空间向量的基本定理
- 格式:ppt
- 大小:534.50 KB
- 文档页数:12
1.2 空间向量的基本定理1.空间向量基本定理(1)如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,把{a ,b ,c }叫做空间的一个基底,a ,b ,c 叫做基向量,空间中任何三个不共面的向量都可以构成空间的一个基底.(2)基底选定后,空间所有向量均可由基底唯一表示,构成基底的三个向量a ,b ,c 中,没有零向量.(3)单位正交基底:如果{e 1,e 2,e 3}为单位正交基底,则这三个基向量的位置关系是两两垂直,长度为1;且向量e 1,e 2,e 3有公共的起点.【题型精讲】考点一 基底的判断【例1】(2020·全国高二课时练习)在正方体1111ABCD A B C D 中,可以作为空间向量的一组基底的是( )A .AB AC AD ,,B .11AB AA AB ,,C .11111D A DC D D ,,D .111AC AC CC ,,【答案】C【解析】:AB AC AD ,,共面,排除A 11AB AA AB ,,共面,排除B 111AC AC CC ,,共面,排除D 11111 D A DC D D ,,三个向量是不共面的,可以作为一个基底.故选:C【玩转跟踪】1.(2020·全国高二课时练习)下列说法正确的是( )A .任何三个不共线的向量可构成空间向量的一个基底B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .基底{}a b c ,,中基向量与基底{}e f g ,,基向量对应相等【答案】C【解析】A 项中应是不共面的三个向量构成空间向量的基底, 所以A 错.B 项,空间基底有无数个, 所以B 错.D 项中因为基底不唯一,所以D 错.故选C .2.(2018·全国高二课时练习)设向量,,a b c 不共面,则下列可作为空间的一个基底的是( )A .{,,}a b b a a +-B .{,,}a b b a b +-C .{,,}a b b a c +-D .{,,}a b c a b c +++ 【答案】C【解析】选项A,B 中的三个向量都是共面向量,所以不能作为空间的一个基底.选项D 中,()a b c a b c ++=++,根据空间向量共面定理得这三个向量共面,所以不能作为空间的一个基底.选项C 中,,a b b a c +-不共面,故可作为空间的一个基底.故选:C.3.(2018·开平市忠源纪念中学高二期末(理))若{a ⃑,b ⃑⃑,c ⃑}构成空间的一组基底,则( )A .b ⃑⃑+c ⃑,b ⃑⃑−c ⃑,a ⃑不共面B .b ⃑⃑+c ⃑,b ⃑⃑−c ⃑,2b ⃑⃑不共面C .b ⃑⃑+c ⃑,a ⃑,a ⃑+b ⃑⃑+c ⃑不共面D .a ⃑+c ⃑,a ⃑−2c ⃑,c ⃑不共面 【答案】A【解析】∵2b ⃑⃑=(b ⃑⃑+c ⃑)+(b ⃑⃑−c ⃑),∴b ⃑⃑+c ⃑,b ⃑⃑−c ⃑,2b⃑⃑共面 ∵a ⃑+b ⃑⃑+c ⃑=(b ⃑⃑+c ⃑)+a ⃑,∴b ⃑⃑+c ⃑,a ⃑,a ⃑+b ⃑⃑+c ⃑共面∵a ⃑+c ⃑=(a ⃑−2c ⃑)+3c ⃑,∴a ⃑+c ⃑,a ⃑−2c ⃑,c ⃑共面故选A考点二 基底的运用【例2】(2020·佛山市荣山中学高二期中)如图,平行六面体1111ABCD A B C D -中,O 为11A C 的中点,AB a =,AD b =,1AA c =,则AO =( )A .1122-++a b cB .1122a b c ++C .1122a b c --+D .1122a b c -+ 【答案】B【解析】O 为11A C 的中点, ∴()11111111111122AO AC AA AO AA AA A B A D =+=+++=()112AB AD AA =++()12c a b =++ 1122a c b =++. 故选:B .【玩转跟踪】1.(2020·甘肃靖远。
空间向量的基本定理空间向量的基本定理一、引言空间向量是三维空间中的一个有向线段,是研究几何、物理等学科中经常使用的基本概念。
在研究空间向量的性质和应用时,需要掌握空间向量的基本定理。
二、定义1. 空间向量的表示在三维空间中,一个向量可以用它的起点和终点表示。
设点A(x1,y1,z1)和点B(x2,y2,z2)是三维空间中的两个点,则以A为起点,B为终点的有向线段AB就是一个向量,记作AB。
2. 空间向量的加法设有两个非零向量a和b,在它们各自平移后所在直线上任取一点P 和Q,并以它们为对角线作平行四边形,则以P为起点,Q为终点所得到的有向线段就是a+b。
3. 空间向量的数乘设k为实数,k与非零向量a相乘所得到的新向量记作ka。
当k>0时,ka与a同方向;当k<0时,ka与a反方向;当k=0时,ka=0。
4. 两个非零向量共线如果两个非零向量a和b共线,则存在实数k使得b=ka。
5. 两个非零向量垂直如果两个非零向量a和b垂直,则它们的数量积为0,即a·b=0。
三、基本定理1. 平面向量的基本定理对于任意两个非零向量a和b,有以下三个结论:(1)a+b=b+a(交换律)(2)(a+b)+c=a+(b+c)(结合律)(3)k(a+b)=ka+kb(分配律)这些结论称为平面向量的基本定理。
2. 空间向量的基本定理对于任意三个非零向量a、b和c,有以下六个结论:(1)a+b=b+a(交换律)(2)(a+b)+c=a+(b+c)(结合律)(3)k(a+b)=ka+kb(分配律)这些结论与平面向量的基本定理相同。
(4)a+(–a)=0对于任意一个非零向量a,存在唯一一个与之相反的向量–a,使得它们相加等于零向量0。
(5)(–1)a=–a对于任意一个非零向量a,存在唯一一个与之相反的向量–a,使得它们相加等于零向量0。
而且当k=-1时,ka=-a。
这些结论称为空间向量的基本定理。
四、证明1. 平面向量的基本定理的证明(1)a+b=b+a由向量加法的定义可知,a+b和b+a的起点和终点相同,因此它们相等。
空间向量的基本定理空间向量的基本定理是高中数学中的一个重要内容,它涉及到空间向量的表示、运算和应用。
本文将从以下几个方面介绍空间向量的基本定理:一、空间向量的概念和性质1.1 空间向量的定义空间向量是指空间中具有大小和方向的量,它可以用一个有向线段来表示。
有向线段的起点叫做向量的始点,终点叫做向量的终点,箭头表示向量的方向。
用字母 a, b, c 等表示向量,用 AB 表示以 A 为始点,B 为终点的向量。
1.2 空间向量的相等如果两个向量的长度相等且方向相同,那么这两个向量就是相等的。
相等的向量可以用平行移动的方法来判断,即如果一个向量平行移动后与另一个向量重合,那么这两个向量就是相等的。
例如,AB 和 CD 是相等的,因为 AB 平行移动后与 CD 重合。
1.3 空间向量的线性运算空间向量可以进行加法、减法和数乘三种线性运算,它们遵循以下法则:加法交换律:→a +→b =→b +→a加法结合律:(→a +→b )+→c =→a +(→b +→c )减法定义:→a −→b =→a +(−→b )数乘交换律:k →a =→ak 数乘结合律:(k 1k 2)→a =k 1(k 2→a )数乘分配律:(k 1+k 2)→a =k 1→a +k 2→a 和 k (→a +→b )=k →a +k →b空间向量的加法和减法可以用三角形法则或平行四边形法则来进行几何表示。
空间向量的数乘可以理解为对向量的长度和方向进行缩放,即数乘后的向量与原向量平行,长度为原长度与数乘因子的乘积,方向由数乘因子的正负决定。
例如,2→a 是 →a 的两倍长且同方向的向量,−12→b 是 →b 的一半长且反方向的向量。
二、空间坐标系和空间向量的坐标表示2.1 空间直角坐标系为了在空间中确定任意一点或任意一个向量的位置,我们需要建立一个参照系。
在数学中,我们常用空间直角坐标系来作为参照系。
空间直角坐标系由三条互相垂直且相交于原点 O 的坐标轴组成,分别称为 x 轴、y 轴和 z 轴。
空间向量的基本定理1. 引言空间向量是线性代数中的重要概念,它在物理、工程学和计算机科学等领域有着广泛的应用。
空间向量的基本定理是线性代数中一个重要的定理,它描述了空间向量之间的关系和运算规律。
本文将介绍空间向量的定义、性质以及基本定理的证明过程。
2. 空间向量的定义在三维空间中,我们可以用一个由三个实数构成的有序三元组表示一个向量。
设有两个向量a和b,它们分别表示为:a = (a1, a2, a3) b = (b1, b2, b3) 这里a1, a2, a3, b1, b2, b3是实数。
3. 向量的加法和数乘对于两个向量a和b,可以定义它们之间的加法和数乘运算: - 加法:两个向量相加得到一个新的向量,其每个分量等于对应分量相加。
- 数乘:将一个实数与一个向量相乘得到一个新的向量,其每个分量等于原来向量对应分量与实数相乘。
4. 空间向量的性质空间向量具有以下性质: - 交换律:a + b = b + a - 结合律:(a + b) + c =a + (b + c) - 零向量:存在一个特殊的向量,称为零向量,记作0,满足任何向量与零向量相加等于自身。
- 加法逆元:对于任意向量a,存在一个特殊的向量,称为其加法逆元,记作-a,满足a + (-a) = 0 - 数乘结合律:(k1k2)a = k1(k2a) - 数乘分配律1:(k1+k2)a = k1a + k2a - 数乘分配律2:k(a+b) = k a + k b5. 空间向量的基本定理空间向量的基本定理描述了两个关于空间向量的重要结果: ### 定理一对于任意两个空间向量, a, b, 满足下列条件: - 向量, a, 和, b, 不共线; - 向量, a, 和, b, 不平行;那么这两个非零空间向量之和不为零。
证明如下:假设, a, 和, b, 不共线且不平行,即它们不在同一直线上,也不平行于同一直线。
那么可以找到一个平面,这个平面同时包含向量, a, 和向量, b。