气象统计方法 第四章 一元线性回归分析
- 格式:ppt
- 大小:924.50 KB
- 文档页数:47
从统计学看线性回归(1)——⼀元线性回归⽬录1. ⼀元线性回归模型的数学形式2. 回归参数β0 , β1的估计3. 最⼩⼆乘估计的性质 线性性 ⽆偏性 最⼩⽅差性⼀、⼀元线性回归模型的数学形式 ⼀元线性回归是描述两个变量之间相关关系的最简单的回归模型。
⾃变量与因变量间的线性关系的数学结构通常⽤式(1)的形式:y = β0 + β1x + ε (1)其中两个变量y与x之间的关系⽤两部分描述。
⼀部分是由于x的变化引起y线性变化的部分,即β0+ β1x,另⼀部分是由其他⼀切随机因素引起的,记为ε。
该式确切的表达了变量x与y之间密切关系,但密切的程度⼜没有到x唯⼀确定y的这种特殊关系。
式(1)称为变量y对x的⼀元线性回归理论模型。
⼀般称y为被解释变量(因变量),x为解释变量(⾃变量),β0和β1是未知参数,成β0为回归常数,β1为回归系数。
ε表⽰其他随机因素的影响。
⼀般假定ε是不可观测的随机误差,它是⼀个随机变量,通常假定ε满⾜:(2)对式(1)两边求期望,得E(y) = β0 + β1x, (3)称式(3)为回归⽅程。
E(ε) = 0 可以理解为ε对 y 的总体影响期望为 0,也就是说在给定 x 下,由x确定的线性部分β0 + β1x 已经确定,现在只有ε对 y 产⽣影响,在 x = x0,ε = 0即除x以外其他⼀切因素对 y 的影响为0时,设 y = y0,经过多次采样,y 的值在 y0 上下波动(因为采样中ε不恒等于0),若 E(ε) = 0 则说明综合多次采样的结果,ε对 y 的综合影响为0,则可以很好的分析 x 对 y 的影响(因为其他⼀切因素的综合影响为0,但要保证样本量不能太少);若 E(ε) = c ≠ 0,即ε对 y 的综合影响是⼀个不为0的常数,则E(y) = β0 + β1x + E(ε),那么 E(ε) 这个常数可以直接被β0 捕获,从⽽变为公式(3);若 E(ε) = 变量,则说明ε在不同的 x 下对 y 的影响不同,那么说明存在其他变量也对 y 有显著作⽤。
一元线性回归分析预测法模型分析一元线性回归分析预测法,是根据自变量x和因变量Y的相关关系,建立x与Y的线性回归方程进行预测的方法。
由于市场现象一般是受多种因素的影响,而并不是仅仅受一个因素的影响。
所以应用一元线性回归分析预测法,必须对影响市场现象的多种因素做全面分析。
只有当诸多的影响因素中,确实存在一个对因变量影响作用明显高于其他因素的变量,才能将它作为自变量,应用一元相关回归分析市场预测法进行预测。
一元线性回归分析法的预测模型为:
(1)
式中,x t代表t期自变量的值;
代表t期因变量的值;
a、b代表一元线性回归方程的参数。
a、b参数由下列公式求得(用代表):
为简便计算,我们作以下定义:
(2)
式中:
这样定义a、b后,参数由下列公式求得:
(3)
将a、b代入一元线性回归方程Y t = a + bx t,就可以建立预测模型,那么,只要给定x t值,即可求出预测值。
在回归分析预测法中,需要对X、Y之间相关程度作出判断,这就要计算相关系数Y,其公式如下:
相关系数r的特征有:
①相关系数取值范围为:-1≤r≤1 。
②r与b符合相同。
当r>0,称正线性相关,X i上升,Y i呈线性增加。
当r<0,称负线性相关,X i上升,Y i呈线性减少。
③|r|=0,X与Y无线性相关关系;|r|=1,完全确定的线性相关关系;0<|r|<1,X与Y存在一定的线性相关关系;|r|>0.7,为高度线性相关;0.3<|r|≤0.7,为中度线性相关;|r|≤0.3,为低度线性相关。
(4)。
《气象资料的统计降尺度方法综述》篇一一、引言随着全球气候变化的影响日益显著,气象资料的准确性和精细度成为了科学研究、农业发展、城市规划等领域不可或缺的依据。
统计降尺度方法作为连接大尺度气象资料与小尺度气象数据的重要桥梁,其在气象学、气候学等领域的地位愈发重要。
本文旨在综述气象资料的统计降尺度方法,探讨其应用及发展现状,为相关领域的研究者提供参考。
二、统计降尺度方法概述统计降尺度方法是通过将大尺度气象资料与小尺度地区的气象数据相结合,实现对小尺度地区气象情况的预测和模拟。
其基本思想是通过统计模型或机器学习等方法,提取大尺度资料中的信息,并结合当地地理、气象特征等数据进行降尺度处理,以得到更加准确的小尺度气象资料。
三、常见的统计降尺度方法1. 回归分析:回归分析是一种常用的统计降尺度方法,其基本思想是利用大尺度的气象资料与小尺度的气象数据进行回归分析,建立两者之间的数学关系,从而实现对小尺度的预测。
常见的回归分析方法包括线性回归、多元回归等。
2. 机器学习方法:随着人工智能技术的发展,机器学习方法在气象资料统计降尺度中得到了广泛应用。
如支持向量机、神经网络等模型,能够通过学习大量数据中的规律和模式,实现对小尺度的预测和模拟。
3. 空间插值法:空间插值法是利用已知的气象资料,通过插值方法推算未知地区的气象数据。
常见的空间插值法包括克里金插值、逆距离加权等。
这些方法可以在考虑地理空间结构的基础上,将大尺度的气象数据有效地传递到小尺度地区。
四、统计降尺度方法的应用及发展统计降尺度方法在气象学、气候学等领域得到了广泛应用。
例如,在农业气象方面,通过对小尺度的气象数据进行预测和模拟,可以更好地指导农业生产;在城市规划方面,通过对城市气候的预测和模拟,可以为城市规划和建设提供科学依据。
此外,随着人工智能等技术的发展,统计降尺度方法的精度和效率也在不断提高。
未来,随着大数据、云计算等技术的发展,统计降尺度方法将更加智能化和精细化,为气象学、气候学等领域的研究提供更加准确的数据支持。
回归分析法摘要:略。
关键词:回归分析、回归模型、相关性检验、置信区间。
回归分析的起源:回归分析起源.doc回归分析定义:利用数据统计原理,对大量统计数据进行数学处理,并确定因变量与某些自变量的相关关系,建立一个相关性较好的回归方程(函数表达式),并加以外推,用于预测今后的因变量的变化的分析方法。
分类:1.根据因变量和自变量的个数来分类:一元回归分析;多元回归分析;2. 根据因变量和自变量的函数表达式来分类:线性回归分析;非线性回归分析;几点说明:1.通常情况下,线性回归分析是回归分析法中最基本的方法,当遇到非线性回归分析时,可以借助数学手段将其化为线性回归;因此,主要研究线性回归问题,一点线性回归问题得到解决,非线性回归也就迎刃而解了,例如,取对数使得乘法变成加法等;当然,有些非线性回归也可以直接进行,如多项式回归等;2.在社会经济现象中,很难确定因变量和自变量之间的关系,它们大多是随机性的,只有通过大量统计观察才能找出其中的规律。
随机分析是利用统计学原理来描述随机变量相关关系的一种方法;3.由回归分析法的定义知道,回归分析可以简单的理解为信息分析与预测。
信息即统计数据,分析即对信息进行数学处理,预测就是加以外推,也就是适当扩大已有自变量取值范围,并承认该回归方程在该扩大的定义域内成立,然后就可以在该定义域上取值进行“未来预测”。
当然,还可以对回归方程进行有效控制;4.相关关系可以分为确定关系和不确定关系。
但是不论是确定关系或者不确定关系,只要有相关关系,都可以选择一适当的数学关系式,用以说明一个或几个变量变动时,另一变量或几个变量平均变动的情况。
回归分析主要解决的问题: 回归分析主要解决方面的问题;1. 确定变量之间是否存在相关关系,若存在,则找出数学表达式;2. 根据一个或几个变量的值,预测或控制另一个或几个变量的值,且要估计这种控制或预测可以达到何种精确度。
回归模型:回归分析步骤:1. 根据自变量与因变量的现有数据以及关系,初步设定回归方程;2. 求出合理的回归系数;3. 进行相关性检验,确定相关系数;4. 在符合相关性要求后,即可根据已得的回归方程与具体条件相结合,来确定事物的未来状况,并计算预测值的置信区间; 回归分析的有效性和注意事项:有效性:用回归分析法进行预测首先要对各个自变量做出预测。
回归分析在气象统计分析中的作用摘要各气象要素的多年观测记录用不同方式统计,其统计结果称为气候统计量。
它们是分析和描述气候特征及其变化规律的基本资料。
回归预测,即分析因变量与自变量之间相互关系,建立回归模型,求出相应参数后获得预测模型公式,从而根据自变量的数值变化去预测因变量数值变化的趋势。
回归分析是目前气象统计分析中最为常用的一种方法之一,用回归分析预测气象是气象句的常用方法之一。
关键字:回归预测、气象统计、线性回归预测。
The Application of Regressionin the weather thecovariance the analysisAbstractPrognosticate a record to use different way covariance for several years of each weather main factor,its covariance is as a result called weather covariance quantity.They are the basic dates’of[with]analysis and the description weather characteristic and its variety regulation. Return to return an estimate,then analysis because of changing quantity with from changed of quantity correlation,built up back to return model,begged to acquire estimate model formula after corresponding the parameter,thus according to from change the number of quantity variety to predict because of change quantity number the trend of the variety.Return to return the analysis is a weather to statistics analysis currently medium one of the most in common use methods,use back to return analysis to predict a weather to is one of the in common use methods of weather sentence.Key word:regression prediction,The weather statistics,the linearity regression prediction.1引言此篇论文,分为两个部分:前面部分是介绍回归分析的相关阐述和分析以及气象统计的相关知识,后一部分是实例说明。