【2020】人教版最新高考数学总复习经典测试题解析版
- 格式:doc
- 大小:37.98 KB
- 文档页数:7
2020高考人教版数学理科一轮复习 课后练50【圆的方程】及解析一、选择题1.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程是( A )A .(x +1)2+y 2=2B .(x +1)2+y 2=8C .(x -1)2+y 2=2D .(x -1)2+y 2=8解析:直线x -y +1=0与x 轴的交点为(-1,0).根据题意,圆C 的圆心坐标为(-1,0).因为圆与直线x +y +3=0相切,所以半径为圆心到切线的距离,即r =d =|-1+0+3|12+12=2,则圆的方程为(x +1)2+y 2=2.故选A.2.(2019·河北邯郸联考)以(a,1)为圆心,且与两条直线2x -y +4=0与2x -y -6=0同时相切的圆的标准方程为( A )A .(x -1)2+(y -1)2=5B .(x +1)2+(y +1)2=5C .(x -1)2+y 2=5D .x 2+(y -1)2=5解析:因为两平行直线2x -y +4=0与2x -y -6=0的距离为d =|-6-4|5=2 5.故所求圆的半径为r =5,所以圆心(a,1)到直线2x -y +4=0的距离为5=|2a +3|5,即a =1或a =-4.又因为圆心(a,1)到直线2x -y -6=0的距离也为r =5,所以a =1.因此所求圆的标准方程为(x -1)2+(y -1)2=5.故选A.3.已知直线l :x +my +4=0,若曲线x 2+y 2+6x -2y +1=0上存在两点P ,Q 关于直线l 对称,则m 的值为( D )A .2B .-2C .1D .-1解析:因为曲线x 2+y 2+6x -2y +1=0表示的是圆,其标准方程为(x +3)2+(y -1)2=9,若圆(x +3)2+(y -1)2=9上存在两点P ,Q 关于直线l 对称,则直线l :x +my +4=0过圆心(-3,1),所以-3+m +4=0,解得m =-1.4.(2019·贵阳市监测考试)经过三点A (-1,0),B (3,0),C (1,2)的圆与y 轴交于M ,N 两点,则|MN |=( A ) A .2 3 B .2 2 C .3D .4解析:根据A ,B 两点的坐标特征可知圆心在直线x =1上,设圆心为P (1,m ),则半径r =|m -2|,所以(m -2)2=22+m 2,解得m =0,所以圆心为P (1,0),所以圆的方程为(x -1)2+y 2=4,当x =0时,y =±3,所以|MN |=2 3.5.(2019·西安八校联考)若过点A (3,0)的直线l 与曲线(x -1)2+y 2=1有公共点,则直线l 斜率的取值范围为( D )A .(-3,3)B .[-3,3]C .(-33,33) D .[-33,33] 解析:解法1:数形结合可知,直线l 的斜率存在,设直线l 的方程为y =k (x -3),则圆心(1,0)到直线y =k (x -3)的距离应小于等于半径1,即|2k |1+k 2≤1,解得-33≤k ≤33,故选D. 解法2:数形结合可知,直线l 的斜率存在,设为k ,当k =1时,直线l 的方程为x -y -3=0,圆心(1,0)到直线l 的距离为|1-0-3|12+(-1)2=2>1,直线与圆相离,故排除A ,B ;当k =33时,直线l 的方程为x -3y -3=0,圆心(1,0)到直线l 的距离为|1-3×0-3|12+(-3)2=1,直线与圆相切,排除C ,故选D.6.(2019·河南豫西五校联考)在平面直角坐标系xOy 中,以点(0,1)为圆心且与直线x -by +2b +1=0相切的所有圆中,半径最大的圆的标准方程为( B )A .x 2+(y -1)2=4B .x 2+(y -1)2=2C .x 2+(y -1)2=8D .x 2+(y -1)2=16解析:直线x -by +2b +1=0过定点P (-1,2),如图.∴圆与直线x -by +2b +1=0相切于点P 时,圆的半径最大,为2,此时圆的标准方程为x 2+(y -1)2=2,故选B.二、填空题7.已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为(x -2)2+y 2=9.解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a 5=455,解得a =2, 所以圆C 的半径r =|CM |=4+5=3,所以圆C 的方程为(x -2)2+y 2=9.8.(2019·贵阳市摸底考试)过点M (2,2)的直线l 与坐标轴的正方向分别相交于A ,B 两点,O 为坐标原点,若△OAB 的面积为8,则△OAB 外接圆的标准方程是(x -2)2+(y -2)2=8.解析:设直线l 的方程为x a +y b =1(a >0,b >0),由直线l 过点M (2,2),得2a +2b =1.又S △OAB =12ab =8,所以a =4,b =4,所以△OAB 是等腰直角三角形,且M 是斜边AB 的中点,则△OAB 外接圆的圆心是点M (2,2),半径|OM |=22,所以△OAB 外接圆的标准方程是(x -2)2+(y -2)2=8.9.(2019·湖南湘东五校联考)圆心在抛物线y =12x 2(x <0)上,且和该抛物线的准线及y 轴都相切的圆的标准方程为(x +1)2+(y -12)2=1.解析:依题意设圆的方程为(x -a )2+(y -12a 2)2=r 2(a <0),又该圆与抛物线的准线及y 轴均相切,所以12+12a 2=r =-a ⇒⎩⎪⎨⎪⎧a =-1,r =1.故所求圆的标准方程为(x +1)2+(y -12)2=1. 三、解答题10.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1), 即x +y -3=0. (2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0. ① 又∵直径|CD |=410,∴|P A |=210, ∴(a +1)2+b 2=40. ②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2).∴圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.11.(2019·山西长治六校联考)已知圆C 经过点A ⎝⎛⎭⎫74,174,B ⎝⎛⎭⎫-318,338,直线x =0平分圆C ,直线l 与圆C 相切,与圆C 1:x 2+y 2=1相交于P ,Q 两点,且满足OP ⊥OQ .(1)求圆C 的方程; (2)求直线l 的方程.解:(1)依题意知圆心C 在y 轴上,可设圆心C 的坐标为(0,b ),圆C 的方程为x 2+(y -b )2=r 2(r >0). 因为圆C 经过A ,B 两点,所以⎝⎛⎭⎫742+⎝⎛⎭⎫174-b 2=⎝⎛⎭⎫-3182+⎝⎛⎭⎫338-b 2, 即716+28916-172b +b 2=3164+1 08964-334b +b 2,解得b =4. 又易知r 2=⎝⎛⎭⎫742+⎝⎛⎭⎫174-42=12,所以圆C 的方程为x 2+(y -4)2=12.(2)当直线l 的斜率不存在时,由l 与C 相切得l 的方程为x =±22,此时直线l 与C 1交于P ,Q 两点,不妨设P 点在Q 点的上方,则P 22,22,Q 22,-22或P -22,22,Q ⎝⎛⎭⎫-22,-22,则OP →·OQ →=0,所以OP ⊥OQ ,满足题意.当直线l 的斜率存在时,易知其斜率不为0, 设直线l 的方程为y =kx +m (k ≠0,m ≠0), ∵OP ⊥OQ 且C 1的半径为1, ∴O 到l 的距离为22, 又l 与圆C 相切,∴⎩⎪⎨⎪⎧|m |1+k2=22,①|m -4|1+k 2=22,②由①②知|m |=|m -4|,∴m =2, 代入①得k =±7, ∴l 的方程为y =±7x +2.综上,l 的方程为x =±22或y =±7x +2.12.(2019·江西新余五校联考)已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,当△OPQ 的面积最大时,直线l 的方程为( D )A .x -y -3=0或7x -y -15=0B .x +y +3=0或7x +y -15=0C .x +y -3=0或7x -y +15=0D .x +y -3=0或7x +y -15=0解析:当直线l 的斜率不存在时,l 的方程为x =2,则P ,Q 的坐标为(2,5),(2,-5),所以S △OPQ=12×2×25=2 5.当直线l 的斜率存在时,设l 的方程为y -1=k (x -2)⎝⎛⎭⎫k ≠12,则圆心到直线PQ 的距离d =|1-2k |1+k 2,由平面几何知识得|PQ |=29-d 2,S △OPQ=12·|PQ |·d =12·29-d 2·d =(9-d 2)d 2≤⎝ ⎛⎭⎪⎫9-d 2+d 222=92,当且仅当9-d 2=d 2,即d 2=92时,S △OPQ 取得最大值92.因为25<92,所以S △OPQ 的最大值为92,此时4k 2-4k +1k 2+1=92,解得k =-1或k =-7,此时直线l 的方程为x +y -3=0或7x +y -15=0.故选D.13.(2019·南宁、柳州联考)过点(2,0)作直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于-33.解析:令P (2,0),如图,易知|OA |=|OB |=1,所以S △AOB =12|OA |·|OB |·sin ∠AOB =12sin ∠AOB ≤12,当∠AOB =90°时,△AOB 的面积取得最大值,此时过点O 作OH ⊥AB 于点H ,则|OH |=22,于是sin ∠OPH =|OH ||OP |=222=12,易知∠OPH 为锐角,所以∠OPH =30°,则直线AB 的倾斜角为150°,故直线AB 的斜率为tan150°=-33.14.如图,在等腰△ABC 中,已知|AB |=|AC |,B (-1,0),AC 边的中点为D (2,0),则点C 的轨迹所包围的图形的面积为4π.解析:解法1:设C 坐标为(x ,y ),则A 坐标为(4-x ,-y ),∵|AB |=|AC |, ∴(5-x )2+y 2=(4-2x )2+4y 2,整理得(x -1)2+y 2=4(y ≠0),所以C 的轨迹包围的图形面积为4π.解法2:由已知|AB |=2|AD |,设点A (x ,y ),则(x +1)2+y 2=4[(x -2)2+y 2],所以点A 的轨迹方程为(x -3)2+y 2=4(y ≠0),设C (x ′,y ′),由AC 边的中点为D (2,0)知A (4-x ′,-y ′),所以C 的轨迹方程为(4-x ′-3)2+(-y ′)2=4,即(x -1)2+y 2=4(y ≠0),所以点C 的轨迹所包围的图形面积为4π.尖子生小题库——供重点班学生使用,普通班学生慎用15.(2019·福州高三考试)抛物线C :y =2x 2-4x +a 与两坐标轴有三个交点,其中与y 轴的交点为P . (1)若点Q (x ,y )(1<x <4)在C 上,求直线PQ 斜率的取值范围; (2)证明:经过这三个交点的圆E 过定点.解:(1)由题意得P (0,a )(a ≠0),Q (x,2x 2-4x +a )(1<x <4),故k PQ =2x 2-4x +a -ax =2x -4,因为1<x <4,所以-2<k PQ <4,所以直线PQ 的斜率的取值范围为(-2,4). (2)证明:P (0,a )(a ≠0). 令2x 2-4x +a =0,则Δ=16-8a >0,a <2,且a ≠0, 解得x =1±4-2a2, 故抛物线C 与x 轴交于A (1-4-2a2,0),B (1+4-2a2,0)两点. 故可设圆E 的圆心为M (1,t ), 由|MP |2=|MA |2, 得12+(t -a )2=(4-2a 2)2+t 2, 解得t =a 2+14,则圆E 的半径 r =|MP |=1+(14-a 2)2.所以圆E 的方程为(x -1)2+(y -a 2-14)2=1+(14-a2)2,所以圆E 的一般方程为 x 2+y 2-2x -(a +12)y +a2=0,即x 2+y 2-2x -12y +a (12-y )=0.由⎩⎨⎧x 2+y 2-2x -12y =0,12-y =0,得⎩⎪⎨⎪⎧ x =0,y =12或⎩⎪⎨⎪⎧x =2,y =12,故圆E 过定点(0,12),(2,12).。
教学资料范本【2020最新】人教版最新高考数学一轮复习-题组层级快练(含解析)(1)附参考答案编辑:__________________时间:__________________(附参考答案)1.若椭圆+=1过点(-2,),则其焦距为( )A.2 B.2 3C.4 D.4 3答案D解析∵椭圆过(-2,),则有+=1,b2=4,c2=16-4=12,c=2,2c =4.故选D.2.已知焦点在x轴上的椭圆的离心率为,且它的长轴长等于圆C:x2+y2-2x-15=0的半径,则椭圆的标准方程是( )A.+=1B.+=1C.+y2=1D.+=1答案A解析圆C的方程可化为(x-1)2+y2=16.知其半径r=4,∴长轴长2a=4,∴a=2.又e==,∴c=1,b2=a2-c2=4-1=3.∴椭圆的标准方程为+=1.3.已知曲线C上的动点M(x,y),向量a=(x+2,y)和b=(x-2,y)满足|a|+|b|=6,则曲线C的离心率是( )A. B. 3C. D.13答案A解析因为|a|+|b|=6表示动点M(x,y)到两点(-2,0)和(2,0)距离的和为6,所以曲线C是椭圆且长轴长2a=6,即a=3.又c=2,∴e=.4.已知椭圆+=1的离心率e=,则m的值为( )A.3 B.3或253C. D.或5153答案B解析若焦点在x轴上,则有∴m=3.若焦点在y轴上,则有∴m=.5.已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是( )A.圆B.椭圆C.双曲线D.抛物线答案B解析点P在线段AN的垂直平分线上,故|PA|=|PN|.又AM是圆的半径,∴|PM|+|PN|=|PM|+|PA|=|AM|=6>|MN|.由椭圆的定义知,P的轨迹是椭圆.6.(20xx·广东韶关调研)已知椭圆与双曲线-=1的焦点相同,且椭圆上任意一点到两焦点的距离之和为10,那么椭圆的离心率等于( )A. B.45C. D.34答案B解析因为双曲线的焦点在x轴上,所以设椭圆的方程为+=1(a>b>0),因为椭圆上任意一点到两焦点的距离之和为10,所以根据椭圆的定义可得2a =10⇒a=5,则c==4,e==,故选B.7.(20xx·广东广州二模)设F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,点P在椭圆C上,线段PF1的中点在y轴上,若∠PF1F2=30°,则椭圆的离心率为( )A. B.13C. D.33答案D解析设PF1的中点为M,连接PF2,由于O为F1F2的中点,则OM为△PF1F2的中位线,所以OM∥PF2.所以∠PF2F1=∠MOF1=90°.由于∠PF1F2=30°,所以|PF1|=2|PF2|.由勾股定理,得|F1F2|=|PF1|2-|PF2|2=|PF2|.由椭圆定义,得2a=|PF1|+|PF2|=3|PF2|⇒a=,2c=|F1F2|=|PF2|⇒c=.所以椭圆的离心率为e==·=.故选D.8.(20xx·河北邯郸一模)已知P是椭圆+=1(0<b<5)上除顶点外一点,F1是椭圆的左焦点,若|+|=8,则点P到该椭圆左焦点的距离为( ) A.6 B.4C.2 D.52答案C解析取PF1的中点M,连接OM,+=2,∴|OM|=4.在△F1PF2中,OM 是中位线,∴|PF2|=8.∴|PF1|+|PF2|=2a=10,解得|PF1|=2,故选C.9.(20xx·北京海淀期末练习)已知椭圆C:+=1的左、右焦点分别为F1,F2,椭圆C上的点A满足AF2⊥F1F2,若点P是椭圆C上的动点,则·的最大值为( )A. B.332C. D.154解析由椭圆方程知c==1,所以F1(-1,0),F2(1,0).因为椭圆C上点A满足AF2⊥F1F2,则可设A(1,y0),代入椭圆方程可得y=,所以y0=±.设P(x1,y1),则=(x1+1,y1),=(0,y0),所以·=y1y0.因为点P是椭圆C上的动点,所以-≤y1≤,·的最大值为.故B正确.10.(20xx·河北唐山二模)已知椭圆C1:+=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,使得由点P所作的圆C2的两条切线互相垂直,则椭圆C1的离心率的取值范围是( )A.[,1) B.[,]C.[,1) D.[,1)答案C解析在椭圆长轴端点向圆引两条切线P′A,P′B,则两切线形成的角∠AP′B最小,若椭圆C1上存在点P令切线互相垂直,则只需∠AP′B≤90°,即α=∠AP′O≤45°.∴sinα=≤sin45°=,解得a2≤2c2,∴e2≥.即e≥.而0<e<1,∴≤e<1,即e∈[,1).11.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x 轴上,离心率为.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为________.答案+=1解析根据椭圆焦点在x轴上,可设椭圆方程为+=1(a>b>0).∵e=,∴=.根据△ABF2的周长为16得4a=16,因此a=4,b=2,所以椭圆方程为+=1.12.椭圆+=1上一点P到左焦点F的距离为6,若点M满足=(+),则||=________.解析设右焦点为F′,由=(+)知M为线段PF中点,∴||=||=(10-6)=2.13.已知动点P(x,y)在椭圆+=1上,若点A坐标为(3,0),||=1,且·=0,则||的最小值是________.答案 3解析∵·=0,∴⊥.∴||2=||2-||2=||2-1.∵椭圆右顶点到右焦点A的距离最小,故||min=2,∴||min=.14.已知点A(4,0)和B(2,2),M是椭圆+=1上一动点,则|MA|+|MB|的最大值为________.答案10+210解析显然A是椭圆的右焦点,如图所示,设椭圆的左焦点为A1(-4,0),连接BA1并延长交椭圆于M1,则M1是使|MA|+|MB|取得最大值的点.事实上,对于椭圆上的任意点M有:|MA|+|MB|=2a-|MA1|+|MB|≤2a+|A1B|(当M1与M重合时取等号),∴|MA|+|MB|的最大值为2a+|A1B|=2×5+=10+2.15.如右图,已知椭圆+=1(a>b>0),F1,F2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF2交椭圆于另一点B.(1)若∠F1AB=90°,求椭圆的离心率;(2)若椭圆的焦距为2,且=2,求椭圆的方程.答案(1) (2)+=1解析(1)若∠F1AB=90°,则△AOF2为等腰直角三角形.所以有|OA|=|OF2|,即b=c.所以a=c,e==.(2)由题知A(0,b),F2(1,0),设B(x,y),由=2,解得x=,y=-.代入+=1,得+=1.即+=1,解得a2=3.所以椭圆方程为+=1.16.(20xx·新课标全国Ⅱ)设F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,M是C上一点且MF2与x轴垂直.直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.答案(1) (2)a=7,b=27思路本题主要考查椭圆的方程与基本量,考查椭圆的几何性质与离心率的计算,考查直线与椭圆的位置关系,意在考查考生的分析转化能力与运算求解能力.(1)将M,F1的坐标都用椭圆的基本量a,b,c表示,由斜率条件可得到a,b,c的关系式,然后由b2=a2-c2消去b2,再“两边同除以a2”,即得到离心率e的二次方程,由此解出离心率.若能抓住△MF1F2是“焦点三角形”,则可利用△MF1F2的三边比值快速求解,有:|F1F2|=2c,|MF2|=2c×=c,则|MF1|=c,由此可得离心率e==.(2)利用“MF2∥y轴”及“截距为2”,可得yM==4,此为一个方程;再转化条件“|MN|=5|F1N|”为向量形式,可得到N的坐标,代入椭圆得到第二个方程.两方程联立可解得a,b的值.解析(1)根据c=及题设知M,=,2b2=3ac.将b2=a2-c2代入2b2=3ac,解得=,=-2(舍去).故C的离心率为.(2)由题意,原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点.故=4,即b2=4a.①由|MN|=5|F1N|,得|DF1|=2|F1N|. 设N(x1,y1),由题意知y1<0,则⎩⎨⎧-c -=c ,-2y1=2,即⎩⎨⎧x1=-32c ,y1=-1.代入C 的方程,得+=1.② 将①及c =代入②得+=1. 解得a =7,b2=4a =28. 故a =7,b =2.1.已知椭圆+=1(a>b>0)的焦点分别为F1,F2,b =4,离心率为.过F1的直线交椭圆于A ,B 两点,则△ABF2的周长为( )A .10B .12C .16D .20答案 D解析 如图,由椭圆的定义知△ABF2的周长为4a ,又e ==,即c =a ,∴a2-c2=a2=b2=16. ∴a =5,△ABF2的周长为20.2.椭圆+=1(a>b>0)上任一点到两焦点的距离分别为d1,d2,焦距为2c.若d1,2c ,d2成等差数列,则椭圆的离心率为( )A. B.22C. D.34答案 A解析 由d1+d2=2a =4c ,∴e==.3.设e 是椭圆+=1的离心率,且e∈(,1),则实数k 的取值范围是( )A .(0,3)B .(3,)C .(0,3)∪(,+∞)D .(0,2)答案 C解析 当k>4时,c =,由条件知<<1,解得k>;当0<k<4时,c =, 由条件知<<1,解得0<k<3,综上知选C.4.已知点M(,0),椭圆+y2=1与直线y =k(x +)交于点A ,B ,则△ABM 的周长为______________.答案 8解析 直线y =k(x +)过定点N(-,0),而M ,N 恰为椭圆+y2=1的两个焦点,由椭圆定义知△ABM 的周长为4a =4×2=8.5.已知椭圆C 的中心在原点,一个焦点为F(-2,0),且长轴长与短轴长的比是2∶.(1)求椭圆C 的方程;(2)设点M(m,0)在椭圆C 的长轴上,点P 是椭圆上任意一点.当||最小时,点P 恰好落在椭圆的右顶点,求实数m 的取值范围.答案 (1)+=1 (2)1≤m≤4解析 (1)由题意知 解之得⎩⎨⎧a2=16,b2=12.∴椭圆方程为+=1.(2)设P(x0,y0),且+=1, ∴||2=(x0-m)2+y 20 =x -2mx0+m2+12(1-) =x -2mx0+m2+12=(x0-4m)2-3m2+12(-4≤x0≤4).∴||2为关于x0的二次函数,开口向上,对称轴为4m.由题意知,当x0=4时,||2最小,∴4m≥4,∴m≥1.又点M(m,0)在椭圆长轴上,∴1≤m≤4.。
教学资料范本【2020最新】人教版最新高考文科数学复习试卷(2)及参考答案编辑:__________________时间:__________________(附参考答案) 数 学(文史类)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) i 是虚数单位,复数=534ii +- (A ) (B )1i -1i -+(C ) (D )1i +1i --【解析】复数,选C.i ii i i i i i +=+=+-++=-+1171717)4)(4()4)(35(435【答案】C(2)设变量x,y 满足约束条件,则目标函数z=3x-2y的最小值为⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x(A )-5 (B )-4 (C )-2 (D )3【解析】做出不等式对应的可行域如图,由得,由图象可知当直线经过点时,直线的截距最大,而此时最小为,选 B.yx z 23-=223z x y -=223z x y -=)2,0(C 223zx y -=y x z 23-=423-=-=y x z 【答案】B(3)阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )8 (B )18 (C )26 (D )80【解析】第一次循环,第二次循环,第三次循环,第四次循环满足条件输出,选 C.2,2330==-=n S 3,83322==-+=n S 4,2633823==-+=n S 26=S 【答案】C(4) 已知,则a ,b ,c 的大小关系为120.2512,(),2log 22a b c -===(A )c<b<a (B )c<a<b (C )b<a<c (D )b<c<a【解析】因为,所以,,所以,选 A.122.02.022)21(<==-b a b <<114log 2log 2log 25255<===c a b c <<【答案】A(5)设xR ,则“x>”是“2x2+x-1>0”的∈12 (A ) 充分而不必要条件 (B ) 必要而不充分条件 (C ) 充分必要条件 (D ) 既不充分也不必要条件【解析】不等式的解集为或,所以“”是“”成立的充分不必要条件,选A.0122>-+x x 21>x 1-<x 21>x 0122>-+x x【答案】A(6)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(A ) cos 2y x =,xR ∈(B ) xy 2log =,xR 且x ≠0∈(C ) 2x xe e y --=,xR ∈ (D )31y x =+,xR ∈【解析】函数为偶函数,且当时,函数为增函数,所以在上也为增函数,选B.x y 2log =0>x x x y 22log log ==)2,1( 【答案】B(7)将函数(其中>0)的图像向右平移个单位长度,所得图像经过点,则的最小值是()sin f x x ω=ω4π)0,43(πω(A ) (B )1 C ) (D )21353【解析】函数向右平移得到函数,因为此时函数过点,所以,即所以,所以的最小值为2,选 D.4π)4sin()4(sin )4()(ωπωπωπ-=-=-=x x x f x g )0,43(π0)443(sin =-ππω,2)443(πωπππωk ==-Z k k ∈=,2ωω 【答案】D(8)在△ABC 中, A=90°,AB=1,设点P ,Q 满足=,=(1-), R 。
【优化指导】2013年高考数学第一轮总复习 4-7(基础巩固强化+能力拓展提升+备选题库+优化指导,含解析)新人教版B 版1.(文)已知两座灯塔A 、B 与C 的距离都是a ,灯塔A 在C 的北偏东20°,灯塔B 在C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .a B.3a C.2a D .2a[答案] B[解析] 由余弦定理可知,AB 2=a 2+a 2-2a ·a ·cos120°=3a 2,得AB =3a ,故选B. (理)(2011·舟山期末)某人向正东方向走x km 后,向右转150°,然后朝新方向走3 km ,结果他离出发点恰好 3 km ,那么x 的值为( )A. 3 B .2 3 C .23或 3 D .3[答案] C[解析] 如图,△ABC 中,AC =3,BC =3,∠ABC =30°, 由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·cos∠ABC ,∴3=x 2+9-6x ·cos30°,∴x =3或2 3.2.一艘海轮从A 处出发,以每小时40n mile 的速度沿东偏南50°方向直线航行,30min 后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是东偏南20°,在B 处观察灯塔,其方向是北偏东65°,那么B 、C 两点间的距离是( )A .102n mileB .103n mileC .202n mileD .203n mile[答案] A[解析] 如图,由条件可知△ABC 中,∠BAC =30°,∠ABC =105°,AB =20,∠ACB =45°,由正弦定理得BC sin30°=20sin45°,∴BC =102,故选A.3.(2012·东北三校模拟)一船向正北航行,看见正西方向有相距10n mile的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南60°西,另一灯塔在船的南75°西,则这艘船的速度是每小时( )A.5n mile B.53n mileC.10n mile D.103n mile[答案] C[解析] 如图,依题意有∠BAC=60°,∠BAD=75°,所以∠CAD=∠CDA=15°,从而CD=CA=10,在Rt△ABC中,求得AB=5,∴这艘船的速度是50.5=10(n mile/h).4.(2011·沧州模拟)有一长为1的斜坡,它的倾斜角为20°,现高不变,将倾斜角改为10°,则斜坡长为( )A.1 B.2sin10°C.2cos10° D.cos20°[答案] C[解析] 如图,BD=1,∠DBC=20°,∠DAC=10°,在△ABD 中,由正弦定理得1sin10°=ADsin160°,∴AD =2cos10°. 5.(2012·厦门质检)如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进100m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50m ,山坡对于地平面的坡度为θ,则cos θ=( )A.32B .2- 3 C.3-1 D.22[答案] C[解析] 在△ABC 中,由正弦定理可知,BC =AB ·sin∠BAC sin ∠ACB =100sin15°sin 45°-15°=50(6-2),在△BCD 中,sin ∠BDC =BC ·sin∠CBDCD=506-2·sin45°50=3-1.由题图知,cos θ=sin ∠ADE =sin ∠BDC =3-1. 6.如图,海岸线上有相距5n mile 的两座灯塔A 、B ,灯塔B 位于灯塔A 的正南方向.海上停泊着两艘轮船,甲船位于灯塔A 的北偏西75°方向,与A 相距32n mile 的D 处;乙船位于灯塔B 的北偏西60°方向,与B 相距5n mile 的C 处,则两艘轮船之间的距离为( )A .5n mileB .23n mile C.13n mile D .32n mile[答案] C[解析] 连接AC ,∠ABC =60°,BC =AB =5,则AC =5.在△ACD 中,AD =32,AC =5,∠DAC =45°,由余弦定理得CD =13.7.在地面上一点D 测得一电视塔尖的仰角为45°,再向塔底方向前进100m ,又测得塔尖的仰角为60°,则此电视塔高约为________m .( )A .237B .227C .247D .257 [答案] A [解析]解法1:如图,∠D =45°,∠ACB =60°,DC =100,∠DAC =15°, ∵AC =DC ·sin45°sin15°,∴AB =AC ·sin60°=100·sin45°·sin60°sin15°=100×22×326-24≈237.∴选A.解法2:在Rt△ABD中,∠ADB=45°,∴AB=BD,∴BC=AB-100.在Rt△ABC中,∠ACB=60°,∴ABAB-100=3,∴AB=150+503≈237.8.一船以每小时15km的速度向东航行,船在A处看到一个灯塔M在北偏东60°方向,行驶4h后,船到达B处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.[答案] 30 2[解析] 如图,依题意有AB=15×4=60,∠MAB=30°,∠AMB=45°,在三角形AMB 中,由正弦定理得60sin45°=BMsin30°,解得BM=302(km).9.(2011·洛阳部分重点中学教学检测)在O点测量到远处有一物体在做匀速直线运动,开始时刻物体位于P点,一分钟后,其位置在Q点,且∠POQ=90°,再过一分钟,该物体位于R点,且∠QOR=30°,则tan∠OPQ的值为________.[答案]32[解析] 由于物体做匀速直线运动,根据题意,PQ=QR,不妨设其长度为1.在Rt△POQ 中,OQ=sin∠OPQ,OP=cos∠OPQ,在△OPR中,由正弦定理得2sin120°=OPsin∠ORP,在△ORQ中,1sin30°=OQsin∠ORQ,两式两边同时相除得OQOP=tan∠OPQ=32.10.(2011·东北三校二模)港口A北偏东30°方向的C处有一检查站,港口正东方向的B处有一轮船,距离检查站为31n mile,该轮船从B处沿正西方向航行20n mile后到达D 处观测站,已知观测站与检查站距离21n mile ,问此时轮船离港口A 还有多远?[解析] 在△BDC 中,由余弦定理知,cos ∠CDB =BD 2+CD 2-BC 22BD ·CD =-17,∴sin ∠CDB =437.∴sin ∠ACD =sin(∠CDB -π3)=sin ∠CDB cos π3-cos ∠CDB sin π3=5314.在△ACD 中,由正弦定理知AD sin ∠ACD =CDsin A⇒AD =5314×21÷32=15(n mile).∴此时轮船距港口还有15n mile.能力拓展提升11.江岸边有一炮台高30m ,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A .103mB .1003mC .2030mD .30m[答案] A[解析] 设炮塔顶A 、底D ,两船B 、C ,则∠BAD =45°,∠CAD =30°,∠BDC =30°,AD =30,∴DB =30,DC =103,BC 2=DB 2+DC 2-2DB ·DC ·cos30°=300,∴BC =10 3.12.(2012·湖南文,8)在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( ) A.32B.332C.3+62D.3+394[答案] B[解析] 在△ABC 中,AC 2=AB 2+BC 2-2AB ·BC cos B ,即7=AB 2+4-2×2AB ×12,AB 2-2AB -3=0,∴AB =3或AB =-1(舍去),则BC 边上的高AD =AB sin B =3×sin60°=332.13.(2013·安徽省阜阳市第一中学二模)△ABC 为锐角三角形,且m =sin A +sin B ,n =cos A +cos B ,则m 与n 的大小关系为( )A .m ≥nB .m ≤nC .m >nD .m <n[答案] C[解析] ∵△ABC 为锐角三角形,∴A +B >π2,π2>A >π2-B >0,π2>B >π2-A >0,∴sin A >cos B ,sin B >cos A ,∴sin A +sin B >cos A +cos B ,∴m >n ,故选C.14.(2012·重庆理,13)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且cos A =35,cos B =513,b =3,则c =________.[答案]145[解析] 由已知sin A =45,sin B =1213.∴sin C =sin[π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =45×513+35×1213=5665.由正弦定理c sin C =b sin B ,∴c =b sin Csin B =3×56651213=145.15.(2012·河北衡水中学调研)如图,在山脚A 测得山顶P 的仰角为α=30°,沿倾斜角为β=15°的斜坡向上走10m 到B ,在B 处测得山顶P 的仰角为γ=60°,求山高h (单位:m).[解析] 在三角形ABP 中, ∠ABP =180°-γ+β, ∠BPA =180°-(α-β)-∠ABP =180°-(α-β)-(180°-γ+β) =γ-α.在△ABP 中,根据正弦定理得APsin ∠ABP =ABsin ∠APB,∴APsin180°-γ+β=10sin γ-α,∴AP =10sin γ-βsin γ-α.又γ=60°,α=30°,β=15°,∴山高为h =AP sin α=10sin αsin γ-βsin γ-α=52(m).16.(2011·东北四校联考)在海岛A 上有一座海拔1 km 的山峰,山顶设有一个观察站P ,有一艘轮船按一固定方向做匀速直线航行,上午1100时,测得此船在岛北偏东15°、俯角为30°的B 处,到1110时,又测得该船在岛北偏西45°、俯角为60°的C 处.(1)求船的航行速度;(2)求船从B 到C 行驶过程中与观察站P 的最短距离. [解析] (1)设船速为x km/h ,则BC=x6km.在Rt △PAB 中,∠PBA 与俯角相等为30°, ∴AB =1tan30°= 3.同理,Rt △PCA 中,AC =1tan60°=33.在△ACB 中,∠CAB =15°+45°=60°, ∴由余弦定理得BC =32+332-2×3×33cos60°=213, ∴x =6×213=221km/h , ∴船的航行速度为221km/h. (2)作AD ⊥BC 于点D ,连接PD ,∴当航行驶到点D 时,AD 最小,从而PD 最小.此时,AD =AB ·AC ·sin60°BC=3×33×32213=3714. ∴PD =1+31472=25914. ∴船在行驶过程中与观察站P 的最短距离为25914km.1.(2012·重庆理,5)设tan α、tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为( )A .-3B .-1C .1D .3[答案] A[解析] 本题考查了根与系数的关系与两角和的正切公式. 由已知tan α+tan β=3,tan α·tan β=2,所以tan(α+β)=tan α+tan β1-tan α·tan β=31-2=-3.故选A.[点评] 运用根与系数的关系,利用整体代换的思想使问题求解变得简单. 2.(2012·重庆文,5)sin47°-sin17°cos30°cos17°=( )A .-32B .-12C.12D.32 [答案] C[解析] ∵sin47°=sin(30°+17°)=sin30°cos17°+cos30°sin17°, ∴原式=sin30°cos17°+sin17°cos30°-sin17°cos30°cos17°=sin30°=12.3.(2012·上海文,17)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不能确定[答案] A[解析] 由sin 2A +sin 2B <sin 2C .由正弦定理可得a 2+b 2<c 2,则由余弦定理cos C =a 2+b 2-c 22ab<0,则角C 为钝角,故三角形为钝角三角形. 4.(2012·浙江理,18)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c .已知cos A =23,sin B =5cos C . (1)求tan C 的值;(2)若a =2,求△ABC 的面积. [解析] (1)∵0<A <π,cos A =23,∴sin A =1-cos 2A =53, 又5cos C =sin B =sin(A +C )=sin A cos C +cos A sin C =53cos C +23sin C . 所以tan C = 5. (2)由tan C =5,得sin C =56,cos C =16. 于是sin B =5cos C =56. 由a =2及正弦定理a sin A =csin C,得c =3, 设△ABC 的面积为S ,则S =12ac sin B =52. 5.(2011·郑州一测)某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在C 处进行该仪器的垂直弹射,观察点A 、B 两地相距100m ,∠BAC =60°,在A 地听到弹射声音的时间比B 地晚217s.A 地测得该仪器在C 处时的俯角为15°,A 地测得最高点H 的仰角为30°,求该仪器的垂直弹射高度CH .(声音的传播速度为340m/s)[解析] 由题意,设|AC |=x ,则|BC |=x -217×340=x -40, 在△ABC 内,由余弦定理:|BC |2=|BA |2+|CA |2-2|BA |·|CA |·cos∠BAC ,即(x -40)2=x 2+10000-100x ,解得x =420.在△ACH 中,|AC |=420,∠CAH =30°+15°=45°,∠CHA =90°-30°=60°,由正弦定理:|CH |sin ∠CAH =|AC |sin ∠AHC, 可得|CH |=|AC |·sin ∠CAH sin ∠AHC=140 6. 答:该仪器的垂直弹射高度CH 为1406m.6.在△ABC 中,tan A =14,tan B =35. (1)求角C 的大小; (2)若△ABC最大边的边长为17,求最小边的边长.[解析] (1)∵C =π-(A +B ),∴tan C =-tan(A +B )=-14+351-14×35=-1. 又∵0<C <π,∴C =3π4. (2)∵C =3π4,∴AB 边最大,即AB =17.又∵tan A <tan B ,A 、B ∈⎝⎛⎭⎪⎫0,π2, ∴角A 最小,BC 边为最小边.∵⎩⎪⎨⎪⎧ tan A =sin A cos A =14,sin 2A +cos 2A =1.且A ∈⎝ ⎛⎭⎪⎫0,π2,∴sin A =1717. 由ABsin C =BC sin A 得,BC =AB ·sin A sin C = 2. 所以,最小边BC = 2.7.如图所示,甲船由A 岛出发向北偏东45°的方向作匀速直线航行,速度为152n mile/h ,在甲船从A 岛出发的同时,乙船从A 岛正南40n mile 处的B 岛出发,朝北偏东θ(θ=arctan 12)的方向作匀速直线航行,速度为105n mile/h. (1)求出发后3h 两船相距多少海里? (2)求两船出发后多长时间相距最近?最近距离为多少海里? (3)两船在航行中能否相遇?试说明理由. [解析] 以A 为原点,BA 所在直线为y 轴建立平面直角坐标系. 设在t 时刻甲、乙两船分别在P (x 1,y 1),Q (x 2,y 2),则x 1=152t cos45°=15t ,y 1=x 1=15t,由θ=arctan 12可得,cos θ=255,sin θ=55,故x 2=105t sin θ=10t ,y 2=105t cos θ-40=20t -40,(1)令t =3,则P 、Q 两点的坐标分别为(45,45),(30,20),|PQ |=45-302+45-202=850=534.即两船出发后3h ,相距534n mile.(2)由(1)的求解过程易知:|PQ |=x 2-x 12+y 2-y 12=10t -15t 2+20t -40-15t 2=50t 2-400t +1600=50t -42+800≥202,∴当且仅当t =4时,|PQ |取得最小值20 2.即两船出发后4h ,相距最近,距离为202n mile.(3)由(2)知两船航行过程中的最近距离为202n mile ,故两船不可能相遇.。
天津市2020年〖人教版〗高三数学复习试卷全国统一高考数学试卷理科参考答案与试题解析创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校一、选择题(共15小题,1-10每小题4分,11-15每小题5分,满分65分)1.(4分)设集合M={x|0≤x<2},集合N={x|x2﹣2x﹣3<0},集合M∩N=()A .{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x ≤1}D.{x|0≤x≤2}考点:交集及其运算.分析:解出集合N中二次不等式,再求交集.解答:解:N={x|x 2﹣2x﹣3<0}={x|﹣1<x<3},∴M∩N={x|0≤x<2},故选B点评:本题考查二次不等式的解集和集合的交集问题,注意等号,较简单.2.(4分)如果直线ax+2y+2=0与直线3x﹣y﹣2=0平行,那么实数a等于()A .﹣6 B.﹣3 C.D.考点:直线的一般式方程与直线的平行关系.专题:计算题.分析:根据它们的斜率相等,可得=3,解方程求a的值.解答:解:∵直线ax+2y+2=0与直线3x﹣y﹣2=0平行,∴它们的斜率相等,∴=3,∴a=﹣6.故选A.点评:本题考查两直线平行的性质,两直线平行,斜率相等.3.(4分)函数y=tan()在一个周期内的图象是()A .B.C.D.考点:正切函数的图象.专题:综合题.分析:先令tan()=0求得函数的图象的中心,排除C,D;再根据函数y=tan()的最小正周期为2π,排除B.解答:解:令tan()=0,解得x=kπ+,可知函数y=tan()与x轴的一个交点不是,排除C,D∵y=tan()的周期T==2π,故排除B故选A点评:本题主要考查了正切函数的图象.要熟练掌握正切函数的周期,单调性,对称中心等性质.4.(4分)已知三棱锥P﹣ABC的三个侧面与底面全等,且AB=AC=,BC=2.则二面角P﹣BC﹣A的大小为()A .B.C.D.考点:平面与平面之间的位置关系;与二面角有关的立体几何综合题.专题:计算题.分析:要求二面角P﹣BC﹣A的大小,我们关键是要找出二面角P﹣BC﹣A的大小的平面角,将空间问题转化为平面问题,然后再分析二面角P﹣BC﹣A的大小的平面角所在的三角形的其它边与角的关系,解三角形进行求解.解答:解:如图所示,由三棱锥的三个侧面与底面全等,且AB=AC=,得PB=PC=,PA=BC=2,取BC的中点E,连接AE,PE,则∠AEP即为所求二面角的平面角.且AE=EP=,∵AP2=AE2+PE2,∴∠AEP=,故选C.点评:求二面角的大小,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠AEP为二面角P﹣BC﹣A的平面角,通过解∠AEP所在的三角形求得∠AEP.其解题过程为:作∠AEP→证∠AEP是二面角的平面角→计算∠AEP,简记为“作、证、算”.5.(4分)函数y=sin()+cos2x的最小正周期是()A .B.πC.2πD.4π考点:三角函数的周期性及其求法.分析:先将函数化简为:y=sin(2x+θ),即可得到答案.解答:解:∵f(x)=sin()+cos2x=cos2x﹣sin2x+cos2x=(+1)cos2x﹣sin2x=sin(2x+θ)∴T==π故选B.点评:本题主要考查三角函数的最小正周期的求法.属基础题.6.(4分)满足arccos(1﹣x)≥arccosx的x的取值范围是()A .[﹣1,﹣]B.[﹣,0]C.[0,]D.[,1]考点:反三角函数的运用.专题:计算题.分析:应用反函数的运算法则,反函数的定义及性质,求解即可.创作人:百里公地创作日期:202X.04.01解答:解:arccos(1﹣x)≥arccosx 化为cos[arccos(1﹣x)]≤cos[arccosx]所以1﹣x≤x,即:x,又x∈[﹣1,1],所以x的取值范围是[,1]故选D.点评:本题考查反余弦函数的运算法则,反函数的定义域,考查学生计算能力,是中档题.7.(4分)将y=2x的图象____________再作关于直线y=x对称的图象,可得到函数y=log2(x+1)的图象()A .先向左平行移动1个单位B.先向右平行移动1个单位C .先向上平行移动1个单位D.先向下平行移动1个单位考点:反函数;函数的图象与图象变化.分析:本题考查函数图象的平移和互为反函数的函数图象之间的关系两个知识点,作为本题,可以用逐一验证的方法排除不合题意的选项,验证的个数在1到3个,对于本题,这不是最佳选择,建议逆推得到平移后的解析式,这样就可以方便的观察到平移的方向及单位数.解答:解:利用指数式和对数式的互化,由函数y=log2(x+1)解得:x=2y﹣1则函数y=log2(x+1)(x>﹣1)的反函数为y=2x﹣1(x∈R)即函数y=2x平移后的函数为y=2x﹣1,易见,只需将其向下平移1个单位即可.故选D点评:本题采用先逆推获取平移后的解析式的方法,得到解析式后平移的方向和单位便一目了然,简便易行,值得尝试.8.(4分)长方体的一个顶点上三条棱长为3、4、5,且它的八个顶点都在一个球面上,这个球的表面积是()A .20πB.25πC.50πD.200π考点:球的体积和表面积.专题:计算题.分析:设出球的半径,由于直径即是长方体的体对角线,由此关系求出球的半径,即可求出球的表面积.解答:解:设球的半径为R,由题意,球的直径即为长方体的体对角线,则(2R)2=32+42+52=50,∴R=.∴S球=4π×R2=50π.故选C点评:本题考查球的表面积,球的内接体,考查计算能力,是基础题.9.(4分)曲线的参数方程是(t是参数,t≠0),它的普通方程是()A .(x﹣1)2(y﹣1)=1B.y=C.D.创作人:百里公地创作日期:202X.04.01考点:参数方程的概念.专题:计算题.分析:由题意知x=1﹣,可得x﹣1=﹣,将方程两边平方,然后与y﹣1=﹣t2,相乘消去t即可求解.解答:解:∵曲线的参数方程是(t是参数,t≠0),∴,∴将两个方程相乘可得,(x﹣1)2(1﹣y)=1,∴y=,故选B.点评:此题考查参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.10.(4分)函数y=cos2x﹣3cosx+2的最小值为()A .2 B.0 C.D.6考点:函数的值域;余弦函数的定义域和值域.专题:计算题.分析:先进行配方找出对称轴,而﹣1≤cosx≤1,利用对称轴与区间的位置关系求出最小值.解答:解:y=cos2x﹣3cosx+2=(cosx﹣)2﹣∵﹣1≤cosx≤1∴当cosx=1时y min=0,故选B点评:本题以三角函数为载体考查二次函数的值域,属于求二次函数的最值问题,属于基本题.11.(5分)椭圆C与椭圆关于直线x+y=0对称,椭圆C的方程是()A .B.C.D.考点:直线与圆锥曲线的综合问题.专题:计算题.分析:依题意可知椭圆C关于直线x+y=0对称,长轴和短轴不变,主要椭圆的中心即可.根据原椭圆方程可求得其中心坐标,进而求得其关于直线x+y=0对称点,则椭圆方程可得.解答:解:依题意可知椭圆C关于直线x+y=0对称,长轴和短轴不变,主要椭圆的中心即可.∵椭圆的中心为(3,2)关于直线x+y=0对称的点为(﹣2,﹣3)故椭圆C的方程为故选A.点评:本题主要考查了直线与椭圆的关系及点关于直线对称的问题.属基础题.12.(5分)圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是()A .πB.2πC.πD.π考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:通过圆台的底面面积,求出上下底面半径,利用侧面积公式求出母线长,然后求出圆台的高,即可求得圆台的体积.解答:解:S1=π,S2=4π,∴r=1,R=2,S=6π=π(r+R)l,∴l=2,∴h=.∴V=π(1+4+2)×=π.故选D点评:本题是基础题,通过底面面积求出半径,转化为求圆台的高,是本题的难点,考查计算能力,常考题.13.(5分)(•碑林区一模)定义在区间(﹣∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等式:①f(b)﹣f(﹣a)>g(a)﹣g(﹣b);②f(b)﹣f(﹣a)<g(a)﹣g(﹣b);③f(a)﹣f(﹣b)>g(b)﹣g(﹣a);④f(a)﹣f(﹣b)<g(b)﹣g(﹣a),其中成立的是()A .①与④B.②与③C.①与③D.②与④考点:函数奇偶性的性质.分析:根据f(﹣a)=﹣f(a),f(﹣b)=﹣f(b),g(﹣a)=g(a)=f(a),g(﹣b)=g (b)=f(b),对①②③④进行逐一验证即可得答案.解答:解:由题意知,f(a)>f(b)>0又∵f(﹣a)=﹣f(a),f(﹣b)=﹣f(b),g(﹣a)=g(a)=f(a),g(﹣b)=g(b)=f(b);∴①f(b)﹣f(﹣a)>g(a)﹣g(﹣b)⇔f(b)+f(a)>f(a)﹣f(b)⇔f(b)>﹣f(b),故①对②不对.③f(a)﹣f(﹣b)>g(b)﹣g(﹣a)⇔f(b)+f(a)>f(b)﹣f(a)⇔f(a)>﹣f(a),故③对④不对.故选C.点评:本题主要考查函数奇偶性的应用.14.(5分)不等式组的解集是()A .{x|0<x<2}B.{x|0<x<2.5}C.D.{x|0<x<3}考点:其他不等式的解法.专题:压轴题.分析:可以直接去绝对值解不等式,比较复杂;可结合答案用特值法解决.解答:解:取x=2满足不等式,排除A;再取x=2.5,不满足,排除B、D故选C点评:本题考查解绝对值不等式和分式不等式问题,要注意选择题的特点,选择特殊做法解决.15.(5分)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有()A .150种B.147种C.144种D.141种考点:排列、组合的实际应用;计数原理的应用.专题:计算题;压轴题.分析:由题意知从10个点中任取4个点有C104种取法,减去不合题意的结果,4点共面的情况有三类,取出的4个点位于四面体的同一个面上;取任一条棱上的3个点及该棱对棱的中点;由中位线构成的平行四边形,用所有的结果减去不合题意的结果即可得答案.解答:解:从10个点中任取4个点有C104种取法,其中4点共面的情况有三类.第一类,取出的4个点位于四面体的同一个面上,有4C64种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4顶点共面,有3种.以上三类情况不合要求应减掉,∴不同的取法共有C104﹣4C64﹣6﹣3=141种.故选D.点评:本题考查分类计数原理,考查排列组合的实际应用,是一个排列组合同立体几何结合的题目,解题时注意做到不重不漏.二、填空题(共4小题,每小题4分,满分16分)16.(4分)已知的展开式中x3的系数为,常数a的值为4.考点:二项式定理;二项式系数的性质.专题:计算题.分析:利用二项展开式的通项公式求出第r+1项,令x的指数为3求出展开式中x3的系数,列出方程解得.解答:解:的展开式的通项为=令解得r=8∴展开式中x3的系数为∵展开式中x3的系数为∴解得a=4故答案为4点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.17.(4分)(•陕西模拟)已知直线的极坐标方程为,则极点到该直线的距离是.创作人:百里公地创作日期:202X.04.01考点:简单曲线的极坐标方程;与圆有关的比例线段;不等式的基本性质.专题:计算题;压轴题.分析:先将原极坐标方程中的三角函数式展开后两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行求解即得.解答:解:将原极坐标方程,化为:ρsinθ+ρcosθ=1,化成直角坐标方程为:x+y﹣1=0,则极点到该直线的距离是=.故填;.点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.18.(4分)的值为.考点:角的变换、收缩变换.专题:计算题;压轴题.分析:先将分式中的15°化为7°+8°,利用两角和的余弦、正弦展开,分子、分母分组提取sin7°,cos7°,再用同角三角函数的基本关系式,化简,然后,就会求出tan15°,利用两角差的正切,求解即可.解答:解:=======tan15°=tan(45°﹣30°)===,故答案为:点评:本题考查角的变换,两角和的正弦、余弦,同角三角函数的基本关系式,考查学生运算能力,是中档题.19.(4分)已知m、l是直线,α、β是平面,给出下列命题:①若l垂直于α内两条相交直线,则l⊥α;②若l平行于α,则l平行于α内所有的直线;③若m⊊α,l⊊β且l⊥m,则α⊥β;④若l⊊β且l⊥α,则α⊥β;⑤若m⊊α,l⊊β且α∥β,则l∥m.其中正确命题的序号是①④.考点:空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.创作人:百里公地创作日期:202X.04.01专题:压轴题.分析:对于①,考虑直线与平面垂直的判定定理,符合定理的条件故正确;对于②,考虑直线与平面平行的性质定理以及直线与平面的位置关系,故错误;对于③考虑α⊥β的判定方法,而条件不满足,故错误;对于④符合面面垂直的判定定理,故正确;对于⑤不符合线线平行的判定,故错误.正确命题的序号是①④解答:解:①,符合定理的条件故正确;②,若l平行于α,则l与α内的直线有两种:平行或异面,故错误;③m⊊α,l⊊β且l⊥m,则α与β可以相交但不垂直;④符合面面垂直的判定定理,故正确;⑤若m⊊α,l⊊β且α∥β,则l∥m或者异面,错误,故正确命题的序号是①④.点评:本题考查立体几何中线线关系中的平行、线面关系中的垂直、面面关系中的垂直的判定方法,要注意对比判定定理的条件和结论,同时要注意性质定理、空间直线与直线、直线与平面、平面与平面的位置关系的应用.三、解答题(共6小题,满分69分)20.(10分)已知复数,.复数,z2ω3在复数平面上所对应的点分别为P,Q.证明△OPQ是等腰直角三角形(其中O为原点).考点:复数代数形式的混合运算.分析:利用复数三角形式,化简复数,.然后计算复数,z2ω3,计算二者的夹角和模,即可证得结论.解答:解法一:,于是,,=因为OP与OQ的夹角为,所以OP⊥OQ.因为,所以|OP|=|OQ|由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.解法二:因为,所以z3=﹣i.因为,所以ω4=﹣1于是由此得OP⊥OQ,|OP|=|OQ|.由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.点评:本小题主要考查复数的基本概念、复数的运算以及复数的几何意义等基础知识,考查运算能力和逻辑推理能力,是中档题.21.(11分)已知数列{a n},{b n}都是由正数组成的等比数列,公比分别为p、q,其中p>q,且p≠1,q≠1.设c n=a n+b n,S n为数列{c n}的前n项和.求.考点:等比数列的通项公式;极限及其运算;数列的求和.专题:计算题.创作人:百里公地创作日期:202X.04.01分析:先根据等比数列的通项公式分别求出a n和b n,再根据等比数列的求和公式,分别求得S n 的表达式,进而可得的表达式,分p>1和p<1对其进行求极限.和S n﹣1解答:解:,.分两种情况讨论.(Ⅰ)p>1.∵,====p.(Ⅱ)p<1.∵0<q<p<1,==点评:本小题主要考查等比数列的概念、数列极限的运算等基础知识,考查逻辑推理能力和运算能力.22.(12分)甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元.(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?考点:根据实际问题选择函数类型;基本不等式在最值问题中的应用.专题:应用题.分析:(1)全程运输成本有两部分组成,将其分别分别表示出来依题意建立起程运输成本y (元)表示为速度v(千米/时)的函数,由题设条件速度不得超过c千米/时.故定义域为v∈(0,c].(2)由(1)知,全程运输成本关于速度的函数表达式中出现了积为定值的情形,由于等号成立的条件有可能不成立,故求最值的方法不确定,对对速度的范围进行分类讨论,如等号成立时速度值不超过c,则可以用基本不等式求求出全程运输成本的最小值,若等号成立时速度值大于最高限速v,可以判断出函数在(0,c]上的单调性,用单调性求出全程运输成本的最小值.解答:解:(1)依题意知汽车从甲地匀速行驶到乙地所用时间为,全程运输成本为创作人:百里公地创作日期:202X.04.01故所求函数及其定义域为(2)依题意知S,a,b,v都为正数,故有当且仅当,.即时上式中等号成立若,则当时,全程运输成本y最小,若,即a>bc2,则当v∈(0,c]时,有==因为c﹣v≥0,且a>bc2,故有a﹣bcv≥a﹣bc2>0,所以,且仅当v=c时等号成立,也即当v=c时,全程运输成本y最小.综上知,为使全程运输成本y最小,当时行驶速度应为;当时行驶速度应为v=c.点评:本小题主要考查建立函数关系、不等式性质、最大值、最小值等基础知识,考查综合应用所学数学知识、思想和方法解决实际问题的能力.23.(12分)如图,在正方体ABCD﹣A1B1C1D1中,E、F分别是BB1、CD的中点.(1)证明AD⊥D1F;(2)求AE与D1F所成的角.考点:异面直线及其所成的角.专题:计算题;证明题.分析:(1)证明线线垂直可先证线面垂直,欲证AD⊥D1F,可先证AD⊥面DC1,即可证得;(2)先通过平移将两条异面直线平移到同一个起点,取AB的中点G,将D1F平移到A1G,AB与A1G构成的锐角或直角就是异面直线所成的角,利用三角形全等求出此角即可.解答:解:(Ⅰ)∵AC1是正方体,∴AD⊥面DC1.又D1F⊂面DC1,∴AD⊥D1F.(Ⅱ)取AB中点G,连接A1G,FG.因为F是CD的中点,所以GF、AD平行且相等,又A1D1、AD平行且相等,所以GF、A1D1平行且相等,故GFD1A1是平行四边形,A1G∥D1F.设A1G与AE相交于点H,则∠AHA1是AE与D1F所成的角,因为E是BB1的中点,所以Rt△A1AG≌Rt△ABE,∠GA1A=∠GAH,从而∠AHA1=90°,即直线AE与D1F所成角为直角.点评:本小题主要考查异面直线及其所成的角,考查逻辑推理能力和空间想象能力,属于基础题.25.(12分)(•北京模拟)设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1,在满足条件①、②的所有圆中,求圆心到直线l:x﹣2y=0的距离最小的圆的方程.考点:直线与圆的位置关系.专题:压轴题.分析:圆被x轴分成两段圆弧,其弧长的比为3:1,劣弧所对的圆心角为90°,设圆的圆心为P (a,b),圆P截X 轴所得的弦长为,截y轴所得弦长为2;可得圆心轨迹方程,圆心到直线l:x﹣2y=0的距离最小,利用基本不等式,求得圆的方程.解答:解法一:设圆的圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为|b|,|a|.由题设知圆P截x轴所得劣弧对的圆心角为90°,知圆P截X 轴所得的弦长为,故r2=2b2,又圆P截y轴所得的弦长为2,所以有r2=a2+1.从而得2b2﹣a2=1.又点P(a,b)到直线x﹣2y=0的距离为,所以5d2=|a﹣2b|2=a2+4b2﹣4ab≥a2+4b2﹣2(a2+b2)=2b2﹣a2=1,当且仅当a=b时上式等号成立,此时5d2=1,从而d取得最小值.由此有解此方程组得或由于r2=2b2知.于是,所求圆的方程是(x﹣1)2+(y﹣1)2=2,或(x+1)2+(y+1)2=2.解法二:同解法一,得∴得①将a2=2b2﹣1代入①式,整理得②把它看作b的二次方程,由于方程有实根,故判别式非负,即△=8(5d2﹣1)≥0,得5d2≥1.∴5d2有最小值1,从而d 有最小值.将其代入②式得2b2±4b+2=0.解得b=±1.将b=±1代入r2=2b2,得r2=2.由r2=a2+1得a=±1.综上a=±1,b=±1,r2=2.由|a﹣2b|=1知a,b同号.于是,所求圆的方程是(x﹣1)2+(y﹣1)2=2,或(x+1)2+(y+1)2=2.点评:本小题主要考查轨迹的思想,求最小值的方法,考查综合运用知识建立曲线方程的能力.易错的地方,创作人:百里公地创作日期:202X.04.01P到x轴,y轴的距离,不能正确利用基本不等式.24.(12分)设二次函数f(x)=ax2+bx+c(a>0),方程f(x)﹣x=0的两个根x1,x2满足0<x1<x2<.(1)当x∈(0,x1)时,证明x<f (x)<x1;(2)设函数f(x)的图象关于直线x=x0对称,证明x0<.考点:一元二次方程的根的分布与系数的关系;不等式的证明.专题:证明题;压轴题;函数思想;方程思想;作差法.分析:(1)方程f(x)﹣x=0的两个根x1,x2,所以构造函数,当x∈(0,x1)时,利用函数的性质推出x<f (x),然后作差x1﹣f(x),化简分析出f(x)<x1,即可.(2).方程f(x)﹣x=0的两个根x1,x2,函数f(x)的图象,关于直线x=x0对称,利用放缩法推出x0<;解答:证明:(1)令F(x)=f(x)﹣x.因为x1,x2是方程f(x)﹣x=0的根,所以F(x)=a(x﹣x1)(x﹣x2).当x∈(0,x1)时,由于x1<x2,得(x﹣x1)(x﹣x2)>0,又a>0,得F(x)=a(x﹣x1)(x﹣x2)>0,即x<f(x).x1﹣f(x)=x1﹣[x+F(x)]=x1﹣x+a(x1﹣x)(x﹣x2)=(x1﹣x)[1+a(x﹣x2)]因为所以x1﹣x>0,1+a(x﹣x2)=1+ax﹣ax2>1﹣ax2>0.得x1﹣f(x)>0.由此得f(x)<x1.(2)依题意知因为x1,x2是方程f(x)﹣x=0的根,即x1,x2是方程ax2+(b﹣1)x+c=0的根.∴,因为ax2<1,所以.点评:本小题主要考查一元二次方程、二次函数和不等式的基础知识,考查综合运用数学知识分析问题和解决问题的能力.创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校创作人:百里公地创作日期:202X.04.01。
注意:(1)空集中没有任何元素,要区分φ和{0},集合{0}中有1个元素0,而φ中没有任何元素,两者有着本质的不同.(2)空集在实际问题中是实实在在存在的,如在实数范围内方程x2+1=0的解集和不等式x2+1<0的解集都是空集.6、常用数集的符号为了书写方便对于常用数集用特定的字母表示:(1)全体非负整数组成的集合通常简称非负整数集(或自然数集),记作N;(2)非负整数集内排除0的集合,称为正整数集,表示成N*(或N+);(3)全体整数组成的集合通常简称为整数集,记作Z;(4)全体有理数组成的集合通常简称为有理数集,记作Q;(5)全体实数组成的集合通常简称为实数集,记作R;二、集合间的关系1、包含关系如果任意x∈A,=>x ∈B,则集合A是集合B的子集,记作A B或BA.显然,任何集合是他自身的子集,即A A,空集是任何集合的子集,即φA.⊆⊇⊆⊆2、相等关系对于两个集合A、B,如果A B同时B A,那么成集合A和集合B相等,记作A=B.显然,两个相等的集合的元素完全相同.⊆⊆3、真包含关系对于两个集合A和B,如果A B,并且A≠b,称集合A是集合B的真子集,记作AB,显然,空集是任何非空集合的真子集,若AB,则B中至少存在一个元素不属于A.⊆三、集合与集合间的运算1、交集;一般的对于两个给定的集合A、B,由属于集合A且属于集合B的所有元素构成的集合,叫做A和B的交集,记作A∩B.2、并集;一般的对于两个给定的集合A、B,由属于集合A或属于集合B的所有元素组成的集合,叫做A与B的并集,记作A∪B.3、全集与补集;含有所要研究的各集合的全部元素的集合称为全集,一般可记作U,全集是相对的.若A是全集U的子集,则由全集中不属于A的元素组成的集合称为A的补集,记作CUA.专题二:命题一、四种命题及其关系1、命题的定义可以判断真假的语句叫做命题。
如:12>5,3是12的约数都是命题.。