tv ==⨯=600,t v∴= 当 2.5t =h 时,6002402.5v ==km/h , 所以列车要在2.5h 内到达,则速度至少需要提高到240km/h ,故答案为:240km/h .【点睛】本题考查的是反比例函数的应用,掌握利用待定系数法求解反比例函数的解析式是解题的关键.15.3-【分析】按照实数的运算法则进行解答.【详解】解:202212|-142=--+3=-【点睛】本题考查有理数的乘方、立方根、化简绝对值等知识,是基础考点,掌握相关知识是解题关键.16.18.2⊙.【分析】过A 作AD BC ⊥,在直角三角形ACD 中,利用锐角三角函数定义表示出CD ,在直角三角形ABD 中,利用锐角三角函数定义表示出BD ,由75CD BD -=求出AD 的长在根据温度随海拔的变化规律求解即可.【详解】解:过A 作AD BC ⊥,在Rt ACD ∆中,tan AD ACD CD ∠=,即tan 45AD CD AD ==︒, 在Rt ABD ∆中,tan AD ABD BD ∠=,即3tan534AD BD AD ==︒, 由题意得:3754AD AD -=,解得:300AD m =,则热气球离底面的高度是300m .此时热气球附近的温度=300200.618.2100-⨯=⊙. 答:热气球附近的温度是18.2⊙【点睛】此题考查了解直角三角形中的应用-仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.17.(1)详见解析;(2)详见解析;(3)32.【分析】(1)根据圆周角定理,易得⊙PCB+⊙OCB=90︒,即OC⊙CP ,故PC 是⊙O 的切线; (2)连接MA ,MB ,由圆周角定理可得⊙ACM=⊙BCM ,进而可得⊙MBN⊙⊙MCB ,故2BM MN MC =⋅;代入数据即可求得答案. 【详解】()1OA OC =,CAO ACO ∴∠=∠,又22COB CAO ACO ACO COB PCB ∠=∠+∠=∠∠=∠,,ACO PCB ∴∠=∠,又AB 是O 的直径,90ACO OCB ∴∠+∠=︒,90PCB OCB ∴∠+∠=︒,即OC CP ⊥, OC 是O 的半径,PC ∴是O 的切线;()2AC PC =,CAP P ∴∠=∠,CAP ACO PCB P ∴∠=∠=∠=∠,又,COB A ACO CBO P PCB ∠=∠+∠∠=∠+∠,COB CBO ∴∠=∠,BC OC ∴=,12BC AB =∴; ()3连接MA MB ,,点M 是AB 的中点,⊙AM BM =,ACM BCM ∴∠=∠,ACM ABM ∠=∠,BCM ABM ∠=∠∴,BMN BMC ∠=∠,MBNMCB ∴, BM MN MC BM∴= 2BM MN MC ∴=⋅,又AB 是O 的直径,AM BM =,90,AMB AM BM ∴∠=︒=,8AB =,BM ∴=232MN MC BM ∴⋅==.【点睛】此题主要考查圆的切线的判定及圆周角定理的运用和相似三角形的判定和性质的应用,证得2BM MN MC =⋅是解题的关键.18.(1)这两次价格上调的平均增长率为30%;(2)每包应该降价3元.【分析】(1)设这两次价格上调的平均增长率为x ,利用经过两次上调价格后的价格=原价21⨯+(这两次价格上调的平均增长率),即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)设每包应该降价m 元,则每包的售价为()10m -元,每天可售出()305m +包,根据每天该口罩的销售额为315元,即可得出关于m 的一元二次方程,解之即可得出m 的值,再结合要让顾客获得更大的优惠,即可得出每包应该降价3元.【详解】(1)设这两次价格上调的平均增长率为x ,依题意得:()210116.9x +=,解得:120.330% 2.3x x ===-,(不符合题意,舍去).答:这两次价格上调的平均增长率为30%.(2)设每包应该降价m 元,则每包的售价为()10m -元,每天可售出()305m +包, 依题意得:()()10305315m m -+=,整理得:2430m m -+=,解得:1213m m ==,.又⊙要让顾客获得更大的优惠,⊙m 的值为3.答:每包应该降价3元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.19.EF BC ∥,见解析【分析】连接OE 、OF 得OEF 是等腰三角形,由等腰三角形三线合一得BAD CAD ∠=∠,由圆心角与圆周角的关系得2EOD EAD ∠=∠,2FOD FAD ∠=∠,推出EOG FOG ∠=∠,从而得出90OGF ADB ∠=︒=∠,由平行线的性质即可得解.【详解】EF BC ∥,理由如下:如图,连接OE 、OF ,OE OF =,OEF ∴是等腰三角形, ABC 是等腰三角形,AD BC ⊥,BAD CAD ∴∠=∠,2EOD EAD ∠=∠,2FOD FAD ∠=∠,EOG FOG ∴∠=∠,OG EF ∴⊥,90OGF ADB ∴∠=︒=∠,EF BC ∴∥.【点睛】本题考查等腰三角形的判定与性质,圆周角定理,掌握相关知识点的应用是解题的关键.20.(1)22y x =-(2)⊙c 的值为-1,⊙3109272n <<【分析】(1)根据抛物线22y ax bx =+-经过(2,2),且顶点在y 轴上,待定系数法求解析式即可;(2)⊙根据题意作出图形,根据等腰直角三角形的性质可得12PC AB BC ==,根据(2,)B c c +在抛物线上,代入求解即可,根据图形取舍即可;⊙设()211,2A x x -,()222,2B x x -.把1y kx =+代入22y x =-中,得230x kx --=,根与系数的关系可得12x x k +=,123x x =-由勾股定理得()2222112AN x x n =+--,()2222222BN x x n =+--,根据垂直平分线的性质可得()()222222112222x x n x x n +--=+--,化简可得21322n k =+,进而可得当0k <时,n 随k 的增大而减小,由6m >可得106k -<<,进而求得n 的取值范围 【详解】(1)⊙抛物线22y ax bx =+-经过(2,2),且顶点在y 轴上,42202a b b a+=⎧⎪∴⎨-=⎪⎩,解得10a b =⎧⎨=⎩ ⊙抛物线解析式为22y x =-.(2)⊙依题意得:当0k =时,AB y ⊥轴,PAB ∴∠与⊙PBA 都不可能为90°,⊙只能是90APB ∠=︒,PA PB ∴=,⊙点P 在AB 的对称轴(y 轴)上, ⊙点P 为抛物线的顶点,即(0,2)P -.不妨设点A 在点B 的左侧,直线y c =与y 轴交于点C .90APB ∠=︒,CA CB =,12PC AB BC ∴==, (0,2)P -,(0,)C c ,2PC c ∴=+,2BC c ∴=+,⊙点(2,)B c c +把(2,)B c c +代入22y x =-中,得:2(2)2c c +-=解得:11c =-,22c =-(不合题意,舍去).⊙c 的值为-1.⊙设()211,2A x x -,()222,2B x x -.把1y kx =+代入22y x =-中,得230x kx --=, 2120k ∴∆=+>,由根与系数的关系可得12x x k +=,123x x =-.()222212121226x x x x x x k ∴+=+-=+由勾股定理得()2222112AN x x n =+--,()2222222BN x x n =+-- ⊙点N 在AB 的垂直平分线上, NA NB ∴=,22NA NB ∴=,()()222222112222x x n x x n ∴+--=+--, 化简得()()22221212230x x x x n -+--=.⊙直线1y kx =+与x 轴相交,⊙点A ,B 不关于y 轴对称, 12x x ∴≠-,又12x x ≠,22120x x ∴-≠,2212240x x n ∴+--=,即26230k n +--=, 21322n k ∴=+. 将(),0M m 代入1y kx =+,得10km +=, 1k m∴=-. 由反比例函数1k m =-的性质,可知:当6m >时,106k -<<. 在二次函数21322n k =+中, 102>,对称轴为直线0k =, ⊙当0k <时,n 随k 的增大而减小, 106k -<<, 3109272n ∴<<.【点睛】本题考查了二次函数、一次函数图象与性质,反比例函数的性质,一元二次方程根与系数的关系,等腰三角形的性质,待定系数法求解析式,数形结合是解题的关键. 21.(1)1m =-,=2k(2)32 (3)12x <≤【分析】(1)把A 点坐标分别代入一次函数和反比例函数解析式,可求得结果; (2)通过解方程组求出交点坐标,再求面积; (3)根据函数图象比较函数值大小即可做出判断.【详解】(1)由题意可得:点()21A ,在函数=+y x m 的图象上, ⊙2+1m = 解得=1m -,又⊙点()21A ,在函数=ky x的图象上, ⊙12k =, 解得=2k ,(2)⊙一次函数=+y x m 的图象与反比例函数=ky x的图象交于A B ,两点, ⊙=12=y x y x -⎧⎪⎨⎪⎩,解得=1=2x y -⎧⎨-⎩,或=2=1x y ⎧⎪⎨⎪⎩,⊙()1,2B -,令=1y x -中=0y ,得=1x ,⊙()10C , ⊙OABOAC OCB SS S ∆∆=+11=+22A B OC y OC y ⋅⋅ =1131112222⨯⨯+⨯⨯=, ⊙OAB △的面积=32;(3)由图象可知不等式组0<+kx m x≤的解集为1<2x ≤. 【点睛】本题考查了反比例函数与一次函数交点问题,坐标与图形,一次函数与坐标轴交点,待定系数法求解析式,综合运用以上知识是解题的关键. 22.(1)516(2)游戏是不公平的,理由见解析【分析】(1)根据列表法计算概率的性质分析,即可得到答案; (2)结合(1)的结论,根据概率的性质判断,即可得到答案. 【详解】(1)列表如下:⊙该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种, ⊙甲获胜的概率为516=; (2)⊙甲获胜的概率516=, ⊙乙获胜的概率1116=,⊙5111616≠, ⊙游戏对双方是不公平的.【点睛】本题考查了概率的知识;解题的关键是熟练掌握列表法求概率的性质,从而完成求解.23.(1)223y x x ++=﹣;D (1,4) (2)S △APC 最大278=;P (12,154)【分析】(1)将点A 和点C 的坐标代入抛物线的解析式可求得b ,c 的值,从而得到抛物线的解析式, 在配成顶点式即可;(2)设直线AC 的解析式为y kx b +=.将点A 和点C 的坐标代入可求得k b 、 的值,从而得到直线AC 的解析式;设点P 的坐标,进而表示出PQ ,进而得出23127()228APCS m --+=,即可得出结论;(3)用n 表示出1H 的坐标,从而表示出21H A ,利用二次函数的性质可求得其最大值时n 的值.【详解】(1)⊙将点A 和点C 的坐标代入抛物线的解析式得:1+=04+2+=3b c b c --⎧⎨-⎩,解得:23b c =,=. ⊙抛物线的解析式为223y x x -++= . ⊙2223(1)4y x x x -++=--+= ⊙抛物线的顶点坐标为,(2)设直线AC 的解析式为y kx b +=.⊙将点A 和点C 的坐标代入得+=02+=3k b k b -⎧⎨⎩,解得11k b =,=. ⊙直线AC 的解析式为1y x +=.如图,设点223P m m m -++(,) , ⊙1Q m m +(,),⊙222312PQ m m m m m -++-+-++=()()= =219()24m --+, ⊙APCS 1=2||C A PQ x x ⨯- 221193127)3()224228APCSm m ⎡⎤=--+⨯--+⎢=⎥⎣⎦(, ⊙当m 1=2时,APC S最大278=,223y m m -++= 154=, ⊙P (12,154);(3)⊙1H 落在第二象限内,H 关于y 轴的对称点为1H ⊙点(),H n t 在第一象限,即n >0,t >0. 2223(1)4y x x x -++=--+=⊙抛物线的顶点坐标为(1,4), ⊙04t ≤< ,⊙(),H n t 在抛物线上, ⊙223t n n +-+= , ⊙223n n t --= , ⊙10A -(,),()1,H n t -, ⊙21H A =22+1+n t -()()=2221n n t -++ =24t t -+ =2115()24t -+; ⊙当t 1=2时,21H A 有最小值,即21H A 有最小值,⊙12=223n n -++ ,解得n =n =⊙0n>,⊙n=⊙n【点睛】此题是二次函数综合题,主要考查的了待定系数法求一次函数、二次函数的解析式、轴对称路径最短、关于原点对称的点的坐标,难度较大,综合性较强.。
北师大版数学九年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________满分150分时间120分钟A卷(共100分)一.选择题(共10小题,满分30分,每小题3分)1.(2020•十堰)某几何体的三视图如图所示,则此几何体是()A.圆锥B.圆柱C.长方体D.四棱柱2.(2020春•雨花区校级期末)关于x的方程(m﹣3)x m2−2m−1−mx+6=0是一元二次方程,则它的一次项系数是()A.﹣1B.1C.3D.3或﹣13.(2019秋•长清区期末)如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长B.逐渐变短C.长度不变D.先变短后变长4.(2019秋•龙华区期末)如图,已知四边形ABCD是正方形,E是AB延长线上一点,且BE=BD,则∠BDE的度数是()A.22.5°B.30°C.45°D.67.5°5.(2020•大通区模拟)如图,四边形ABCD和A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=2:3,则四边形ABCD与A'B'C'D'的面积比是()A.4:9B.2:5C.2:3D.√2:√36.(2020春•阿城区期末)正方形具有而菱形不具有的性质是()A.对角线互相平分B.对角线相等C.对角线平分一组对角D.对角线互相垂直7.(2020•宜城市模拟)不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A.112B.16C.14D.128.(2020春•安庆期末)若关于x的一元二次方程bx2+2bx+4=0有两个相等的实数根,则b的值为() A.0B.4C.0或4D.0或﹣49.(2020•成都)如图,直线l1∥l2∥l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为()A .2B .3C .4D .103 10.(2019秋•阜南县期末)若双曲线y =k−3x 在每一个象限内,y 随x 的增大而减小,则k 的取值范围是( )A .k ≠3B .k <3C .k ≥3D .k >3二.填空题(共4小题,满分16分,每小题4分)11.(2019春•左贡县期中)有一个角是直角的平行四边形是 ;有一组邻边相等的平行四边形是 ;四条边都相等,四个角都是直角的四边形是 .12.(2020•浙江自主招生)如图,有五张点数分别为2,3,7,8,9的扑克牌,从中任意抽取两张,则其点数之积是偶数的概率为 .13.如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①AF FD =12;②S △BCE =36;③S △ABE =12;④△AEF ∽△ACD ,其中一定正确的是 .(填序号)14.若关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有实数根,则m 的取值范围是 .三.解答题(共6小题,满分54分)15.(12分)(1)解方程:x2﹣2x﹣24=0.(2)已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a﹣2b+3c的值.16.(8分)如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于E、F,作BH⊥AF于点H,分别交AC、CD于点G、P,连结GE、GF.(1)试判断四边形BEGF的形状并说明理由.(2)求AEPG的值.17.(8分)(2020•宿州模拟)如图,已知反比例函数y=kx的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.18.(8分)已知关于x的一元二次方程(k﹣1)x2﹣k2x﹣1=0的一个根是﹣1,求k的值.方程是否还有其它根?如果有,试求出来.19.(8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有人,若该居民区有8000人,估计整个居民区爱吃D粽的有人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.20.(10分)(2019•晋江市一模)在我国古代数学著作《九章算术》中,有一名题如下:今有木去人不知远近,立四表,相去各一丈,令左两表与所望参相直,从后右表望之,入前右表三寸.问木去人几何?可译为:有一棵树C与人(A处)相距不知多远,立四根标杆A、B、G、E,前后左右的距离各为1丈(即四边形ABGE是正方形,且AB=100寸),使左两标杆A、E与所观察的树C三点成一直线.又从后右方的标杆B观察树C,测得其“入前右表”3寸(即FG=3寸),问树C与人所在的A处的距离有多远?B卷(共50分)四.填空题(共5小题,满分20分,每小题4分)21.(2020•高邮市一模)如图,由10个完全相同的小正方体堆成的几何体中,若每个小正方体的边长为2,则主视图的面积为.22.(2019秋•天峨县期末)关于x的一元二次方程(m﹣3)x2+x+m2﹣9=0有一根为0,则m的值为.23.如图,点P的坐标为(6,4),PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y=kx的图象交PM于点A,交PN于点B,若四边形OAPB的面积为18,则k=.24.(2019秋•莲湖区期末)如图,已知AD:DB=2:1,CE:EA=2:3,则CF:DF=.25.(2020•浙江自主招生)如图,在菱形ABCD中,AB=BD=2,点E,F分别在边CD,BC上,且BF=CE.连接BE,DF相交于点H,连接AH,BD相交于点G.若BF:FC=2:1,则AH=.五.解答题(共3小题,满分30分)26.(8分)某幼儿园举行用火柴棒摆“金鱼”比赛如图所示,请仔细观察并找出规律,解答下列问题:(1)按照此规律,摆第n图时,需用火柴棒的根数是多少?(2)求摆第50个图时所需用的火柴棒的根数;(3)按此规律用1202根火柴棒摆出第n个图形,求n的值.27.(10分)如图,在正方形ABCD中,E是AD的中点,点F在DC上,且DF=14DC,试判断BE与EF的位置关系,并说明理由.28.(12分)(2019•达拉特旗一模)如图,一次函数y=−12x+3的图象与反比例函数y=kx(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为2.(1)求反比例函数的解析式;(2)在y轴上求一点P,使P A+PB的值最小,并求出其最小值和P点坐标.答案与解析A卷(共100分)一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2020•十堰)某几何体的三视图如图所示,则此几何体是()A.圆锥B.圆柱C.长方体D.四棱柱[解析]解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,故选:B.2.(3分)(2020春•雨花区校级期末)关于x的方程(m﹣3)x m2−2m−1−mx+6=0是一元二次方程,则它的一次项系数是()A.﹣1B.1C.3D.3或﹣1[解析]解:由题意得:m2﹣2m﹣1=2,m﹣3≠0,解得m=﹣1或m=3.m=3不符合题意,舍去,所以它的一次项系数﹣m=1.故选:B.3.(3分)(2019秋•长清区期末)如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长B.逐渐变短C.长度不变D.先变短后变长[解析]解:当他远离路灯走向B 处时,光线与地面的夹角越来越小,小明在地面上留下的影子越来越长,所以他在走过一盏路灯的过程中,其影子的长度逐渐变长,故选:A .4.(3分)(2019秋•龙华区期末)如图,已知四边形ABCD 是正方形,E 是AB 延长线上一点,且BE =BD ,则∠BDE 的度数是( )A .22.5°B .30°C .45°D .67.5°[解析]解:∵BE =DB ,∴∠BDE =∠E ,∵∠DBA =∠BDE +∠BED =45°∴∠BDE =12×45°=22.5°.故选:A .5.(3分)(2020•大通区模拟)如图,四边形ABCD 和A 'B 'C 'D '是以点O 为位似中心的位似图形,若OA :OA '=2:3,则四边形ABCD 与A 'B 'C 'D '的面积比是( )A .4:9B .2:5C .2:3D .√2:√3[解析]解:∵四边形ABCD 和A ′B ′C ′D ′是以点O 为位似中心的位似图形,OA :OA ′=2:3, ∴DA :D ′A ′=OA :OA ′=2:3,∴四边形ABCD 与四边形A ′B ′C ′D ′的面积比为:(23)2=49,故选:A.6.(3分)(2020春•阿城区期末)正方形具有而菱形不具有的性质是()A.对角线互相平分B.对角线相等C.对角线平分一组对角D.对角线互相垂直[解析]解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的对角线不一定相等,而正方形的对角线一定相等.故选:B.7.(3分)(2020•宜城市模拟)不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A.112B.16C.14D.12[解析]解:画树状图为:共有12种等可能的结果数,其中两次摸出的球都是的白色的结果共有2 种,所以两次都摸到白球的概率是2 12=16,故选:B.8.(3分)(2020春•安庆期末)若关于x的一元二次方程bx2+2bx+4=0有两个相等的实数根,则b的值为() A.0B.4C.0或4D.0或﹣4[解析]解:根据题意得:△=(2b)2﹣4×4×b=4b2﹣16b=0,解得b=4或b=0(舍去).故选:B.9.(3分)(2020•成都)如图,直线l1∥l2∥l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为()A .2B .3C .4D .103[解析]解:∵直线l 1∥l 2∥l 3,∴AB BC=DE EF,∵AB =5,BC =6,EF =4,∴56=DE 4,∴DE =103, 故选:D .10.(3分)(2019秋•阜南县期末)若双曲线y =k−3x在每一个象限内,y 随x 的增大而减小,则k 的取值范围是( ) A .k ≠3B .k <3C .k ≥3D .k >3[解析]解:∵双曲线y =k−3x 在每一个象限内,y 随x 的增大而减小,∴k ﹣3>0∴k >3故选:D . 二.填空题(共4小题,满分16分,每小题4分)11.(4分)(2019春•左贡县期中)有一个角是直角的平行四边形是 矩形 ;有一组邻边相等的平行四边形是 菱形 ;四条边都相等,四个角都是直角的四边形是 正方形 .[解析]解:有一个角是直角的平行四边形是矩形;有一组邻边相等的平行四边形是菱形;四条边都相等,四个角都是直角的四边形是正方形.故答案为:矩形;菱形;正方形.12.(4分)(2020•浙江自主招生)如图,有五张点数分别为2,3,7,8,9的扑克牌,从中任意抽取两张,则其点数之积是偶数的概率为710.[解析]解:根据题意,当不考虑抽牌顺序时,可以画出如下的树形图从上图可以看出,从五张牌中任意抽取两张,共有10种抽法,其中抽取的点数之积是偶数的有7种,所以点数之积是偶数的概率:P =710.故答案为:710. 13.(4分)如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF=4,则下列结论:①AF FD=12;②S △BCE =36;③S △ABE =12;④△AEF ∽△ACD ,其中一定正确的是①②③ .(填序号)[解析]解:∵在▱ABCD 中,AO =12AC ,∵点E 是OA 的中点,∴AE =13CE ,∵AD ∥BC ,∴△AFE ∽△CBE ,∴AFBC =AECE =13,∵AD =BC ,∴AF =13AD ,∴AF FD =12;故①正确;∵S △AEF =4,S △AEF S △BCE=(AF BC)2=19,∴S △BCE =36;故②正确;∵EF BE=AE CE=13,∴S △AEFS △ABE=13,∴S △ABE =12,故③正确;∵BF 不平行于CD ,∴△AEF 与△ADC 只有一个角相等,∴△AEF 与△ACD 不一定相似,故④错误, 故答案为:①②③.14.(4分)若关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有实数根,则m 的取值范围是 m ≥1 .[解析]解:①当m﹣3=0,即m=3时,该方程是一元一次方程,符合题意;②当m﹣3≠0,即m≠3时,△=(﹣4)2﹣4(m﹣3)×(﹣2)≥0,整理,得m﹣1≥0,解得m≥1.则m≥1且m≠3.综合①②知,m的取值范围是:m≥1.三.解答题(共6小题,满分54分)15.(12分)(1)解方程:x2﹣2x﹣24=0.(2)已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a﹣2b+3c的值.[解析]解:(1)∵x2﹣2x﹣24=0,∴(x﹣6)(x+4)=0,即x﹣6=0或x+4=0,解得:x1=6,x2=﹣4.(2)∵a:b:c=2:3:4,∴设a=2k,则b=3k,c=4k.∵2a+3b﹣2c=10,∴4k+9k﹣8k=10,解得:k=2,∴a=2,b=6,c=8,∴a﹣2b+3c=4﹣12+24=16.16.(8分)如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于E、F,作BH⊥AF于点H,分别交AC、CD于点G、P,连结GE、GF.(1)试判断四边形BEGF的形状并说明理由.(2)求AEPG的值.[解析]解(1)四边形BEGF是菱形,理由如下:∵∠GAH=∠BAH,AH=AH,∠AHG=∠AHB=90°,∴△AHG≌△AHB,∴GH=BH,∴AF是线段BG的垂直平分线,∴EG=EB,FG=FB,∵∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四边形BEGF是菱形.(2)设OA =OB =OC =a ,菱形BEGF 的边长为b .∵四边形BEGF 是菱形,∴GF ∥OB ,∴∠CGF =∠COB =90°,∴∠GFC =∠GCF =45°,∴CG =GF =b ,∵四边形ABCD 是正方形,∴OA =OB ,∠AOE =∠BOG =90°∵BH ⊥AF ,∴∠GAH +∠AGH =90°=∠OBG +∠AGH .∴∠GAH =∠OBG ,∴△OAE ≌△OBG .∴OG =OE =a ﹣b .∵在Rt △GOE 中,GE =√2OG ,∴b =√2(a ﹣b ),整理得a =2+√22b . ∴AC =2a =(2+√2)b ,AG =AC ﹣CG =(1+√2)b .∵PC ∥AB ,∴BGPG =AGCG =(1+√2)bb=1+√2,由△OAE ≌△OBG 得AE =BG ,∴AE PG=1+√2.17.(8分)(2020•宿州模拟)如图,已知反比例函数y =kx 的图象与一次函数y =x +b 的图象交于点A (1,4),点B (﹣4,n ).(1)求n 和b 的值; (2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.[解析]解:(1)把A 点(1,4)分别代入反比例函数y =k x,一次函数y =x +b ,得k =1×4,1+b =4,解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =4x的图象上,∴n =4−4=−1; (2)如图,设直线y =x +3与y 轴的交点为C ,∵当x =0时,y =3,∴C (0,3), ∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.18.(8分)已知关于x的一元二次方程(k﹣1)x2﹣k2x﹣1=0的一个根是﹣1,求k的值.方程是否还有其它根?如果有,试求出来.[解析]解:由题意,(k﹣1)x2﹣k2x﹣1=0的一个根是﹣1,分析有k﹣1+k2﹣1=0,即k2+k﹣2=0,(2分)解得,k1=﹣2,k2=1(不合题意,舍去),∴k=﹣2,(3分)当k=﹣2时,原方程化为:3x2+4x﹣1=0,(4分)∴x1=−1,x2=−13,(5分)∴另一根是x2=−13.(6分)19.(8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有600人,若该居民区有8000人,估计整个居民区爱吃D粽的有3200人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.[解析]解:(1)根据题意得:240÷40%=600(人);根据题意得:8000×40%=3200(人);故答案为:600;3200;(2)A的人数为600×30%=180(人);C的人数600﹣180﹣60﹣240=120(人);如图:(3)列树状图如下:P=612=0.5.20.(10分)(2019•晋江市一模)在我国古代数学著作《九章算术》中,有一名题如下:今有木去人不知远近,立四表,相去各一丈,令左两表与所望参相直,从后右表望之,入前右表三寸.问木去人几何?可译为:有一棵树C与人(A处)相距不知多远,立四根标杆A、B、G、E,前后左右的距离各为1丈(即四边形ABGE是正方形,且AB=100寸),使左两标杆A、E与所观察的树C三点成一直线.又从后右方的标杆B观察树C,测得其“入前右表”3寸(即FG=3寸),问树C与人所在的A处的距离有多远?[解析]解:∵四边形ABGE 是正方形,∴∠A =∠G =90°,AE ∥BG ,∴∠ACB =∠GBF .∴△BAC ∽△FGB .∴AB GF=AC GB.又AB =BG =100寸,FG =3寸.∴1003=AC 100.解得AC =100003. 答:树C 与人所在的A 处的距离为100003寸.B 卷(共50分)四.填空题(共5小题,满分20分,每小题4分)21.(4分)(2020•高邮市一模)如图,由10个完全相同的小正方体堆成的几何体中,若每个小正方体的边长为2,则主视图的面积为 24 .[解析]解:主视图有3列,每列小正方数形数目分别为3,2,1;左视图有3列, ∴主视图的面积为:2×2×(3+2+1)=24.故答案为:24.22.(4分)(2019秋•天峨县期末)关于x 的一元二次方程(m ﹣3)x 2+x +m 2﹣9=0有一根为0,则m 的值为 ﹣3 . [解析]解:把x =0代入方程(m ﹣3)x 2+x +m 2﹣9=0得m 2﹣9=0,解得m 1=3,m 2=﹣3, 而m ﹣3≠0,所以m 的值为﹣3.故答案为﹣3.23.(4分)如图,点P 的坐标为(6,4),PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数y =kx 的图象交PM 于点A ,交PN 于点B ,若四边形OAPB 的面积为18,则k = 6 .[解析]解:∵点P (6,4),∴点A 的横坐标为6,点B 的纵坐标为4,代入反比例函数y =kx 得,点A 的纵坐标为k6,点B 的横坐标为k4,即AM =k 6,NB =k 4,∵S 四边形OAPB =16,即S 矩形OMPN ﹣S △OAM ﹣S △NBO =16,6×4−12×6×k 6−12×4×k4=18,解得:k =6.故答案为:6.24.(4分)(2019秋•莲湖区期末)如图,已知AD :DB =2:1,CE :EA =2:3,则CF :DF = 2:1 .[解析]解:过D 作DM ∥AC ,交BE 于M ,∵DM ∥AC ,∴△BMD ∽△BEA ,∴DM AE=BD AB,∵AD :DB =2:1,∴DM AE=BD AB=11+2=13,即AE =3DM ,∵CE :EA =2:3,∴CE =2DM ,∵DM ∥AC ,∴△DMF ∽△CEF ,∴CFDF=CE DM=2DM DM=21,故答案为:2:1.25.(4分)(2020•浙江自主招生)如图,在菱形ABCD 中,AB =BD =2,点E ,F 分别在边CD ,BC 上,且BF =CE .连接BE ,DF 相交于点H ,连接AH ,BD 相交于点G .若BF :FC =2:1,则AH = 6√77.[解析]解:取CD的中点M,连接BM;设CF=2λ,则F=4λ,BC=6λ;∵四边形ABCD为菱形,∴AB=BC=CD,而AB=BD=2,∴BC=CD=BD=2,△BCD为等边三角形,∴CM=3λ,BM=3√3λ;∵CE=BF=4λ,ME=λ;由勾股定理得:BE2=BM2+EM2,∴BE=2√7λ;在△BDF与△CBE中,{BF=CE∠DBF=∠BCEBD=BC,∴△BDF≌△CBE(SAS),∴∠BDF=∠CBE,∴∠BHF=∠BDF+∠DBE=∠CBE=∠CBE+∠DBE=60°,∴△BFH∽△BEC,∴BFBE=BHBC,∵BF=CE,BC=AB,∴CEBE =BHAB,即CEBH=BEAB;∵AB∥CD,∴∠BEC=∠ABH,∴△BCE∽△AHB,∴BCAH =BEAB,即6λAH=2√7λ6λ,∴AH=18√7λ7,而6λ=2,∴AH=6√77,故答案为6√77.五.解答题(共3小题,满分30分)26.(8分)某幼儿园举行用火柴棒摆“金鱼”比赛如图所示,请仔细观察并找出规律,解答下列问题:(1)按照此规律,摆第n图时,需用火柴棒的根数是多少?(2)求摆第50个图时所需用的火柴棒的根数;(3)按此规律用1202根火柴棒摆出第n个图形,求n的值.[解析]解:(1)第n个图需要的火柴棒根数为:8+6(n﹣1)=6n+2.(2)当n=50时,6n+2=6×50+2=302(根)即摆第50个图时需用火柴棒302根.(3)6n+2=1202,解得:n=200.∴用1202根火柴棒摆出第n个图形,n为200.27.(10分)如图,在正方形ABCD中,E是AD的中点,点F在DC上,且DF=14DC,试判断BE与EF的位置关系,并说明理由.[解析]解:BE⊥EF.理由如下:设正方形ABCD的边长为4a,∵E是AD的中点,DF=14DC,∴AE=DE=2a,DF=a,∵ABDE=4a2a=2,AEDF=2a a =2,∴ABDE=AEDF,而∠BAE=∠EDF,∴△ABE∽△DEF,∴∠AEB=∠EFD,∵∠EFD+∠DEF=90°,∴∠AEB+∠DEF=90°,∴∠BEF=90°,∴BE⊥EF.28.(12分)(2019•达拉特旗一模)如图,一次函数y=−12x+3的图象与反比例函数y=kx(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为2.(1)求反比例函数的解析式;(2)在y轴上求一点P,使P A+PB的值最小,并求出其最小值和P点坐标.[解析]解:(1)设A 点的坐标为(a ,b ),则OM =a ,AM =b ,∵△AOM 面积为2,∴12ab =2, ∴ab =4,∵点A 在反比例函数图象上,∴k =4,∴反比例函数的解析式为y =4x ;(2)依题意可知,A 、B 两点的坐标为方程组{y =−12x +3y =4x的解, 解方程组得:点A 的坐标为(2,2),点B 的坐标为(4,1),点A 关于y 轴的对称点A ′的坐标为(﹣2,2),连接A ′B ,交y 轴于点P ,点P 即为所求,此时P A +PB 最小,最小值为A ′B 的长.由勾股定理得:A ′B =√(4+2)2+(2−1)2=√37.设直线A ′B 的解析式为y =kx +b ,代入A ′,B 的坐标得{2=−2k +b 1=4k +b ,解得:{k =−16b =53, ∴y =−16x +53,点P 的坐标为(0,53).。
2023-2024学年北京市石景山区九年级上学期期末数学试题一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若,则的值是()A.B. C.D.2.如图,在中,,,则为()A. B. C.D.3.如图,四边形ABCD 内接于,AB 是直径,D 是的中点.若,则的大小为()A.B. C. D.4.将抛物线向左平移1个单位长度,平移后抛物线的解析式为()A.B.C.D.5.若抛物线与x 轴只有一个交点,则m 的值为()A.3B.C.D.6.如图1,“矩”在古代指两条边成直角的曲尺,它的两边长分别为中国古老的天文和数学著作《周髀算经》中简明扼要地阐述了“矩”的功能:“平距以正绳,偃矩以望高,覆矩以测深,卧矩以知远,环矩以为圆,合矩以为方”.其中“偃矩以望高”的意思就是把“矩”仰立放可测物体的高度.如图2,从“矩”AFE 的一端A 望向树顶端的点C ,使视线通过“矩”的另一端E ,测得,若“矩”的边,边,则树高CD 为()A.4mB.C.D.16m7.在平面直角坐标系xOy 中,若点,在抛物线上,则下列结论正确的是()A.B.C.D.8.如图,在中,于点D ,给出下面三个条件:①;②;③添加上述条件中的一个,即可证明是直角三角形的条件序号是()A.①②B.①③C.②③D.①②③二、填空题:本题共8小题,每小题3分,共24分。
9.如图,在矩形ABCD 中,E 是边AD 的中点,连接BE 交对角线AC 于点若,则AF 的长为__________.10.在平面直角坐标系xOy中,若点,在反比例函数的图象上,则__________填“>”“=”或“<”11.如图,正六边形ABCDEF内接于,,则的长为__________.12.如图,PA,PB分别与相切于A、两点,,,则的半径为__________.13.如图,线段AB,CD分别表示甲、乙建筑物的高,两座建筑物间的距离BD为若在点A处测得点D的俯角为,点C的仰角为,则乙建筑物的高CD约为__________结果精确到;参考数据:,14.如图,点A,B在上,若C为上任一点不与点A,B重合,则的大小为__________.15.如图,E是正方形ABCD内一点,满足,连接CE,若,则CE长的最小值为__________.16.在平面直角坐标系xOy中,抛物线的顶点为,且经过点,其部分图象如图所示,下面四个结论中,①;②;③若点在此抛物线上,则;④若点在此抛物线上且,则所有正确结论的序号是__________.三、解答题:本题共12小题,共96分。
2024届吉林省数学九年级第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是A.B.C.D.2.已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是( )①∠PAD=∠PDA=60º;②△PAO≌△ADE;③PO=2r;④AO∶OP∶PA=1∶2∶3.A.①④B.②③C.③④D.①③④3.一个不透明的袋子中有3个白球,4个黄球和5个红球,这些球除颜色不同外,其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率是()A.14B.13C.512D.124.下列命题错误..的是( )A.经过三个点一定可以作圆B.经过切点且垂直于切线的直线必经过圆心C.同圆或等圆中,相等的圆心角所对的弧相等D.三角形的外心到三角形各顶点的距离相等5.sin60tan45︒+︒的值等于()A .2B .322+ C .3D .16.如图所示,在ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则ABE ∆与ABCD 的面积比值为( )A .1:8B .1:4C .3:8D .3:47.下列事件是必然事件的是( ) A .打开电视机,正在播放篮球比赛 B .守株待兔C .明天是晴天D .在只装有5个红球的袋中摸出1球,是红球.8.抛物线y =2 x 2+3与两坐标轴....的公共点个数为( ) A .0个B .1个C .2个D .3个9.已知在Rt △ABC 中,∠C =90°,BC =5,那么AB 的长为( ) A .5sin AB .5cos AC .D .10.下列方程中,没有实数根的是( ) A .x 2﹣2x ﹣3=0 B .(x ﹣5)(x +2)=0 C .x 2﹣x +1=0D .x 2=1二、填空题(每小题3分,共24分)11.在二次函数中2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表: x ...... -1 0 1 2 3 4 ...... y......-7-2mn-2-7......则m 、n 的大小关系为m _______n .(填“>”,“=”或“<”) 12.正五边形的中心角的度数是_____.13.一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是3个红珠子,4个白珠子和5个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续9次摸出的都是红珠子的情况下,第10次摸出红珠子的概率是_____. 14.若3是关于x 的方程x 2-x +c =0的一个根,则方程的另一个根等于____.15.在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有___个.16.计算:2sin30°+tan45°=_____.17.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为_____. 18.已知方程x 2﹣3x ﹣5=0的两根为x 1,x 2,则x 12+x 22=_________. 三、解答题(共66分)19.(10分)如图,在ABC 中,90C ∠=︒,BAC ∠的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于点E ,F (1)试判断直线BC 与O 的位置关系,并说明理由.(2)若3BD =,1BF =,求阴影部分的面积(结果保留π)20.(6分)如图,抛物线y =x 2+bx+c 与x 轴交于点A 和B (3,0),与y 轴交于点C (0,3). (1)求抛物线的解析式;(2)若点M 是抛物线上在x 轴下方的动点,过M 作MN ∥y 轴交直线BC 于点N ,求线段MN 的最大值;(3)E 是抛物线对称轴上一点,F 是抛物线上一点,是否存在以A ,B ,E ,F 为顶点的四边形是平行四边形?若存在,请直接写出点F 的坐标;若不存在,请说明理由.21.(6分)如图,已知二次函数23y x ax =++的图象经过点()2,3P -.(1)求a 的值和图象的顶点坐标。
人教版数学九年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、单项选择题(本大题共8个小题,每小题4分,共32分)1. (2019•广东)已知x1.x2是一元二次方程了x2﹣2x=0的两个实数根,下列结论错误的是A.x1≠x2 B.x12﹣2x1=0 C.x1+x2=2 D.x1·x2=22.观察下列四个图形,中心对称图形是( )A.B.C.D.3.如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是( )A.70° B.55° C.35.5° D.35°4.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是( )A.B.﹣C.4 D.﹣15.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是( )A. (-1,-4)B. (1,-4)C. (-1,4)D.(1,4)6.如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:AB的长为( )A. 1B. 2C. 3D. 47.用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为( ).A. π.B. 2π.C. 3π.D. 4π.8.从﹣3.﹣l ,π,0,3这五个数中随机抽取一个数,恰好是负数的概率是( ).A.1/5B.2/5C.3/5D.4/5二、填空题(本大题共8个小题,每小题4分,共32分)11.(2019江苏镇江)已知抛物线2441(0)y ax ax a a =+++≠过点(,3)A m ,(,3)B n 两点,若线段AB 的长不大于4,则代数式21a a ++的最小值是 .12.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 .13.如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC .若∠AOB = 120°,则∠ACB = 度.14.若关于x 的方程3x ﹣kx +2=0的解为2,则k 的值为 .15.如图,四边形ABCD 为⊙O 的内接四边形,∠A =100°,则∠DCE 的度数为 .16.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为 .三、解答题(本大题有5小题,共56分)17. (10分)(2019北京市) 关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.18. (10分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC 向右平移3个单位后得到的△A 1B 1C 1,再画出将△A 1B 1C 1绕点B 1按逆时针方向旋转90°后所得到的△A 2B 1C 2;(2)求线段B 1C 1旋转到B 1C 2的过程中,点C 1所经过的路径长.19. (12分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.20.(12分)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.21.(12分)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.答案与解析一、单项选择题(本大题共8个小题,每小题4分,共32分)1. (2019•广东)已知x1.x2是一元二次方程了x2﹣2x=0的两个实数根,下列结论错误的是A.x1≠x2 B.x12﹣2x1=0 C.x1+x2=2 D.x1·x2=2[答案]D[解析]因式分解x(x-2)=0,解得两个根分别为0和2,代入选项排除法.2.观察下列四个图形,中心对称图形是( )A.B.C.D.[答案]C[解析]根据中心对称图形的概念对各选项分析判断即可得解.A.不是中心对称图形,故本选项错误;B.不是中心对称图形,故本选项错误;C.是中心对称图形,故本选项正确;D.不是中心对称图形,故本选项错误.3.如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是( )A.70° B.55° C.35.5° D.35°[答案]D.[解析]根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.连接OB,∵点B是的中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°4.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是( )A.B.﹣C.4 D.﹣1[答案]A.[解析]∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是( )A. (-1,-4)B. (1,-4)C. (-1,4)D.(1,4)[答案]D[解析]把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4)6.如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:AB的长为( )A. 1B. 2C. 3D. 4[答案]A[解析]连接BD,∵∠BAC =90°,∴BC 为⊙O 的直径,即BC =, ∴AB =BC =17.用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为( ).A. π.B. 2π.C. 3π.D. 4π.[答案]D .[解析]易得扇形的弧长,除以2π即为圆锥的底面半径,从而可以计算面积. 扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.∴面积为:4π.8.从﹣3.﹣l ,π,0,3这五个数中随机抽取一个数,恰好是负数的概率是( ).A.1/5B.2/5C.3/5D.4/5[答案]B .[解析]五个数中有两个负数,根据概率公式求解可得.∵在﹣3.﹣l ,π,0,3这五个数中,负数有﹣3和﹣1这2个,∴抽取一个数,恰好为负数的概率为.二、填空题(本大题共8个小题,每小题4分,共32分)11.(2019江苏镇江)已知抛物线2441(0)y ax ax a a =+++≠过点(,3)A m ,(,3)B n 两点,若线段AB 的长不大于4,则代数式21a a ++的最小值是 .[答案]74[解析]抛物线2441(0)y ax ax a a =+++≠过点(,3)A m ,(,3)B n 两点,∴4222m n a a+=-=- 线段AB 的长不大于4,413a ∴+12a ∴ 21a a ∴++的最小值为:2117()1224++=; 故答案为74. 12.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 . [答案].[解析]根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.根据题意知,掷一次骰子6个可能结果,而奇数有3个,所以掷到上面为奇数的概率为.13.如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC .若∠AOB = 120°,则∠ACB = 度.[答案]60[解析]根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得答案.14.若关于x 的方程3x ﹣kx +2=0的解为2,则k 的值为 .[答案]4.[解析]直接把x =2代入进而得出答案.∵关于x 的方程3x ﹣kx +2=0的解为2,∴3×2﹣2k +2=0,解得:k =4.15.如图,四边形ABCD 为⊙O 的内接四边形,∠A =100°,则∠DCE 的度数为 .[答案]100°[解析]∵四边形ABCD 为⊙O 的内接四边形,∴∠DCE =∠A =100°16.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为 .[答案]20%.[解析]设这两年中投入资金的平均年增长率是x ,由题意得:5(1+x )2=7.2,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意舍去).这两年中投入资金的平均年增长率约是20%.三、解答题(本大题有5小题,共56分)17. (10分)(2019北京市) 关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.[答案]m=1,此方程的根为121x x ==[解析]先由原一元二次方程有实数根得判别式240b ac -≥进而求出m 的范围;结合m 的值为正整数,求出m 的值,进而得到一元二次方程求解即可.∵关于x 的方程22210x x m -+-=有实数根,∴()()22424121484880b ac m m m ∆=-=--⨯⨯-=-+=-≥ ∴1m ≤又∵m 为正整数,∴m=1,此时方程为2210x x -+=解得根为121x x ==,∴m=1,此方程的根为121x x ==18. (10分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向右平移3个单位后得到的△A1B1C1,再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2;(2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长.[答案]见解析.[解析]根据平移的性质得出对应点位置以及利用旋转的性质得出对应点位置画出图形即可;根据弧长计算公式求出即可.此题主要考查了图形的旋转与平移变换以及弧长公式应用等知识,根据已知得出对应点位置是解题关键.(1)如图所示:(2)点C1所经过的路径长为:=2π.19. (12分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.[答案](1)如下图;(2)1 3[解析]此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题关键,难度中等.(1)1025%40÷=(人)获一等奖人数:408612104----=(人)(2)七年级获一等奖人数:1414⨯=(人)八年级获一等奖人数:1414⨯=(人)∴九年级获一等奖人数:4112--=(人)七年级获一等奖的同学人数用M表示,八年级获一等奖的同学人数用N表示,九年级获一等奖的同学人数用P1、P2表示,树状图如下:共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,则所选出的两人中既有七年级又有九年级同学的概率P=41 123=.20.(12分)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.[答案]见解析.[解析]本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了勾股定理.(1)证明:连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴DF==.21.(12分)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.[答案]见解析.[解析]此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.(1)把已知点的坐标代入抛物线解析式求出b与c的值即可;(2)指出满足题意的平移方法,并写出平移后的解析式即可.解:(1)把(1,0),(0,)代入抛物线解析式得:,解得:,则抛物线解析式为y=﹣x2﹣x+;(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.。