第二章 回归分析概要1(一元概念)
- 格式:ppt
- 大小:168.50 KB
- 文档页数:18
回归分析法概念及原理一(一元线性回归)2009-12-14 14:27最近,在学一门统计学,有点意思。
问题一点一点出现,又一点一点被慢慢解决,慢慢消化~~做为初学者,搞不清的地方还真多。
今天刚好又看了有关相关分析和回归分析的学习资料,感觉不错,闲来与大家分享分享。
一、一元回归分析法,是在考虑预测对象发展变化本质基础上,分析因变量随一个自变量变化而变化的关联形态,借助回归分析建立它们因果关系的回归方程式,描述它们之间的平均变化数量关系,据此进行预测或控制。
1、基本原理假设预测目标因变量为Y,影响它变化的一个自变量为X,因变量随自变量的增(减)方向的变化。
一元线性回归分析就是要依据一定数量的观察样本(Xi,Yi)i=1,2…,n,找出回归直线方程Y=a+bX (1)对应于每一个Xi,根据回归直线方程可以计算出一个因变量估计值Yi。
回归方程估计值Yi 与实际观察值Yj之间的误差记作e-i=Yi-Yi。
显然,n个误差的总和越小,说明回归拟合的直线越能反映两变量间的平均变化线性关系。
据此,回归分析要使拟合所得直线的平均平方离差达到最小,简称最小二乘法将求出的a和b代入式(1)就得到回归直线Y-i =a+bXI 。
那么,只要给定Xi-值,就可以用作因变量Y i的预测值。
2、变量间的关系确定性关系或函数关系:研究的是确定性现象非随机变量间的关系。
统计依赖关系或相关关系:研究的是非确定性现象随机变量间的关系。
几点注意:–不线性相关并不意味着不相关;–有相关关系并不意味着一定有因果关系;–相关分析对称地对待任何(两个)变量,两个变量都被看作是随机的;回归分析对变量的处理方法存在不对称性,即区分因变量(被解释变量)和自变量(解释变量):前者是随机变量,后者不是。
总体回归函数:•给定解释变量X的某个确定值X i,与之统计相关的被解释变量Y的总体均值(期望值)可以表示为:上式说明了被解释变量Y平均地说随解释变量X变化的规律,一般称为总体回归函数或总体回归方程(population regression function,PRF);对应的曲线称为总体回归曲线(population regression curve),它可以是线性的或非线性的。