(五年高考真题)2016届高考数学理复习第10章第7节统计与统计案例(全国通用)
- 格式:doc
- 大小:155.50 KB
- 文档页数:10
2016 年高考数学理试题分类汇编统计与概率一、1、( 2016 年北京高考)袋中装有偶数个球,其中球、黑球各占一半.甲、乙、丙是三个空盒 .每次从袋中任意取出两个球,将其中一个球放入甲盒,如果个球是球,就将另一个球放入乙盒,否就放入丙盒.重复上述程,直到袋中所有球都被放入盒中,()A. 乙盒中黑球不多于丙盒中黑球B. 乙盒中球与丙盒中黑球一多C.乙盒中球不多于丙盒中球D. 乙盒中黑球与丙盒中球一多【答案】 C2、( 2016 年山高考)某高校了200 名学生每周的自(位:小),制成了如所示的率分布直方,其中自的范是[17.5,30] ,本数据分[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方,200 名学生中每周的自不少于22.5 小的人数是(A ) 56(B)60(C)120(D)140【答案】 D3、( 2016 年全国 I 高考)某公司的班在7:30,8:00,8:30 ,小明在 7:50 至 8:30 之到达站乘坐班,且到达站的刻是随机的,他等不超10 分的概率是( A)1123 3( B )2( C)3(D )4【答案】 B4、( 2016 年全国 II 高考)从区0,1随机抽取 2n 个数x1,x2,⋯, x n, y1, y2,⋯, y n,构成 n 个数x, y, x , y x , y,其中两数的平方和小于 1 的数共有m个,则用随机模拟的方法得到的圆周率的近似值为(A)4n(B)2n(C)4m(D)2m m m n n【答案】 C5、( 2016 年全国III 高考)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中 A 点表示十月的平均最高气温约为150C,B 点表示四月的平均最低气温约为50C。
下面叙述不正确的是(A)各月的平均最低气温都在00C 以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于200C 的月份有 5 个【答案】 D二、填空题1 、( 2016年山东高考)在[-1,1]上随机的取一个数k,则事件“ 直线y = kx与圆(x-5)2 + y2 = 9 相交”发生的概率为3【答案】.42、( 2016 年上海高考)某次体检, 6 位同学的身高(单位:米)分别为 1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米)【答案】 1.763、( 2016 年四川高考)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在 2 次试验中成功次数X 的均值是.【答案】3 2三、解答题1、( 2016 年北京高考)A、 B、C 三个班共有100 名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时);A 班6 6.577.58B 班6789101112C 班3 4.567.5910.51213.5( 1)试估计 C 班的学生人数;( 2)从 A 班和 C 班抽出的学生中,各随机选取一人, A 班选出的人记为甲, C 班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;( 3)再从 A 、 B、 C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7, 9, 8.25(单位:小时),这 3 个新数据与表格中的数据构成的新样本的平均数记1,表格中数据的平均数记为0 ,试判断0 和 1 的大小,(结论不要求证明)解析】⑴8100 40 , C班学生40 人20⑵在 A 班中取到每个人的概率相同均为15设 A 班中取到第 i 个人事件为 A i, i1,2,3,4,5C 班中取到第j 个人事件为C j,j 1,2,3,4,5,6,7,8A 班中取到 A i C j的概率为 P i所求事件为 D则 P( D )1P11P21P31P41P5555551213131314585858585838⑶ 10三组平均数分别为 7 , 9 , 8.25 , 总均值08.2但 1 中多加的三个数据7 , 9 , 8.25 , 平均值为 8.08 ,比0小,故拉低了平均值2、( 2016 年山东高考)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得 3 分;如果只有一人猜对,则“星队”得 1 分;如果两人都没猜对,则“星队”得0 分.已知甲每轮猜对的概率是3,乙每轮4猜对的概率是2;每轮活动中甲、乙猜对与否互不影响,各轮结果也互不影响.假设“星队”3参加两轮活动,求:( Ⅰ )“星队”至少猜对 3 个成语的概率;( Ⅱ )“星队”两轮得分之和X 的分布列和数学期望EX .【解析】 ( Ⅰ ) “至少猜对 3 个成语”包括“恰好猜对 3 个成语”和“猜对 4 个成语”.设“至少猜对 3 个成语”为事件 A ;“恰好猜对 3 个成语”和“猜对 4 个成语”分别为事件B,C ,则 P( B) C213 3 2 1C21 3 1 2 25 ;443344331233221.P(C )43344所以 P( A)P( B)P(C )512.1243( Ⅱ )“星队”两轮得分之和X 的所有可能取值为0,1,2,3,4,6于是 P( X0)11111;4343144P( X 1) C211 2 1 1C21 1 1 3 110 5 ;4343434314472P( X 2) 1 12 2 3 3 1 1C21 1 3 2 125 ;443344334433144 P( X3) C21 3 2 1 1 12 1 ;434314412P( X 4) C2132( 1 2 3 1)60 5 ;43434314412P( X6)3232361;43431444X012346P1525151 14472144121241525154155223X 的数学期望 EX01236144.144721441212463、( 2016 年四川高考)我国是世界上重缺水的国家,某市政府了鼓励居民用水,划整居民生活用水收方案,确定一个合理的月用水量准x (吨)、一位居民的月用水量不超 x 的部分按平价收,超出 x 的部分按价收.了了解居民用水情况,通抽,得了某年 100 位居民每人的月均用水量(位:吨),将数据按照 [0,0.5) ,[0.5,1) ,⋯,[4,4.5)分成 9 ,制成了如所示的率分布直方.( I)求直方中 a 的;( II )市有30 万居民,估全市居民中月均用水量不低于 3 吨的人数,并明理由;( III )若市政府希望使85%的居民每月的用水量不超准x (吨),估x 的,并明理由 .【解析】( I )由概率相关知,各率之和的1∵ 率 =(率 /距 )* 距∴ 0.50.080.160.40.520.120.080.042a1得 a0.3( II )由,不低于3吨人数所占百分比0.50.120.080.04 =12%∴全市月均用水量不低于3吨的人数:3012%=3.6 (万 )( III )由可知,月均用水量小于 2.5吨的居民人数所占百分比:0.50.080.160.30.40.520.73即 73% 的居民月均用水量小于 2.5吨 ,同理, 88%的居民月均用水量小于3吨,故 2.5x3假月均用水量平均分布,x 2.50.585%73%0.52.9 (吨) .0.3注:本次估计默认组间是平均分布,与实际可能会产生一定误差。
第七节统计与统计案例考点一抽样方法1.(2015·陕西,2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.167 B.137 C.123 D.93解析由题干扇形统计图可得该校女教师人数为:110×70%+150×(1-60%)=137.故选B.答案 B2.(2014·湖南,2)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3解析因为采取简单随机抽样、系统抽样和分层抽取样本时,总体中每个个体被抽中的概率相等,故选D.答案 D3.(2014·广东,6)已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A.200,20 B.100,20 C.200,10 D.100,10解析由题图可知,样本容量等于(3 500+4 500+2 000)×2%=200;抽取的高中生近视人数为2 000×2%×50%=20,故选A.答案 A4.(2013·湖南,2)某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业务爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A.抽签法B.随机数法C.系统抽样法D.分层抽样法解析看男、女学生在学习兴趣与业余爱好是否存在明显差异,应当分层抽取,故宜采用分层抽样.答案 D5.(2013·陕西,4)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ) A .11B .12C .13D .14解析 840÷42=20,把1,2,…,840分成42段,不妨设第1段抽取的号码为l ,则第k 段抽取的号码为l +(k -1)·20,1≤l ≤20,1≤k ≤42.令481≤l +(k -1)·20≤720,得25+1-l 20≤k ≤37-l 20.由1≤l ≤20,则25≤k ≤36.满足条件的k 共有12个.答案 B6.(2013·新课标全国Ⅰ,3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样解析 因为学段层次差异较大,所以在不同学段中抽取宜采用分层抽样. 答案 C7.(2014·天津,9)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生. 解析420×300=60(名). 答案 608.(2012·天津,9)某地区有小学150所,中学75所,大学25的.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.解析 共有学校150+75+25=250所,∴小学中应抽取:30×150250=18所,中学中应抽取:30×75250=9所.答案 18 9考点二 频率分布直方图与茎叶图1.(2015·安徽,6)若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( ) A .8 B .15 C .16 D .32解析 法一 由题意知,x 1+x 2+…+x 10=10x ,s 1=,则=1n[(2x 1-1)+(2x 2-1)+…+(2x 10-1)]=1n[2(x 1+x 2+…+x 10)-n ]=2-1,所以S 2= ==2s 1,故选C. 答案 C2.(2015·重庆,3)重庆市2013年各月的平均气温(℃)数据的茎叶图如下: 则这组数据的中位数是( ) 0 1 2 28 9 2 5 80 0 0 3 3 8 1 2 A .19B .20C .21.5D .23解析 从茎叶图知所有数据为8,9,12,15,18,20,20,23,23,28,31,32,中间两个数为20,20,故中位数为20,选B. 答案 B3.(2014·山东,7)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .6B .8C .12D .18解析 由题图可知,第一组和第二组的频率之和为(0.24+0.16)×1=0.40,故该试验共选取的志愿者有200.40=50人.所以第三组共有50×0.36=18人,其中有疗效的人数为18-6=12. 答案 C4.(2014·陕西,9)设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若y i =x i +a (a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( ) A .1+a ,4 B .1+a ,4+a C .1,4D .1,4+a解析∵x1,x2,…,x10的均值=1,方差s21=4,且y i=x i+a(i=1,2,…,10),∴y1,y2,…,y10的均值=110(y1+y2+…+y10)=110(x1+x2+…+x10+10a)=110(x1+x2+ (x10)+a=+a=1+a,其方差s22=110[(y1-)2+(y2-)2+…+(y10-)2]=110[(x1-1)2+(x2-1)2+…+(x10-1)2]=s21=4.故选A.答案 A5.(2013·福建,4)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A.588 B.480 C.450 D.120解析由频率分布直方图知40~60分的频率为(0.005+0.015)×10=0.2,故估计不少于60分的学生人数为600×(1-0.2)=480.答案 B6.(2012·陕西,6)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x甲,x乙,中位数分别为m甲,m乙,则( )A.甲<乙,m甲>m乙B.甲<乙,m甲<m乙C.甲>乙,m甲>m乙D.甲>乙,m甲<m乙解析甲=116(41+43+30+30+38+22+25+27+10+10+14+18+18+5+6+8)=34516,乙=116(42+43+48+31+32+34+34+38+20+22+23+23+27+10+12+18)=45716,∴甲<x乙,又m甲=20,m乙=29,∴m甲<m乙.答案 B7.(2015·江苏,2)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.解析这组数据的平均数为16(4+6+5+8+7+6)=6.答案 68.(2015·湖南,12)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:131415 0 0 3 4 5 6 6 8 8 91 1 12 2 23 34 45 5 56 678 0 1 2 2 3 3 3若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.解析由题意知,将1~35号分成7组,每组5名运动员,落在区间[139,151]的运动员共有4组,故由系统抽样法知,共抽取4名.答案 49.(2014·江苏,6)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.解析60×(0.015+0.025)×10=24.答案2410.(2015·新课标全国Ⅱ,18)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;记C A 2表示事件:“A 地区用户的满意度等级为非常满意”; 记C B 1表示事件:“B 地区用户的满意度等级为不满意”; 记C B 2表示事件:“B 地区用户的满意度等级为满意”; 则C A 1与C B 1独立,C A 2与C B 2独立,C B 1与C B 2互斥,C =C B 1C A 1∪C B 2C A 2.P (C )=P (C B 1C A 1∪C B 2C A 2)=P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,故P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020, P (C B 2)=820,P (C )=1020×1620+820×420=0.48.考点三 变量间的相关关系及统计案例1.(2015·新课标全国Ⅱ,31)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关解析 从2006年,将每年的二氧化硫排放量与前一年作差比较,得到2008年二氧化硫排放量与2007年排放量的差最大,A 选项正确;2007年二氧化硫排放量较2006年降低了很多,B 选项正确;虽然2011年二氧化硫排放量较2010年多一些,但自2006年以来,整体呈递减趋势,即C 选项正确;自2006年以来我国二氧化硫年排放量与年份负相关,D 选项错误,故选D. 答案 D2.(2015·福建,4)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:15万元家庭的年支出为( ) A .11.4万元 B .11.8万元 C .12.0万元D .12.2万元解析 回归直线一定过样本点中心(10,8),∵=0.76,∴=0.4,由=0.76x +0.4得当x =15万元时,=11.8万元.故选B. 答案 B3.(2014·重庆,3)已知变量x 与y 正相关,且由观测数据算得样本平均数x -=3,y =3.5,则由该观测数据算得的线性回归方程可能是( ) A.y ^=0.4x +2.3B.y ^=2x -2.4C.y ^=-2x +9.5D.y ^=-0.3x +4.4解析 由变量x 与y 正相关知C 、D 均错,又回归直线经过样本中心(3,3.5),代入验证得A 正确,B 错误.故选A. 答案 A4.(2014·湖北,4)根据如下样本数据得到的回归方程为y =bx +a ,则( ) A .a >0,b >0 B .a >0,b <0 C .a <0,b >0D .a <0,b <0解析 把样本数据中的x ,y 分别当作点的横、纵坐标,在平面直角坐标系xOy 中作出散点图,由图可知b <0,a >0.故选B. 答案 B5.(2011·湖南,4)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K 2=n (ad -(a +b )(c +d )(a +c )(b +d )算得,K 2=110×(40×30-20×20)260×50×60×50≈7.8.附表:A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关” 解析 ∵K 2≈7.8>6.635,∴有99%以上的把握认为“爱好该项运动与性别有关”,即犯错误的概率不超过1%. 答案 C6.(2015·新课标全国Ⅰ,19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =x i ,w =18 i =18w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为: β^=.解 (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程,由于 =68,=-=563-68×6.8=100.6,所以y 关于w 的线性回归方程为=100.6+68w ,因此y 关于x 的回归方程为=100.6+68x . (3)①由(2)知,当x =49时,年销售量y 的预报值=100.6+6849=576.6, 年利润z 的预报值 =576.6×0.2-49=66.32. ①根据(2)的结果知,年利润z 的预报值=0.2(100.6+68x )-x =-x +13.6x +20.12.所以当x =13.62=6.8,即x =46.24时,z ^ 取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.7.(2012·辽宁,19)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?(2)每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望E (X )和方差D (X ).附:K 2(χ2)=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2,解 (1)25人,从而2×2列联表如下:将2×2K 2(χ2)=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2=100×(30×10-45×15)275×25×45×55=10033≈3.030. 因为3.030<3.841,所以没有理由认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为14.由题意X ~B ⎝ ⎛⎭⎪⎫3,14,从而X 的分布列为E (X )=np =3×14=34,D (X )=np (1-p )=3×14×34=916.。