空间向量基本定理
- 格式:ppt
- 大小:487.01 KB
- 文档页数:17
1.2 空间向量的基本定理1.空间向量基本定理(1)如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,把{a ,b ,c }叫做空间的一个基底,a ,b ,c 叫做基向量,空间中任何三个不共面的向量都可以构成空间的一个基底.(2)基底选定后,空间所有向量均可由基底唯一表示,构成基底的三个向量a ,b ,c 中,没有零向量.(3)单位正交基底:如果{e 1,e 2,e 3}为单位正交基底,则这三个基向量的位置关系是两两垂直,长度为1;且向量e 1,e 2,e 3有公共的起点.【题型精讲】考点一 基底的判断【例1】(2020·全国高二课时练习)在正方体1111ABCD A B C D 中,可以作为空间向量的一组基底的是( )A .AB AC AD ,,B .11AB AA AB ,,C .11111D A DC D D ,,D .111AC AC CC ,,【答案】C【解析】:AB AC AD ,,共面,排除A 11AB AA AB ,,共面,排除B 111AC AC CC ,,共面,排除D 11111 D A DC D D ,,三个向量是不共面的,可以作为一个基底.故选:C【玩转跟踪】1.(2020·全国高二课时练习)下列说法正确的是( )A .任何三个不共线的向量可构成空间向量的一个基底B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .基底{}a b c ,,中基向量与基底{}e f g ,,基向量对应相等【答案】C【解析】A 项中应是不共面的三个向量构成空间向量的基底, 所以A 错.B 项,空间基底有无数个, 所以B 错.D 项中因为基底不唯一,所以D 错.故选C .2.(2018·全国高二课时练习)设向量,,a b c 不共面,则下列可作为空间的一个基底的是( )A .{,,}a b b a a +-B .{,,}a b b a b +-C .{,,}a b b a c +-D .{,,}a b c a b c +++ 【答案】C【解析】选项A,B 中的三个向量都是共面向量,所以不能作为空间的一个基底.选项D 中,()a b c a b c ++=++,根据空间向量共面定理得这三个向量共面,所以不能作为空间的一个基底.选项C 中,,a b b a c +-不共面,故可作为空间的一个基底.故选:C.3.(2018·开平市忠源纪念中学高二期末(理))若{a ⃑,b ⃑⃑,c ⃑}构成空间的一组基底,则( )A .b ⃑⃑+c ⃑,b ⃑⃑−c ⃑,a ⃑不共面B .b ⃑⃑+c ⃑,b ⃑⃑−c ⃑,2b ⃑⃑不共面C .b ⃑⃑+c ⃑,a ⃑,a ⃑+b ⃑⃑+c ⃑不共面D .a ⃑+c ⃑,a ⃑−2c ⃑,c ⃑不共面 【答案】A【解析】∵2b ⃑⃑=(b ⃑⃑+c ⃑)+(b ⃑⃑−c ⃑),∴b ⃑⃑+c ⃑,b ⃑⃑−c ⃑,2b⃑⃑共面 ∵a ⃑+b ⃑⃑+c ⃑=(b ⃑⃑+c ⃑)+a ⃑,∴b ⃑⃑+c ⃑,a ⃑,a ⃑+b ⃑⃑+c ⃑共面∵a ⃑+c ⃑=(a ⃑−2c ⃑)+3c ⃑,∴a ⃑+c ⃑,a ⃑−2c ⃑,c ⃑共面故选A考点二 基底的运用【例2】(2020·佛山市荣山中学高二期中)如图,平行六面体1111ABCD A B C D -中,O 为11A C 的中点,AB a =,AD b =,1AA c =,则AO =( )A .1122-++a b cB .1122a b c ++C .1122a b c --+D .1122a b c -+ 【答案】B【解析】O 为11A C 的中点, ∴()11111111111122AO AC AA AO AA AA A B A D =+=+++=()112AB AD AA =++()12c a b =++ 1122a c b =++. 故选:B .【玩转跟踪】1.(2020·甘肃靖远。
向量基本定理证明一、向量基本定理内容1. 平面向量基本定理- 如果e_1,e_2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ_1,λ_2,使a = λ_1e_1+λ_2e_2。
其中{e_1,e_2}叫做表示这一平面内所有向量的一个基底。
2. 空间向量基本定理- 如果三个向量a,b,c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p = xa+yb + zc。
{a,b,c}叫做空间的一个基底。
二、平面向量基本定理的证明1. 存在性证明- 设e_1,e_2是同一平面内的两个不共线向量,a是这一平面内的任一向量。
- 过向量a的起点O作平行于e_1,e_2的直线,与e_1,e_2所在的直线分别交于A,B两点。
- 因为e_1≠0,设→OA=λ_1e_1,同理设→OB=λ_2e_2。
- 根据向量加法的平行四边形法则,a=→OA+→OB=λ_1e_1+λ_2e_2。
2. 唯一性证明- 假设a=λ_1e_1+λ_2e_2=μ_1e_1+μ_2e_2,其中λ_1,λ_2,μ_1,μ_2∈ R。
- 则(λ_1 - μ_1)e_1+(λ_2-μ_2)e_2 = 0。
- 因为e_1,e_2不共线,所以λ_1-μ_1 = 0且λ_2-μ_2 = 0,即λ_1=μ_1,λ_2=μ_2。
三、空间向量基本定理的证明1. 存在性证明- 设a,b,c是不共面的三个向量,p是空间任一向量。
- 把向量a,b,c,p的起点都移到同一点O。
- 过点P作直线PP_1平行于c,且与平面OAB交于点P_1。
- 在平面OAB内,过点P_1作直线P_1P_2平行于b,交OA于点P_2。
- 过点P_2作直线P_2P_3平行于a,交OB于点P_3。
- 设→OP_3=x a,→P_3P_2=y b,→P_2P_1=z c。
- 由向量加法的三角形法则可得p=→OP=→OP_3+→P_3P_2+→P_2P_1=xa + yb+zc。
空间向量的定义和基本定理一、空间向量的定义和基本定理1、空间向量与平面向量一样,在空间中,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模。
2、空间向量基本定理(1)共线向量定理定理:对空间任意两个向量$\boldsymbol a$,$\boldsymbol b$($\boldsymbolb$≠0),$\boldsymbol a∥\boldsymbol b$的充要条件是存在实数$\lambda$,使$\boldsymbol a$=$λ\boldsymbol b$。
推论:如果$l$为经过已知点$A$且平行于已知非零向量$\boldsymbol a$的直线,那么对空间任一点$O$,点$P$在直线$l$上的充要条件是存在实数$t$,使$\overrightarrow{O P}=\overrightarrow{O A}+t\boldsymbol \alpha$①。
其中向量$\boldsymbol a$叫做直线$l$的方向向量。
在$l$上取$\overrightarrow{A B}=\boldsymbol a$,则①式可化为$\overrightarrow{O P}=\overrightarrow{O A}+t\overrightarrow{A B}$或$\overrightarrow{O P}=(1-t)\overrightarrow{O A}+t\o verrightarrow{O B}$②。
当$t=\frac{1}{2}$时,点$P$是线段$AB$的中点,则$\overrightarrow{OP}=\frac{1}{2}(\overrightarrow{O A}+\overrightarrow{O B})$③。
①②式都叫做空间直线的向量表示,③式是线段$AB$的中点公式。
(2)共面向量定理定理:如果两个向量$\boldsymbol a$,$\boldsymbol b$不共线,那么向量$\boldsymbol p$与向量$\boldsymbol a$,$\boldsymbol b$共面的充要条件是存在唯一的有序实数对($x$,$y$),使$\boldsymbol p$=$x\boldsymbol a$+$y\boldsymbol b$。
空间向量的基本定理空间向量的基本定理一、引言空间向量是三维空间中的一个有向线段,是研究几何、物理等学科中经常使用的基本概念。
在研究空间向量的性质和应用时,需要掌握空间向量的基本定理。
二、定义1. 空间向量的表示在三维空间中,一个向量可以用它的起点和终点表示。
设点A(x1,y1,z1)和点B(x2,y2,z2)是三维空间中的两个点,则以A为起点,B为终点的有向线段AB就是一个向量,记作AB。
2. 空间向量的加法设有两个非零向量a和b,在它们各自平移后所在直线上任取一点P 和Q,并以它们为对角线作平行四边形,则以P为起点,Q为终点所得到的有向线段就是a+b。
3. 空间向量的数乘设k为实数,k与非零向量a相乘所得到的新向量记作ka。
当k>0时,ka与a同方向;当k<0时,ka与a反方向;当k=0时,ka=0。
4. 两个非零向量共线如果两个非零向量a和b共线,则存在实数k使得b=ka。
5. 两个非零向量垂直如果两个非零向量a和b垂直,则它们的数量积为0,即a·b=0。
三、基本定理1. 平面向量的基本定理对于任意两个非零向量a和b,有以下三个结论:(1)a+b=b+a(交换律)(2)(a+b)+c=a+(b+c)(结合律)(3)k(a+b)=ka+kb(分配律)这些结论称为平面向量的基本定理。
2. 空间向量的基本定理对于任意三个非零向量a、b和c,有以下六个结论:(1)a+b=b+a(交换律)(2)(a+b)+c=a+(b+c)(结合律)(3)k(a+b)=ka+kb(分配律)这些结论与平面向量的基本定理相同。
(4)a+(–a)=0对于任意一个非零向量a,存在唯一一个与之相反的向量–a,使得它们相加等于零向量0。
(5)(–1)a=–a对于任意一个非零向量a,存在唯一一个与之相反的向量–a,使得它们相加等于零向量0。
而且当k=-1时,ka=-a。
这些结论称为空间向量的基本定理。
四、证明1. 平面向量的基本定理的证明(1)a+b=b+a由向量加法的定义可知,a+b和b+a的起点和终点相同,因此它们相等。
空间向量的基本定理空间向量的基本定理是高中数学中的一个重要内容,它涉及到空间向量的表示、运算和应用。
本文将从以下几个方面介绍空间向量的基本定理:一、空间向量的概念和性质1.1 空间向量的定义空间向量是指空间中具有大小和方向的量,它可以用一个有向线段来表示。
有向线段的起点叫做向量的始点,终点叫做向量的终点,箭头表示向量的方向。
用字母 a, b, c 等表示向量,用 AB 表示以 A 为始点,B 为终点的向量。
1.2 空间向量的相等如果两个向量的长度相等且方向相同,那么这两个向量就是相等的。
相等的向量可以用平行移动的方法来判断,即如果一个向量平行移动后与另一个向量重合,那么这两个向量就是相等的。
例如,AB 和 CD 是相等的,因为 AB 平行移动后与 CD 重合。
1.3 空间向量的线性运算空间向量可以进行加法、减法和数乘三种线性运算,它们遵循以下法则:加法交换律:→a +→b =→b +→a加法结合律:(→a +→b )+→c =→a +(→b +→c )减法定义:→a −→b =→a +(−→b )数乘交换律:k →a =→ak 数乘结合律:(k 1k 2)→a =k 1(k 2→a )数乘分配律:(k 1+k 2)→a =k 1→a +k 2→a 和 k (→a +→b )=k →a +k →b空间向量的加法和减法可以用三角形法则或平行四边形法则来进行几何表示。
空间向量的数乘可以理解为对向量的长度和方向进行缩放,即数乘后的向量与原向量平行,长度为原长度与数乘因子的乘积,方向由数乘因子的正负决定。
例如,2→a 是 →a 的两倍长且同方向的向量,−12→b 是 →b 的一半长且反方向的向量。
二、空间坐标系和空间向量的坐标表示2.1 空间直角坐标系为了在空间中确定任意一点或任意一个向量的位置,我们需要建立一个参照系。
在数学中,我们常用空间直角坐标系来作为参照系。
空间直角坐标系由三条互相垂直且相交于原点 O 的坐标轴组成,分别称为 x 轴、y 轴和 z 轴。
向量基本定理公式
向量基本定理是指任意向量空间V中的任意一组基所组成的行列式的值都相等。
具体地,设V是一个n维向量空间,B={b1,b2,...,bn}是V的一组基,那么对于V中任意一组向量v1,v2,...,vn,它们可以唯一地表示为:
v1 = a1b1 + a2b2 + ... + anbn
v2 = b1b1 + b2b2 + ... + bnb n
其中a1,a2,...,an是标量。
则有:
det(B) * [v1, v2, ..., vn] = [a1, a2, ..., an]
其中det(B)表示B的行列式,[a1, a2, ..., an]表示由向量a1,a2,...,an构成的行列式,[v1, v2, ..., vn]表示由向量v1,v2,...,vn构成的行列式。
这个公式的意义在于,如果我们知道了一个向量空间的一组基,那么就可以通过计算任意一组向量的行列式值来判断它们是否线性无关。
如果它们线性无关,那么它们就可以作为这个向量空间的一组基。
另外,这个公式也可以用来计算向量空间的体积或面积等几何量。
需要注意的是,这个公式只适用于有限维向量空间,对于无限维向量空间没有意
义。
另外,当一个向量空间的基不唯一时,它们所组成的行列式值可能不同。
空间向量的基本定理1. 引言空间向量是线性代数中的重要概念,它在物理、工程学和计算机科学等领域有着广泛的应用。
空间向量的基本定理是线性代数中一个重要的定理,它描述了空间向量之间的关系和运算规律。
本文将介绍空间向量的定义、性质以及基本定理的证明过程。
2. 空间向量的定义在三维空间中,我们可以用一个由三个实数构成的有序三元组表示一个向量。
设有两个向量a和b,它们分别表示为:a = (a1, a2, a3) b = (b1, b2, b3) 这里a1, a2, a3, b1, b2, b3是实数。
3. 向量的加法和数乘对于两个向量a和b,可以定义它们之间的加法和数乘运算: - 加法:两个向量相加得到一个新的向量,其每个分量等于对应分量相加。
- 数乘:将一个实数与一个向量相乘得到一个新的向量,其每个分量等于原来向量对应分量与实数相乘。
4. 空间向量的性质空间向量具有以下性质: - 交换律:a + b = b + a - 结合律:(a + b) + c =a + (b + c) - 零向量:存在一个特殊的向量,称为零向量,记作0,满足任何向量与零向量相加等于自身。
- 加法逆元:对于任意向量a,存在一个特殊的向量,称为其加法逆元,记作-a,满足a + (-a) = 0 - 数乘结合律:(k1k2)a = k1(k2a) - 数乘分配律1:(k1+k2)a = k1a + k2a - 数乘分配律2:k(a+b) = k a + k b5. 空间向量的基本定理空间向量的基本定理描述了两个关于空间向量的重要结果: ### 定理一对于任意两个空间向量, a, b, 满足下列条件: - 向量, a, 和, b, 不共线; - 向量, a, 和, b, 不平行;那么这两个非零空间向量之和不为零。
证明如下:假设, a, 和, b, 不共线且不平行,即它们不在同一直线上,也不平行于同一直线。
那么可以找到一个平面,这个平面同时包含向量, a, 和向量, b。
第十八讲 空间向量基本定理【知识梳理】1、共线向量定理:两个空间向量a ,b (b ≠0),a ∥b 的充要条件是存在唯一的实数x ,使a =x b .2、共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是,存在唯一的一对实数x ,y ,使c =x a +y b .3、空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .【考点剖析】考点一 共线定理、共面定理【例1-1】已知a =(1,-2,1),a b -=(-1,2,-1),则b =( )A .(2,-4,2)B .(-2,4,-2)C .(-2,0,-2)D .(2,1,-3)【答案】A 【详解】解析:()()()()1,2,11,2,12,4,2b a a b =--=----=-. 故选:A【例1-2】如图在平行六面体中,AC 与BD 的交点记为M .设,AB b =,AD c =,则下列向量中与相等的向量是( )A .1122a b c -+B .1122a b c +- C .1122a b c ++D .1122a b c --【答案】B 【详解】 . 故选:B.【跟踪训练1】已知三棱锥O ABC -中,点M 为棱OA 的中点,点G 为ABC 的重心,设,OB b =,OC c =,则向量MG =( )A .B .C .D .【答案】A 【详解】连接CG 并延长交AB 于点E ,连接OE ,则E 为AB 的中点,且23CG CE =,1122a b c =+-, ,M 为OA 的中点,.故选:A.【跟踪训练2】如图所示,在正方体中,点F 是侧面11CDD C 的中心,若,求x y z ++=( )A .1B .32C .2D .52【答案】C 【详解】 ,故1x =,12y =,12z =,则2x y z ++=. 故选:C.【跟踪训练3】在空间四边形ABCD 中,,且,2DM MA BN NC ==,则MN =( )A .112233a b c -- B . C . D .【答案】C 【详解】. 故选:C.考点二 共线定理、共面定理的应用【例2】 已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,用向量方法求证:(1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH .【解析】证明 (1)连接BG ,则EG→=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →,由共面向量定理知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →, 因为E ,H ,B ,D 四点不共线, 所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .规律方法 (1)证明空间三点P ,A ,B 共线的方法 ①P A →=λPB→(λ∈R ); ②对空间任一点O ,OP→=xOA →+yOB →(x +y =1). (2)证明空间四点P ,M ,A ,B 共面的方法 ①MP→=xMA →+yMB →; ②对空间任一点O ,OP→=xOM →+yOA →+zOB →(x +y +z =1);③PM →∥AB →(或P A →∥MB→或PB →∥AM →). (3)三点共线通常转化为向量共线,四点共面通常转化为向量共面,线面平行可转化为向量共线、共面来证明.【过关检测】1.如图,已知空间四边形OABC ,其对角线为,,,OB AC M N 分别是,OA CB 的中点,点G 在线段MN 上,且使2MG GN =,用向量表示向量OG 为( ) A . B .C .2233OG OA OB OC =++ D . 【答案】A 【详解】 .因为,M N 分别为,OA CB 的中点, 所以 所以. 故选:A.2.如图:在平行六面体ABCD ﹣A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( )A .1122a b c -++ B .1122++a b c C .1122--+a b cD .1122-+a b c【答案】A 【详解】 ,12c BD =+,()12c BA BC =++, 1122a b c =-++,()12c a b =+-+故选:A.3.已知向量(),,x y z a a a a =,,{},,i j k 是空间中的一个单位正交基底.规定向量积的行列式计算:,,y z x y x z xy z y z x y x z xyz i j ka a a a a a a a ab b b b b b b b b ⎛⎫==- ⎪ ⎪⎝⎭,其中行列式计算表示为a b ad bc c d =-,若向量,,则( ) A .B .C .D .【答案】C 【详解】 解:由题意得:, 故选:C .4.在三棱锥O ABC -中,,N 为BC 中点,则MN =( ) A .121232a b c -+ B .111322a b c -++ C .111222a b c +- D .121332a b c +- 【答案】B 【详解】连接ON ,所以, 因为,所以1133OM OA a ==, 所以. 故选:B.5.在平行六面体中,1AA c =,AB b =,AD a =,E 是BC 的中点,用a ,b ,c 表示1AE 为( ) A .12a b c +- B . C .12a b c -- D .12a b c -+ 【答案】A 【详解】解:如图示: ,结合图象得:1122c b a a b c -++=+-, 故选:A.6.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,且6AB AP ==,2AD =,,E ,F 分别为PB ,PC 上的点,且,,EF =( )A .1BC .2D 【答案】B 【详解】 ∵,, ∴ ,又62cos606AB AD AP AD ⋅=⋅=⨯⨯︒=,66cos6018AB AP ⋅=⨯⨯︒=, ∴== 7.在正方体中,点M 为棱''D C 的中点,点N 为棱BC 的中点,若'MN xAB yAD zAA =++,则x y z ++=( )A .1-B .0C .1D .2【答案】A 【详解】 如图所示: ,11'22AB AA AD =--, 又因为'MN xAB yAD zAA =++, 所以11,,122x y z ==-=-, 所以1x y z ++=-, 故选:A8.下列能使向量,MB ,MC 成为空间的一个基底的关系式是( ) A .B .C .OM OA OB OC =++D .【答案】C 【详解】对于A :由,可得M ,A ,B ,C 四点共面,即,,MA MB MC 共面, 所以选项A 无法构成基底,选项C 可以构成基底;对于B :因为,由平面向量基本定理,可得,,MA MB MC 共面,无法构成基底,故B 错误; 同理选项D 中,,,MA MB MC 共面,故D 错误. 故选:C9.如图,在三棱锥O ABC -中,D 是BC 的中点,若,OB b =,OC c =,则AD 等于( ) A . B . C .1122a b c -++ D .1122a b c --- 【答案】C 【详解】 , 因此,. 故选:C.10.已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M ,N 分别为PC ,PD 上的点,且,,,则x y z++的值为( )A.23-B.23C.1D.56【答案】B【详解】PA⊥平面ABCD,且ABCD为矩形,以为空间向量的一个基底,因,,,又,由空间向量基本定理知,211,,366x y z===-,.11.已知A,B,C三点不共线,对平面ABC外的任一点O,若点M满足.(1)判断,MB,MC三个向量是否共面;(2)判断点M是否在平面ABC内.【详解】(1)由题意,知:3OM OA OB OC=++,∴,即MA BM CM MB MC=+=--,故,,MA MB MC共面得证.(2)由(1)知:,,MA MB MC共面且过同一点M.所以,,,M A B C四点共面,从而点M在平面ABC内.12.如图,在三棱锥O ABC-中,G是ABC的重心(三条中线的交点),P是空间任意一点. (1)用向量表示向量OG,并证明你的结论;(2)设,请写出点P在ABC的内部(不包括边界)的充分必要条件(不必给出证明).【详解】解析(1)1()3OG OA OB OC =++. 证明如下:23OG OA AG OA AD =+=+21()32OA AB AC =+⨯+1()3OA OB OC =++. (2)若,点P 在ABC 的内部(不包括边界),的充分必要条件是:1x y z ++=,且01,01,01x y z <<<<<<.。