第5章 标量湍流
- 格式:ppt
- 大小:1.73 MB
- 文档页数:42
turbulent flows 第8版 pope 译注Turbulent Flows 是一本由 Stephen B. Pope 所著的著名流体力学领域的经典教材,本文对该书的第8版进行了详细的译注。
以下是对该书部分章节内容的梳理和解析。
第一章简介本书是关于湍流流体力学的权威教材,主要介绍了湍流的基本概念和理论,以及相关的实验和数值模拟方法。
通过深入分析湍流现象和其背后的数学模型,读者将能够更好地理解和预测湍流的行为。
第二章湍流的描述湍流是一种复杂且难以捉摸的流动现象。
书中介绍了湍流的统计描述,包括涡旋相关、相关时间和长度尺度等基本概念。
此外,还详细阐述了湍流的能谱和相关的能量传递机制,为后续的章节打下基础。
第三章计算流体力学中的湍流模型计算流体力学(CFD)作为一种重要的湍流研究方法,被广泛应用于工程和科学领域。
本章介绍了常用的湍流模型,包括雷诺平均湍流模型(RANS),大涡模拟(LES)和直接数值模拟(DNS)。
通过比较不同模型的优劣,读者将能够选择适合自己研究对象的湍流模型。
第四章湍流的数值模拟本章主要介绍了湍流的数值模拟方法,包括有限体积法、有限元法和谱方法等。
通过数值模拟,可以更加深入地研究湍流的特性和行为。
同时,书中还涵盖了一些常见的湍流模拟技巧,如网格生成和边界条件设定等,帮助读者掌握湍流模拟的实质。
第五章湍流的统计理论湍流的统计理论是湍流研究的重要组成部分。
本章详细介绍了湍流的统计特性,包括湍流的概率密度函数、相关函数和湍流湍度等。
此外,还阐述了重要的湍流统计理论模型,如湍流统计平衡理论和尺度相似理论等,为读者进行湍流统计的研究提供了重要参考。
第六章湍流的实验技术湍流的实验研究是湍流研究的基础性工作之一。
本章介绍了一些常见的湍流实验技术,包括激励湍流、热线湍流和粒子图像测速法等。
通过实验手段,可以直接观测湍流的各种特性和行为,为湍流理论的验证提供了有力支撑。
第七章壁湍流壁湍流是湍流研究的重要分支,也是工程流体力学中的核心问题之一。
第五章 边界条件5-1 FLUENT 程序边界条件种类FLUENT 的边界条件包括: 1, 流动进、出口边界条件2, 壁面,轴对称和周期性边界3, Internal cell zones :fluid, solid (porous is a type of fluid zone )4, Internal face boundaries :fan, radiator, porous jump, wall, interior5-2 流动进口、出口边界条件FLUENT 提供了10种类型的流动进、出口条件,它们分别是:★一般形式: ★可压缩流动: 压力进口 质量进口 压力出口 压力远场★不可压缩流动: ★特殊进出口条件: 速度进口 进口通分,出口通风 自由流出 吸气风扇,排气风扇进口出口壁面orifice (interior)orifice_plate and orifice_plate-shadow流体Example: Face and Cell zones associated with Pipe Flow through orifice plate1,速度进口(velocity-inlet):给出进口速度及需要计算的所有标量值。
该边界条件适用于不可压缩流动问题,对可压缩问题不适用,否则该入口边界条件会使入口处的总温或总压有一定的波动。
2,压力进口(pressure-inlet):给出进口的总压和其它需要计算的标量进口值。
对计算可压不可压问题都适用。
3,质量流进口(mass-flow-inlet):主要用于可压缩流动,给出进口的质量流量。
对于不可压缩流动,没有必要给出该边界条件,因为密度是常数,我们可以用速度进口条件。
4,压力出口(pressure-outlet):给定流动出口的静压。
对于有回流的出口,该边界条件比outflow 边界条件更容易收敛。
该边界条件只能用于模拟亚音速流动。
5,压力远场(pressure-far-field):该边界条件只对可压缩流动适合。
湍流的理论与实验研究湍流的理论与实验研究湍流是流体力学界公认的难题,被认为是经典物理学中最后一个未被解决的问题。
自然界和工程领域的绝大多数流动都是湍流,因此湍流研究具有重大意义。
近年来,随着实验测量技术和数值模拟能力的不断增强,学术界对高雷诺数和高马赫数湍流有了许多新的认识。
我国科学界也结合国家重大战略需求和学科发展前沿,分析国际上湍流研究的特点、现状和发展趋势,希望对湍流产生机制和流动本质进行深入研讨,加强与航空、航天、航海等相关单位和部门间的沟通与联系,推动湍流研究的发展。
针对国内学科发展现状,尤其是实验研究相对薄弱的特点,国家自然科学基金委员会数理科学部、工程与材料科学部和政策局,于2014年3月20-21日在北京联合举办了第110期双清论坛,论坛主题为“湍流的理论与实验研究”。
来自全国15个单位的近50位流体力学与工程领域的专家学者应邀出席。
与会专家通过充分而深入的研讨,凝练了该领域的重大关键科学问题,探讨了前沿研究方向和科学基金资助战略。
本期特刊登此次论坛学术综述。
一、湍流研究的重要意义自1883年雷诺(Reynolds)发现湍流以来,湍流问题的研究一直困扰着众多学者。
著名物理学家费曼曾说,湍流是经典物理学中最后一个未被解决的难题;2005年《科学》杂志在其创刊125周年公布的125个最具挑战性的科学问题中,其中至少两个问题与湍流相关。
在我们日常生活中,湍流无处不在。
自然界和工程应用中遇到的流动,绝大部分是复杂的湍流问题。
在自然界,从宇宙星系的时空演化,到星球内部的翻滚流动,从大气环流的全球运动,到江河湖泊的区域流动,都有湍流的身影。
在工程领域,从陆地、海洋、空天等交通运载工具,到原子弹、氢弹、导弹、战斗机、舰船等国防武器的设计;从全球气象气候的预报,到地区水利工程的设计;从传统行业如叶轮机械、房桥建筑、油气管道,到新兴行业如能源化工、医疗器械、纳米器件的设计,都需要了解和利用湍流。
因此,湍流流动的研究不仅仅是一个学科发展的问题,更具有重要的工程应用价值。
湍流的概念湍流的概念湍流是一种不规则、混沌的流动状态,它是一种非线性流动,具有高度的复杂性和不可预测性。
在自然界中,湍流广泛存在于大气、海洋、河流等许多自然系统中。
在工程领域中,湍流也是一个重要的问题,因为它会影响机械设备的性能和寿命。
一、湍流的产生1.1 流体运动的稳定性当液体或气体通过管道或河道等管状结构时,其运动状态可能会发生变化。
如果液体或气体运动状态呈现出稳定的层状结构,则称为层流;如果液体或气体运动状态呈现出不规则、混乱的结构,则称为湍流。
1.2 流速和粘度当液体或气体速度较低时,其运动状态通常呈现出层状结构;当速度增加到一定程度时,其运动状态就会从层状结构转变成不规则、混乱的结构。
此时,粘度对湍流产生影响。
1.3 流体阻力当液体或气体通过管道或河道等管状结构时,其运动状态会受到管道或河道表面的阻力影响。
如果液体或气体速度较低,阻力也相对较小,此时运动状态呈现出层状结构;如果液体或气体速度增加到一定程度,阻力也会增加,此时运动状态就会从层状结构转变成不规则、混乱的结构。
二、湍流的特征2.1 非线性湍流是一种非线性流动,其运动状态具有高度的复杂性和不可预测性。
在湍流中,各种物理量(如速度、压力等)之间相互作用,并且存在着多个时间和空间尺度上的变化。
2.2 不规则湍流是一种不规则的流动状态。
在湍流中,液体或气体的速度和压力分布呈现出高度不规则、混乱的结构。
2.3 涡旋湍流中存在着许多大小不同、形状各异的涡旋。
这些涡旋是湍流中能量传递和耗散的基本单位。
2.4 能量耗散在湍流中,能量从大尺度向小尺度传递,并最终以分子热运动形式耗散。
湍流能量耗散是湍流研究的重要问题之一。
三、湍流的数学模型3.1 Navier-Stokes方程组Navier-Stokes方程组是描述流体运动的基本方程,它包括质量守恒、动量守恒和能量守恒三个方程。
这些方程可以用于描述层流和湍流两种不同的流动状态。
3.2 Reynolds平均Navier-Stokes方程组Reynolds平均Navier-Stokes(RANS)方程组是一种经典的湍流模型,它是通过对Navier-Stokes方程组进行时间平均得到的。