独立性检验的思想方法
- 格式:doc
- 大小:105.50 KB
- 文档页数:5
独立性检验思想及应用独立性检验(Independence Test)是统计学中用于研究两个或多个分类变量之间是否存在关联的方法。
它基于假设显著性检验的思想,通过计算观察值与期望值之间的差异程度,来判断两个变量是否独立。
在实际应用中,独立性检验经常用于确定两个变量是否相互影响或存在某种联系,以及在实验设计、社会科学研究、生物学研究等领域中的数据分析。
独立性检验的基本思想是基于对观察样本的期望值进行比较,来推断两个或多个分类变量是否存在关联。
在进行独立性检验时,常用的统计方法包括卡方检验(Chi-square Test)、Fisher精确检验(Fisher's Exact Test)和logistic回归分析(Logistic Regression)等。
卡方检验是独立性检验中最常用的方法之一。
它基于卡方统计量的分布特性,通过计算观测频数与期望频数之间的差异,来判断两个或多个分类变量之间的关联性。
卡方检验的原理是比较观测频数与期望频数之间的差异是否显著,若差异显著,则表明两个变量之间存在关联。
Fisher精确检验是一种非参数的检验方法,用于较小样本量且存在预期频数很低的情况。
它通过穷举计算所有可能的观测结果,来计算出在给定的边际总和下,观测频数与期望频数之差异的概率。
Fisher精确检验在小样本研究中经常被使用,特别是用于研究罕见事件的相关性。
logistic回归分析是一种广义线性模型,可用于分析二分类变量的关联性。
它将自变量的线性组合通过logistic函数转换为估计概率,从而实现对二分类变量之间的关系进行研究。
logistic回归分析在独立性检验领域中常用的方法包括二分类变量的logistic回归、多分类变量的logistic回归和多项式logistic回归等。
独立性检验在很多领域都有广泛的应用。
在医学研究中,独立性检验可以用于分析某种疾病的发病率与多个危险因素之间的关联性,以及评估治疗方法对疾病预后的影响;在社会科学研究中,独立性检验可以用于分析社会经济因素与人群特征之间的关联,以及评估政策改革对社会发展的影响;在生物学研究中,独立性检验可以用于分析基因型与表型之间的关联,以及评估不同基因型对遗传疾病的易感性等。
独立性检验基本思想及应用独立性检验是一种用于确定两个变量之间是否存在关联的统计方法。
其基本思想是通过比较观察到的数据与预期的数据之间的差异来推断这两个变量之间的关系。
独立性检验的应用非常广泛。
在社会科学中,独立性检验常被用于研究两个分类变量之间是否存在关联,例如性别和职业、教育水平和政治倾向等。
在医学研究中,独立性检验也可以用来检查某种治疗方法是否与疾病的发展有关,以及风险因素和某种疾病之间的关系。
此外,独立性检验还被广泛应用于市场调查、品牌定位以及质量控制等领域。
独立性检验的基本思想是建立一个零假设(H0)和一个备择假设(H1)。
零假设认为两个变量是独立的,即它们之间没有关联;备择假设则认为两个变量之间存在关联。
独立性检验的步骤可以分为以下几步:1. 收集数据:需要收集两个分类变量的数据,例如通过问卷调查或观察获得数据。
2. 建立列联表:将数据整理成列联表形式,列联表是一种用于描述两个或多个分类变量之间关系的矩阵。
表格的行表示一个变量的不同类别,列表示另一个变量的不同类别,表格中的每个单元格表示两个类别的交叉数量。
3. 计算期望频数:在独立性检验中,我们假设两个变量是独立的,因此可以基于各类别的边际总数以及样本总数来计算期望频数。
期望频数是在两个变量独立情况下,各个类别的交叉数量。
4. 计算卡方统计量:卡方统计量用于衡量观察到的数据与期望数据之间的差异程度。
计算公式为:χ2 = Σ((观察频数- 期望频数)^2 / 期望频数)。
其中,Σ表示对所有单元格进行求和。
5. 设定显著性水平:显著性水平α为决策的临界点,用于决定是否拒绝零假设。
通常,α的常见选择为0.05或0.01。
6. 判断和解释结果:根据计算出的卡方统计量与临界值进行比较,如果计算出的卡方值大于临界值,拒绝零假设,认为两个变量之间存在关联;反之,接受零假设,认为两个变量是独立的。
独立性检验的结果常常以卡方统计量和p值的形式呈现。
p值是在零假设成立的条件下,观察到的数据与期望数据之间差异的概率。
3.2.1 《独立性检验的基本思想及其初步应用》教学设计【教学目标】1.知识与技能:通过对典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能解决实际问题。
2.过程与方法:通过设置问题,引导学生自主发现、合作探究、归纳展示、质疑对抗,使学生成为课堂主体。
3.情感、态度与价值观:通过本节课学习,让学生体会统计方法在决策中的作用;合作探究的学习过程,使学生感受发现、探索的乐趣及成功展示的成就感,培养学生学习数学知识的积极态度。
【教学重点】了解独立性检验的基本思想及实施步骤。
【教学难点】独立性检验的基本思想;随机变量2K的含义。
【学情分析】本节课是在学习了统计、回归分析的基本思想及初步应用后,利用独立性检验进一步分析两个分类变量之间是否有关系,为以后学习统计理论奠定基础。
【教学方式】多媒体辅助,合作探究式教学。
【教学过程】一、情境引入,提出问题请看视频:[设计意图说明]好的课堂情景引入,能激发学生的求知欲,是新问题能够顺利解决的前提之一。
问题1、你认为吸烟与患肺癌有关系吗?怎样用数学知识说明呢?[设计意图说明]提出问题,引导学生自主探究,指明方向,步步深入。
二、阅读教材,探究新知1.分类变量对于性别变量,其取值为男和女两种:[设计意图说明]利用图像向学生展示变量的不同取值,更加形象的表示分类变量的概念。
这种变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量。
生活中有很多这样的分类变量如:是否吸烟宗教信仰国籍民族……2.列联表为研究吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果:表3—7 吸烟与患肺癌列联表单位:人不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计9874919965究每个分类变量只取两个值,这样的列联表称为22 列联表)。
问题1、吸烟与患肺癌有关系吗?由以上列联表,我们估计①在不吸烟者中患肺癌的比例为________;②在吸烟者中患肺癌的比例为。
人教版高中选修2-33.2独立性检验的基本思想及其初步课程设计一、独立性检验概述在概率论和数理统计中,独立性检验是指检验两个离散随机变量之间是否独立的方法。
在实际问题中,常常需要研究两个随机变量之间的关系,是否存在关联。
例如,对于一个大学招生的案例,一个人的高中成绩和大学录取情况可以是两个随机变量,我们需要使用独立性检验来判断这两个随机变量是否有关联。
二、独立性检验方法独立性检验方法有很多种,其中最常用的是卡方检验。
2.1 卡方检验卡方检验是一种统计检验方法,用于检验分类资料之间的独立性。
它的基本思想是,将观察结果与理论期望作比较,确定两者之间是否有显著差异来判断两个随机变量之间是否独立。
卡方检验的基本步骤包括:1.假设零假设为两个随机变量独立,对这个假设建立尽可能充分的理论模型。
2.将实际观察值与理论值进行比较,计算出统计量。
3.利用卡方分布表来获得临界值,以判断是否拒绝零假设。
2.2 其他方法在实际应用中,除了卡方检验,还有很多独立性检验的方法。
例如,t检验中的独立样本t检验,ANOVA中的多元卡方检验等等。
这些方法在不同的领域和场合有不同的应用。
三、课程设计建议针对高中选修2-33.2独立性检验,可以设计以下课程教学内容:3.1 概念讲解在课程开头,可以先为学生介绍独立性检验的基本概念,包括随机变量、独立性、检验方法等。
这部分内容可以通过举例子、讲解理论、使用模拟仿真等方式进行,让学生对独立性检验有一个初步的认识。
3.2 卡方检验的具体操作在学生掌握了基本概念之后,可以进一步教授卡方检验的具体操作方法。
在讲解过程中,教师可采取课堂讲解方式,为学生演示计算过程和判断方法。
并且可以为学生演示如何使用统计软件完成卡方检验。
同时,为了让学生更好的掌握卡方检验的操作,可以设计一些实际案例,让学生进行计算和判断实验。
3.3 讨论与总结在课程结束时,可以组织学生进行小组讨论和总结。
讨论的主题可以是卡方检验的应用与展望,或是针对课程内容的总结与反思。
独立性检验的步骤及应用1、独立性检验的思想及步骤独立性检验的基本思想类似于数学上的“反证法”。
要确认“两个分类变量有关系”这一结论成立的可信程度。
首先假设结论不成立,即“这两个分类变量几乎没有关系”(“几乎独立”)成立,则,此时,我们所构造的随机变量应该很小。
如果由观测数据计算得到的k不是很小,则在一定程度上说明假设不合理。
而且观测值k越大,说明假设(“几乎无关或独立”)不成立的可能性就越大,即两者有关的可能性越大,这样我们就可以由的观测值k并结合已往估算经验值表定出我们有多大程度等等把握可以认为“两个分类变量有关系”。
这个经验值表如下(有必要记住):与的观测值k相应的参考值:在假设“X与Y无关”的前提下出现=k概率:P(=k)考查结果=k与假设矛盾的可能性,即可以认为“X与Y有关”的把握程度:1-P(=k)=10.8280.00199.9%(“有关”程度较高。
“独立性”较弱)=7.7890.00599.5%=6.6350.0199%=5.0240.02597.5%=3.8410.0595%=2.7060.1090%超过0.1585%以下(无明显理由认为“有关”,“独立性”较强)2、典例分析例1、某校对学生课外活动内容进行调查,结果整理成2×2列联表如下:体育文娱合计男生212344女生62935合计275279试分析“喜欢体育还是喜欢文娱”与“性别”之间三多大程度上有关?解:将a=21,b=23,c=6,d=29,n=79代入,得即的观察值假设喜欢体育还是喜欢文娱与性别没有关系,则的观察值k应该很小,且由经验值表知,即在此假设成立的前提下出现的可能性只有0.005左右,而不出现的可能性约为99.5%,但在本调查中却得出的观察值,超过了7.789,所以我们有99.5%的把握可以认为此假设不成立,即有99.5%的把握可以认为喜欢体育还是喜欢文娱与性别有关。
例2、调查在2~3级风时的海上航行中男女乘客的晕船情况,共调查了71人,其中女性34人,男性37人。
独立性检验的思想方法
独立性检验实际上是检验两个分类变量是否相关,相关的程度有多大.在进行独位性检验时,应注意给定的可靠性的要求,不同的可靠性要求可能会导致得出完全不同的结论.在断言正确时很少发生的结果若发生了,就是断言不正确的证据.一般地,对分类变量的相关
关系的判断方法有:2×2列联表、二维条形图、三维柱形图和利用随机变量K 2来确定,与表
格相比,三维柱形图和二维条形图能够更直观地反映出相关数据的总体状况.并能从中清晰地看出各个频数的相对大小关系.三维柱形图和二维条形图因为所表示的关系只是一种粗略的估计,不能够精确地反应有关的两个分类变量的可信程度,因而不常用,并且在实际问题
的解决中也较为烦琐,故在判断两个分类变量的关系的可靠性时,一般利用随机变量K 2来
确定的.下面举例说明.
一.二维条形图
在二维条形图中,可以估计满足条件X=x 1的个体中具有Y= y 1的个体所占的比例b a a +,也可以估计满足条件X=x 2的个体中具有Y= y 2的个体所占的比例d c c +,两个比例的值相差越大,H 1成立的可能性就越大.
例 1.有甲、乙两个班级进行一门课程的考试,按照学生的考试成绩优秀和不优秀统计人数后,得到下面的列联表:
请画出列联表的二维条形图,并通过图形判断成绩与班级是否有关,利用列联表的独立性假设检验估计判断成绩是否优秀与所在班级是否有关.
分析:本题应首先作出调查数据的列联表,再根据列联表画出二维条形图或三维柱形图,并进行分析,最后利用独立性检验作出判断.
解:根据列联表的数据,作出二维条形图,如图.
从条形图中可以看出,甲班学生中优秀的人数的比例数为
4510,乙班学生中优秀的人数的比例为45
7,二者差别不是很大,因此我们认为成绩是否优秀与所在的班级没有关系,用独立性假设检验来判断,由题意知a =10,b=35,c=7,d=38,a+b=45,c+d=45,a+c=17,b+d=73,n=90.
代入公式
))()()(()(2
2
d c c a d b b a bc ad n K ++++-=
.
65.073174545)3573810(902
≈⨯⨯⨯⨯-⨯⨯=k
由于0.65<2.706,所以我们没有充足的理由认为成绩优秀与班级有关系.
点拨:在列联表中注意事件的对应关系及有关值的确定,避免混乱.利用图形来判断两个变量之间是否有关系,可以画出三维柱形图,也可以画出二维条形图,仅从图形上只可以作两个分类变量关系的粗略的估计,可以结合所求的数值来进行比较.
练习:
1.在调查的480名男人中有38名患有色盲,520名女人中有6名患有色盲,分别利用图形和独立性检验的方法来判断色盲与性别是否有关,你所得到的结论在什么范围内有效?
解:根据题目所给的数据作出如下的列联表:
图形法:根据列联表作出相应的二维条形图,如图
从二维条形图来看,在男人中患色盲的比例为480
38,在女人中患色盲的比例为5206.又48038>5206,其差值为|48038-520
6|≈0.068,差值较大,因而我们可认为性别与患色盲是有关的.
根据列联表中所给的数据可以有a =38,b=442,c=6,d=514,a+b =480,c+d =520,a+c =44,b+d=956,n=1000,代入公式
,))()()(()(2
2
d c d b d a c a bc ad n K ++++-= 得14.27956
44520480)442651438(10002
≈⨯⨯⨯⨯-⨯⨯=k ,由于K ≈27.14 4>10.828, 所以我们有99.9%的把握认为性别与患色盲有关系.
二. 三维柱形图
在三维柱形图中,主对角线上两个柱形高度的乘积ad 与副对角线上的两个柱形高度的乘积bc 相差越大,H 1成立的可能性就越大,
例2.为考察某种药物预防疾病的效果,进行动物试验,得到如下的列联表:
试用三维柱形图分析服用药和患病之间是否有关系.
分析:若要推断的论述为H0:X与Y有关系,可以用三维柱形图来粗略地判断两个分类变量X与Y是否有关系.
解:根据列联表所给的数据作出三维柱形图如图,
主对角线上两个柱形的高度a与d的乘积ad=10×30=300,与副对角线上两个柱形高度的乘积bc=20×45=900相差很大,因而服用药与未患病之间有关的程度很大.点拨:在三维柱形图中,应对主对角线上两个柱形的高度的乘积ad与副对角线上两个柱形高度的乘积bc作比较,两个乘积相差越大,H0成立的可能性就越大.练习:
2.研究人员选取170名青年大学生的样本,对他们进行一项心理测验,发现有60名女生对该心理测验中的最后一个题目的反应是:作肯定回答的有22名,否定回答的有38名;男生110名在相同的题目上作肯定回答的有22名,否定回答的有88名.问:性别与态度之间是否存在某种关系?分别用图形和独立性检验的方法判断.
解:根据题目所给数据建立如下列联表:
性别与态度的关系列联表
相应的三维柱形图如图,比较来说,底面副对角线上两个柱体高度的乘积要大一些,因此可以在某种程度上认为“性别与态度有关”.
根据列联表中的数据得到
.024.5622.5126
4460110)88223822(1702
>≈⨯⨯⨯⨯-⨯⨯=k 所以有97.5%的把握认为性别与态度有关.
三. 利用随机变量K 2来确定
解独立性检验问题的基本步骤是:①找出相关数据,作列联表;②求统计量K 2的观测
值;③判断可能性,注意与临界值作比较,得出事件有关的可能性大小.
例 3.运动员参加比赛前往往做热身运动,下表是一体育运动的研究机构通过考察160位专业运动员运动前是否做热身运动而得到的数据,试问:由此数据,你认为运动员受伤与不做热身运动有关吗?
解:由))()()(()(2
2
d b d c b a c a bc ad n K ++++-= .94.3896
646595)45762019(1602
≈⨯⨯⨯⨯-⨯⨯=k 因为38.974>10.828,所以有99.9%的把握认为运动员受伤与不做热身运动有关. 点拨:独立性检验是用来考查两个分类变量是否具有相关关系,并且能较精确地给出这
种判断的可靠程度的一种统计方法.利用这一方法,可以直接用K 2的观测值解决实际问题.这
里需特别说明的是:K 2与k 的关系并不是k=2K ,K 2
是一个随机变量,它在a,b,c,d 取不同的值时,K 2可能不同;而k 是K 2
的观测值,是取定一组数a 、b 、c 、d 后的一个确定的值.
练习:
3.某些行为在运动员的比赛之中往往被赋予很强的神秘色彩,如有一种说法认为,在进入某乒乓球场比赛时先迈入左脚的运动员就会赢得比赛的胜利.某记者为此追踪了某著名乒乓球运动员在该球场中的308场比赛.获得数据如下表:
据此资料,你能得出什么结论? 解:由))()()(()(2
2
d c d b b a c a bc ad n K ++++-= , 得.502.146
262103205)278419178(3082
≈⨯⨯⨯⨯-⨯⨯=k 因为1.502<2.706,所以我们认为先迈进哪只脚跟比赛的胜负是无关的.
在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能错误,这是数学中的统计思维与确定性思维差异的反映,但我们可以利用统计分析的结果去预测实际问题的结果.。