苏州市工业园区2019年七年级(下)期末数学试题(含答案)
- 格式:doc
- 大小:387.50 KB
- 文档页数:9
2019年七年级数学下期末第一次模拟试题(附答案)一、选择题1.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20oB .30oC .40oD .60o2.下面不等式一定成立的是( ) A .2a a < B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b >3.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°4.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A .喜欢乒乓球的人数(1)班比(2)班多B .喜欢足球的人数(1)班比(2)班多C .喜欢羽毛球的人数(1)班比(2)班多D .喜欢篮球的人数(2)班比(1)班多5.如图,在平面直角坐标系xOy 中,点P(1,0).点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位至点P 3,第4次向右跳动3个单位至点P 4,第5次又向上跳动1个单位至点P 5,第6次向左跳动4个单位至点P 6,….照此规律,点P 第100次跳动至点P 100的坐标是( )A .(﹣26,50)B .(﹣25,50)C .(26,50)D .(25,50)6.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .327.不等式组3(1)112123x x x x -->-⎧⎪--⎨≤⎪⎩的解集在数轴上表示正确的是( )A .B .C .D .8.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A .(2,1)B .(﹣2,﹣1)C .(﹣2,1)D .(2,﹣1)9.在平面直角坐标系中,点B 在第四象限,它到x 轴和y 轴的距离分别是2、5,则点B 的坐标为( ) A .()5,2-B .()2,5-C .()5,2-D .()2,5--10.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,011.若x <y ,则下列不等式中不成立的是( ) A .x 1y 1-<-B .3x 3y <C .x y 22< D .2x 2y -<-12.如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=44°,则∠2等于( )A .56°B .36°C .44°D .46°二、填空题13.若264a =,则3a =______. 14.如果不等式组213(1)x x x m ->-⎧⎨⎩<的解集是x <2,那么m 的取值范围是_____15.已知点P (3﹣m ,m )在第二象限,则m 的取值范围是____________________. 16.关于x 的不等式(3a-2)x<2的解为x >,则a 的取值范围是________17.已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________.18.用不等式表示x 的4倍与2的和大于6,________;此不等式的解集为________.19.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打_____折. 20.比较大小:2313三、解答题21.某运输公司现将一批152吨的货物运往A ,B 两地,若用大小货车15辆,则恰好能一次性运完这批货.已知这两种大小货车的载货能力分别为12吨/辆和8吨/辆,其运往A ,B两地的运费如下表所示: 目的地(车型) A 地(元/辆) B 地(元/辆) 大货车 800 900 小货车400600(1)求这15辆车中大小货车各多少辆.(用二元一次方程组解答)(2)现安排其中的10辆货车前往A 地,其余货车前往B 地,设前往A 地的大货车为x 辆,前往A ,B 两地总费用为w 元,试求w 与x 的函数解析式.22.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图. 学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为 份,“严加干涉”部分对应扇形的圆心角度数为 ; (2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?23.若关于x,y 的方程组2431(1)3mx ny x y x y nx m y +=-=⎧⎧⎨⎨+=+-=⎩⎩与有相同的解.(1)求这个相同的解; (2)求m 、n 的值.24.点C ,B 分别在直线MN ,PQ 上,点A 在直线MN ,PQ 之间,//MN PQ .(1)如图1,求证:A MCA PBA ∠=∠+∠;(2)如图2,过点C 作//CD AB ,点E 在PQ 上,ECM ACD ∠=∠,求证:A ECN ∠=∠;(3)在(2)的条件下,如图3,过点B 作PQ 的垂线交CE 于点F ,ABF ∠的平分线交AC 于点G ,若DCE ACE ∠=∠,32CFB CGB ∠=∠,求A ∠的度数.25.已知AB CD ∥,CE 平分ACD ∠,交AB 于点E ,128∠=︒,求A ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据内错角相等,两直线平行,得AB ∥CE ,再根据性质得∠B=∠3. 【详解】 因为∠1=∠2, 所以AB ∥CE 所以∠B=∠3=30o故选B 【点睛】熟练运用平行线的判定和性质.2.D解析:D 【解析】 【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案. 【详解】A. 当0a ≤时,2aa ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误;C. 若a b >,当0c d =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确; 故选D . 【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.3.A解析:A 【解析】试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .考点:平行线的性质.4.C解析:C 【解析】 【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出. 【详解】解:A 、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误; B 、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误; C 、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确; D 、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误. 故选C. 【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.5.C解析:C 【解析】 【分析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100250÷=,其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到100P 的横坐标.【详解】解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到:n P 的横坐标为41n ÷+(n 是4的倍数).故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标为()26,50. 故选:C . 【点睛】本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.6.A解析:A 【解析】分析:由S △ABC =9、S △A′EF =4且AD 为BC 边的中线知S △A′DE =12S△A′EF =2,S △ABD =12S △ABC =92,根据△DA′E ∽△DAB 知2A DE ABD S A D AD S ''=V V (),据此求解可得. 详解:如图,∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C', ∴A′E ∥AB , ∴△DA′E ∽△DAB ,则2A DE ABDS A D AD S ''=V V (),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.7.B解析:B 【解析】 【分析】首先解两个不等式求出不等式组解集,然后将解集在数轴上的表示出来即可. 【详解】解:3(1)112123x x x x -->-⎧⎪⎨--≤⎪⎩①②,解不等式①得:x <2, 解不等式②得:x≥-1, 在数轴上表示解集为:,故选:B. 【点睛】本题考查了解一元一次不等式组及在数轴上表示不等式组解集,解题关键是熟练掌握确定不等式组解集的方法:同大取大、同小取小、大小小大中间找、大大小小无解了.8.C解析:C【解析】分析:让A 点的横坐标减3,纵坐标加2即为点B 的坐标. 详解:由题中平移规律可知:点B 的横坐标为1-3=-2;纵坐标为-1+2=1, ∴点B 的坐标是(-2,1). 故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.9.A解析:A 【解析】 【分析】先根据点B 所在的象限确定横纵坐标的符号,然后根据点B 与坐标轴的距离得出点B 的坐标. 【详解】∵点B 在第四象限内,∴点B 的横坐标为正数,纵坐标为负数 ∵点B 到x 轴和y 轴的距离分别是2、5 ∴横坐标为5,纵坐标为-2 故选:A 【点睛】本题考查平面直角坐标系中点的特点,在不同象限内,坐标点横纵坐标的正负是不同的: 第一象限内,则横坐标为正,纵坐标为正; 第二象限内,则横坐标为负,纵坐标为正; 第三象限内,则横坐标为负,纵坐标为负; 第四象限内,则横坐标为正,纵坐标为负.10.B解析:B 【解析】 【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论. 【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0. 故选: B. 【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.11.D解析:D【解析】【分析】利用不等式的基本性质判断即可.【详解】若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则x2<y2,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选D.【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.12.D解析:D【解析】解:∵直线l1∥l2,∴∠3=∠1=44°.∵l3⊥l4,∠2=90°-∠3=90°-44°=46°.故选D.二、填空题13.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数解析:±2【解析】【分析】根据平方根、立方根的定义解答.【详解】解:∵264a ,∴a=±8.3a2故答案为±2【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数.. 14.m≥2【解析】【分析】先解第一个不等式再根据不等式组的解集是x<2从而得出关于m的不等式解不等式即可【详解】解:解第一个不等式得x<2∵不等式组的解集是x<2∴m≥2故答案为m≥2【点睛】本题是已知解析:m≥2.【解析】【分析】先解第一个不等式,再根据不等式组()2131x xx m⎧->-⎨<⎩的解集是x<2,从而得出关于m的不等式,解不等式即可.【详解】解:解第一个不等式得,x<2,∵不等式组()2131x xx m⎧->-⎨<⎩的解集是x<2,∴m≥2,故答案为m≥2.【点睛】本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.15.m>3【解析】试题分析:因为点P在第二象限所以解得:考点:(1)平面直角坐标;(2)解不等式组解析:m>3.【解析】试题分析:因为点P在第二象限,所以,30{mm-<>,解得:考点:(1)平面直角坐标;(2)解不等式组16.x<23【解析】【分析】根据已知不等式的解集确定出a的范围即可【详解】∵关于x的不等式(3a-2)x<2的解为x>23a-2∴3a-2<0解得:a<23故答案为:a<23【点睛】此题考查了解一元一次解析:x<【解析】【分析】根据已知不等式的解集确定出a的范围即可.【详解】∵关于x的不等式(3a-2)x<2的解为x>,∴3a-2<0,解得:a <,故答案为:a <【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.17.-3【解析】分析:解出已知方程组中xy的值代入方程x+2y=k即可详解:解方程组得代入方程x+2y=k得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义解析:-3【解析】分析:解出已知方程组中x,y的值代入方程x+2y=k即可.详解:解方程组236x yx y+=⎧⎨-=⎩,得33 xy⎧⎨-⎩==,代入方程x+2y=k,得k=-3.故本题答案为:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组.18.4x+2>6x>1【解析】【分析】根据x的4倍与2的和大于6可列出不等式进而求解即可【详解】解:由题意得4x+2>6移项合并得:4x>4系数化为1得:x>1故答案为:4x+2>6x>1【点睛】本题主解析:4x+2>6x>1【解析】【分析】根据x的4倍与2的和大于6可列出不等式,进而求解即可.【详解】解:由题意得,4x+2>6,移项、合并得:4x>4,系数化为1得:x>1,故答案为:4x+2>6,x >1.【点睛】本题主要考查列一元一次不等式,解题的关键是抓住关键词语,弄清运算的先后顺序和不等关系,列出不等式.19.【解析】【分析】本题可设打x 折根据保持利润率不低于5可列出不等式:解出x 的值即可得出打的折数【详解】设可打x 折则有解得即最多打7折故答案为7【点睛】考查一元一次不等式的应用读懂题目找出题目中的不等关 解析:【解析】【分析】本题可设打x 折,根据保持利润率不低于5%,可列出不等式:12008008005%10x ,⨯-≥⨯ 解出x 的值即可得出打的折数. 【详解】 设可打x 折,则有12008008005%10x ,⨯-≥⨯ 解得7.x ≥即最多打7折.故答案为7.【点睛】考查一元一次不等式的应用,读懂题目,找出题目中的不等关系,列出不等式是解题的关键. 20.<【解析】试题解析:∵∴∴解析:<【解析】试题解析:∵∴三、解答题21.(1)中大货车用8辆,小货车用7辆;(2)w =100x +9400(3≤x ≤8,且x 为整数).【解析】【分析】(1)根据表格列出二元一次方程,再根据二元一次方程的解法计算即可.(2)根据费用的计算,列出费用和大货车x 的关系即可.【详解】(1)设大货车用x 辆,小货车用y 辆,根据题意得:15128152x y x y +=⎧⎨+=⎩, 解得:87x y =⎧⎨=⎩. 故这15辆车中大货车用8辆,小货车用7辆.(2)设前往A 地的大货车为x 辆,前往A ,B 两地总费用为w 元,则w 与x 的函数解析式:w =800x +900(8﹣x )+400(10﹣x )+600[7﹣(10﹣x )]=100x +9400(3≤x ≤8,且x 为整数).【点睛】本题主要考查二元一次方程组的应用,关键在于设出合适的未知数,再根据条件列出方程.22.(1)120,30°;(2)答案见解析;(3)1375人.【解析】【分析】(1)根据“从来不管”的人数和百分比求出总份数,根据总份数和严加干涉的分数求出百分比,然后计算圆心角的度数;(2)根据总分数求出稍加询问的人数,然后补全统计图;(3)根据题意求出“从来不管”和“稍加询问”的百分比求出全校的人数.【详解】解:(1)30÷25%=120(人) 10÷120×360°=30°故答案为:120,30°(2)如图所示:(3)1500×3080120+=1375(人) 则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.23.(1)21x y =⎧⎨=-⎩;(2)m=6,n=4 【解析】【分析】先解关于x,y 的方程组,再代入其他方程,再解关于m,n 的方程组.【详解】解:(1)由13x y x y +=⎧⎨-=⎩得, 21x y =⎧⎨=-⎩ , (2)把21x y =⎧⎨=-⎩代入含有m,n 的方程,得 224213m n n m -=⎧⎨-+=⎩ , 解得64m n =⎧⎨=⎩【点睛】本题考核知识点:解方程组.解题关键点:熟练解方程组.24.(1)证明见解析;(2)证明见解析;(3)∠A=72°.【解析】【分析】(1)根据题意过点A 作平行线AD//MN ,证出三条直线互相平行并由平行得出与ACM ∠和ABP ∠相等的角即可得出结论;(2)由题意利用垂直线定义以及三角形内角和为180°进行分析即可证得A ECN ∠=∠; (3)根据题意设MCA ACE ECD x ∠=∠=∠=,由(1)列出关系式2702CFB x ∠=︒-和11352CGB x ∠=︒-,解出方程进而得出结论. 【详解】证明:(1)过点A 作平行线AD//MN ,∵AD//MN ,//MN PQ ,∴AD//MN//PQ,∴,MCA DAC PBA DAB ∠=∠∠=∠,∴A DAC DAB MCA PBA ∠=∠+∠=∠+∠.(2)∵//CD AB∴180A ACD ∠+∠=︒∵180ECM ECN ∠+∠=︒又ECM ACD ∠=∠∴A ECN ∠=∠(3)证得MCA ACE ECD ∠=∠=∠ ABP NCD ∠=∠设MCA ACE ECD x ∠=∠=∠=由(1)可知CFB FCN FBQ ∠=∠+∠列出关系式2702CFB x ∠=︒-由(1)可知CGB MCG GBP ∠=∠+∠ 列出关系式11352CGB x ∠=︒- 312702(135)22x x -=︒- 解得:54x =︒结论:72A ∠=︒【点睛】本题考查平行线的性质与判定,结合平行线的性质与判定运用数形结合思维分析是解题的关键.25.124A ∠=︒.【解析】【分析】首先根据角平分线的性质可得∠ACE=∠DCE ,再根据平行线的性质可得∠AEC=∠ECD ,∠A+∠ACD=180°,进而得到∠A 的度数.【详解】解:∵CE 平分∠ACD 交AB 于E ,∴∠ACD=2∠DCE ,∵AB ∥CD ,128∠=︒∴∠ECD=128∠=︒,∴∠ACD=56°,∵AB ∥CD ,∴180********A ACD ∠=︒-∠=︒-︒=︒.【点睛】此题考查平行线的性质,解题关键是掌握平行线的性质定理.。
2019-2020学年江苏省无锡市江阴市七年级第二学期期末数学试卷一、选择题1.下列运算正确的是()A.(x3)4=x7B.x2•x3=x5C.x4÷x=x4D.x+x2=x32.若a<b,则下列不等式一定成立的是()A.a+2c<b+2c B.2c﹣a<2c﹣b C.a+2c>b+2c D.2ac<2bc3.下列各式从左到右的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2﹣y2=(x+y)(x﹣y)C.x2﹣2x+1=x(x﹣2)+1D.x2+y2=(x+y)24.如图,点B、C、D在同一直线上,AB∥CE,若∠A=55°,∠ACB=65°,则∠1的值为()A.80°B.65°C.60°D.55°5.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形6.下列各式计算正确的是()A.(x+y)2=x2+y2B.(x+3)(x﹣3)=x2﹣3C.(m﹣n)(n﹣m)=n2﹣m2D.(x﹣y)2=(y﹣x)27.不等式3x<﹣4(x﹣6)的正整数解的个数为()A.1个B.2个C.3个D.4个8.给出下列4个命题:①四边形的内角和等于外角和;②有两个角互余的三角形是直角三角形;③若|x|=2,则x=2;④同旁内角的平分线互相垂直.其中真命题的个数为()A.1个B.2个C.3个D.4个9.某校春季运动会比赛中,七年级(1)班、(2)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(2)班得分比为2:1;乙同学说:(1)班得分比(2)班得分多38分.若设(1)班得x分,(2)班得y分,根据题意所列的方程组应为()A.B.C.D.10.如图,长方形ABCD中,AB=3cm,BC=2cm,点P从A出发,以1cm/s的速度沿A →B→C运动,最终到达点C,在点P运动了3秒后点Q开始以2cm/s的速度从D运动到A,在运动过程中,设点P的运动时间为t,则当△APQ的面积为2cm2时,t的值()A.2或B.2或C.1或D.1或二、填空题(本大题共8小题,每小题2分,共16分)11.水珠不断地滴在石头上,形成小洞,平均每年小洞增加的深度约为0.00096m,数据0.00096用科学记数法可表示为.12.若a m=2,a n=3,则a m+n的值是.13.写出二元一次方程x+3y=11的一个整数解.14.命题“如果ab=0,则a=0”的逆命题是.15.△ABC两边a=3,b=6,则第三边c的取值范围为.16.若x,y互为相反数,且3x﹣y=4,则xy的值为.17.在一个多边形中,小于120度的内角最多有个.18.已知关于x的不等式组(a为整数)的所有整数解的和S满足21.6≤S <33.6,则所有这样的a的和为.三、解答题(本大题共8小题,共64分.解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)(﹣1)2020+(3﹣π)0﹣()﹣1;(2)a2•a4+a8÷a2﹣(﹣2a2)3.20.把下面各式分解因式:(1)x2﹣4xy+4y2;(2)3a3﹣27a.21.(1)解方程组(2)解不等式组22.先化简,再求值:(2x+y)2﹣(3x﹣y)2+5(x+y)(x﹣y),其中x=,y=2.23.在正方形网格中,△ABC的位置如图所示.将△ABC平移,点C恰好落在C'处.(1)请画出平移后的△A'B'C',其中,A'、B'分别为A、B的对应点;(2)若图中每个小正方形的边长都为1,则△A'B'C'的面积为;(3)在线段MN上是否存在格点P,使得△PA'B'的面积是△PA'C'面积的2倍,若存在,请画出所有这样的格点P1、P2、…,若不存在,请说明理由.24.如图,△ABC中,D为BC上一点,∠C=∠BAD,△ABC的角平分线BE交AD于点F.(1)求证:∠AEF=∠AFE;(2)G为BC上一点,当FE平分∠AFG且∠C=30°时,求∠CGF的度数.25.某公司有甲、乙两个口罩生产车间,甲车间每天生产普通口罩6万个,N95口罩2.2万个.乙车间每天生产普通口罩和N95口罩共10万个,且每天生产的普通口罩比N95口罩多6万个.(1)求乙车间每天生产普通口罩和N95口罩各多少万个?(2)现接到市防疫指挥部要求:需要该公司提供至少156万个普通口罩和尽可能多的N95口罩.因受原料和生产设备的影响,两个车间不能同时生产,且当天只能确保一个车间的生产.已知该公司恰好用20天完成防疫指挥部下达的任务.问:①该公司至少安排乙车间生产多少天?②该公司最多能提供多少个N95口罩?26.如图,直角三角形纸片ABC中,∠C=90°,将纸片沿EF折叠,使得A点落在BC 上点D处,连接DE,DF.△CDE中有两个内角相等.(1)若∠A=50°,求∠BDF的度数;(2)若△BDF中也有两个内角相等,求∠B的度数.参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.下列运算正确的是()A.(x3)4=x7B.x2•x3=x5C.x4÷x=x4D.x+x2=x3解:∵(x3)4=x12≠x7,x2•x3=x5,x4÷x=x3≠x4,x+x3≠x4,∴选项B正确.故选:B.2.若a<b,则下列不等式一定成立的是()A.a+2c<b+2c B.2c﹣a<2c﹣b C.a+2c>b+2c D.2ac<2bc解:A、∵a<b,∴a+2c<b+2c,原变形一定成立,故此选项符合题意;B、∵a<b,∴2c﹣a>2c﹣b,原变形不成立,故此选项不符合题意;C、∵a<b,∴a+2c<b+2c,原变形不成立,故此选项不符合题意;D、∵a<b,∴2ac<2bc(c>0)或2ac=2bc(c=0)或2ac>2bc(c<0),原变形不一定成立,故此选项不符合题意;故选:A.3.下列各式从左到右的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2﹣y2=(x+y)(x﹣y)C.x2﹣2x+1=x(x﹣2)+1D.x2+y2=(x+y)2解:A、(x+1)(x﹣1)=x2﹣1,属于整式的乘法运算,故本选项错误;B、x2﹣y2=(x+y)(x﹣y),符合因式分解的定义,故本选项正确;C、x2﹣2x+1=x(x﹣2)+1,不符合因式分解的定义,故本选项错误;D、x2+2xy+y2=(x+y)2,因式分解的过程错误,故本选项错误;故选:B.4.如图,点B、C、D在同一直线上,AB∥CE,若∠A=55°,∠ACB=65°,则∠1的值为()A.80°B.65°C.60°D.55°解:如图,∵∠A=55°,∠ACB=65°,∴∠B=180°﹣55°﹣65°=60°.∵AB∥CE,∴∠1=∠B=60°.故选:C.5.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.6.下列各式计算正确的是()A.(x+y)2=x2+y2B.(x+3)(x﹣3)=x2﹣3 C.(m﹣n)(n﹣m)=n2﹣m2D.(x﹣y)2=(y﹣x)2解:A.(x+y)2=x2++2xy+y2,故本选项不合题意;B.(x+3)(x﹣3)=x2﹣9,故本选项不合题意;C.(m﹣n)(n﹣m)=﹣n2+2mn﹣m2,故本选项不合题意;D.(x﹣y)2=(y﹣x)2,正确.故选:D.7.不等式3x<﹣4(x﹣6)的正整数解的个数为()A.1个B.2个C.3个D.4个解:3x<﹣4(x﹣6),3x<﹣4x+24,7x<24,x<故正整数解有3,2,1共3个,故选:C.8.给出下列4个命题:①四边形的内角和等于外角和;②有两个角互余的三角形是直角三角形;③若|x|=2,则x=2;④同旁内角的平分线互相垂直.其中真命题的个数为()A.1个B.2个C.3个D.4个解:①四边形的内角和和外角和都是360°,∴四边形的内角和等于外角和,是真命题;②有两个角互余的三角形是直角三角形,是真命题;③若|x|=2,则x=±2,本说法是假命题;④两直线平行时,同旁内角的平分线互相垂直,本说法是假命题;故选:B.9.某校春季运动会比赛中,七年级(1)班、(2)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(2)班得分比为2:1;乙同学说:(1)班得分比(2)班得分多38分.若设(1)班得x分,(2)班得y分,根据题意所列的方程组应为()A.B.C.D.解:设(1)班得x分,(2)班得y分,由题意可得,,即,故选:D.10.如图,长方形ABCD中,AB=3cm,BC=2cm,点P从A出发,以1cm/s的速度沿A →B→C运动,最终到达点C,在点P运动了3秒后点Q开始以2cm/s的速度从D运动到A,在运动过程中,设点P的运动时间为t,则当△APQ的面积为2cm2时,t的值()A.2或B.2或C.1或D.1或解:∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC=2cm,分两种情况:①点P在AB上时,点Q在D处,如图1所示:∵△APQ的面积为2cm2,∴×t×2=2,解得:t=2;②点P在BC上时,如图2所示:∵△APQ的面积为2cm2,∴×AQ×3=2,解得:AQ=,∴DQ=AD﹣AQ=2﹣==2(t﹣3),解得:t=;综上所述,当△APQ的面积为2cm2时,t的值为2或;故选:A.二、填空题(本大题共8小题,每小题2分,共16分)11.水珠不断地滴在石头上,形成小洞,平均每年小洞增加的深度约为0.00096m,数据0.00096用科学记数法可表示为9.6×10﹣4.解:0.00096=9.6×10﹣4.故答案为:9.6×10﹣4.12.若a m=2,a n=3,则a m+n的值是6.解:a m+n=a m•a n=2×3=6.故答案为:6.13.写出二元一次方程x+3y=11的一个整数解(答案不唯一).解:当x=8时,8+3y=11,∴y=1.故是方程x+3y=11的一个整数解;当x=5时,5+3y=11,∴y=2.故是方程x+3y=11的一个整数解;…由于二元一次方程有无数个整数解,所以答案不唯一.故答案为:(答案不唯一).14.命题“如果ab=0,则a=0”的逆命题是如果a=0,则ab=0.解:命题“如果ab=0,则a=0”的逆命题是“如果a=0,则ab=0”,故答案为:如果a=0,则ab=0.15.△ABC两边a=3,b=6,则第三边c的取值范围为3<c<9.解:∵△ABC两边a=3,b=6,∴根据三角形的三边关系,得:6﹣3<c<3+6,即:3<c<9.故答案为:3<c<9.16.若x,y互为相反数,且3x﹣y=4,则xy的值为﹣1.解:∵x,y互为相反数,∴x+y=0,即x=﹣y,∵3x﹣y=4,∴﹣3y﹣y=4,解得y=﹣1,∴x=1,∴xy=﹣1×1=﹣1.故答案为﹣1.17.在一个多边形中,小于120度的内角最多有5个.解:∵多边形的内角小于120°,∴外角大于60°,∴这个多边形小于120°的内角的个数<360°÷60°=6,∴在一个多边形中,小于120度的内角最多有5个.故答案为:5.18.已知关于x的不等式组(a为整数)的所有整数解的和S满足21.6≤S <33.6,则所有这样的a的和为5.解:,∵解不等式①得:x>a﹣1,解不等式②得:x≤a+5,∴不等式组的解集为a﹣1<x≤a+5,∴不等式组的整数解a,a+1,a+2,a+3,a+4,a+5,∵所有整数解的和S满足21.6≤S<33.6,∴21.6≤6a+15≤33.6,∴1.1≤a≤3.1,∴a的值为2,3,∴2+3=5,故答案为5.三、解答题(本大题共8小题,共64分.解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)(﹣1)2020+(3﹣π)0﹣()﹣1;(2)a2•a4+a8÷a2﹣(﹣2a2)3.解:(1)(﹣1)2020+(3﹣π)0﹣()﹣1=1+1﹣2=0;(2)a2•a4+a8÷a2﹣(﹣2a2)3=a6+a6+8a6=10a6.20.把下面各式分解因式:(1)x2﹣4xy+4y2;(2)3a3﹣27a.解:(1)原式=(x﹣2y)2;(2)原式=3a(a2﹣9)=3a(a+3)(a﹣3).21.(1)解方程组(2)解不等式组解:(1),②﹣①×2,得:x=6,将x=6代入①,得:6+2y=0,解得y=﹣3,则;(2)解不等式x﹣2(x﹣1)≥2,得:x≤0,解不等式>x﹣1,得:x<2,则不等式组的解集为x≤0.22.先化简,再求值:(2x+y)2﹣(3x﹣y)2+5(x+y)(x﹣y),其中x=,y=2.解:原式=4x2+4xy+y2﹣(9x2﹣6xy+y2)+5(x2﹣y2)=4x2+4xy+y2﹣9x2+6xy﹣y2+5x2﹣5y2=10xy﹣5y2,当x=,y=2时,原式=10××2﹣5×22=10﹣20=﹣10.23.在正方形网格中,△ABC的位置如图所示.将△ABC平移,点C恰好落在C'处.(1)请画出平移后的△A'B'C',其中,A'、B'分别为A、B的对应点;(2)若图中每个小正方形的边长都为1,则△A'B'C'的面积为;(3)在线段MN上是否存在格点P,使得△PA'B'的面积是△PA'C'面积的2倍,若存在,请画出所有这样的格点P1、P2、…,若不存在,请说明理由.【解答】解:(1)如图所示;(2)△A'B'C'的面积为:3×4﹣2×1﹣4×1×3×3=,故答案为:;(3)存在,如图所示,点即为所求P1、P2.24.如图,△ABC中,D为BC上一点,∠C=∠BAD,△ABC的角平分线BE交AD于点F.(1)求证:∠AEF=∠AFE;(2)G为BC上一点,当FE平分∠AFG且∠C=30°时,求∠CGF的度数.解:(1)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABF+∠BAD=∠CBE+∠C,∵∠AFE=∠ABF+∠BAD,∠AEF=∠CBE+∠C,∴∠AEF=∠AFE;(2)∵FE平分∠AFG,∴∠AFE=∠GFE,∵∠AEF=∠AFE,∴∠AEF=∠GFE,∴FG∥AC,∵∠C=30°,∴∠CGF=180°﹣∠C=150°.25.某公司有甲、乙两个口罩生产车间,甲车间每天生产普通口罩6万个,N95口罩2.2万个.乙车间每天生产普通口罩和N95口罩共10万个,且每天生产的普通口罩比N95口罩多6万个.(1)求乙车间每天生产普通口罩和N95口罩各多少万个?(2)现接到市防疫指挥部要求:需要该公司提供至少156万个普通口罩和尽可能多的N95口罩.因受原料和生产设备的影响,两个车间不能同时生产,且当天只能确保一个车间的生产.已知该公司恰好用20天完成防疫指挥部下达的任务.问:①该公司至少安排乙车间生产多少天?②该公司最多能提供多少个N95口罩?解:(1)设乙车间每天生产普通口罩x万个,乙车间每天生产N95口罩y万个,依题意得:.解得.答:乙车间每天生产普通口罩8万个,乙车间每天生产N95口罩2万个;(2)①设安排乙车间生产m天,则甲车间生产(20﹣m)天,依题意得:8m+6(20﹣m)≥156.解得m≥18.答:该公司至少安排乙车间生产18天.②由题意得,乙车间生产的天数可能是18,19或20天.即有三种生产方案:方案一:乙车间生产18天,甲车间生产2天;方案二:乙车间生产19天,甲车间生产1天;方案三:乙车间生产20天,甲车间生产0天;则生产的N95口罩=2×20=40(个).答:该公司最多能提供40个N95口罩.26.如图,直角三角形纸片ABC中,∠C=90°,将纸片沿EF折叠,使得A点落在BC 上点D处,连接DE,DF.△CDE中有两个内角相等.(1)若∠A=50°,求∠BDF的度数;(2)若△BDF中也有两个内角相等,求∠B的度数.解:(1)∵∠C=90°,且△CDE中有两个内角相等,∴∠CED=∠CDE=45°,∵△EDF是由△EAF翻折得到,∠A=50°,∴∠EDF=∠A=50°,∴∠BDF=180°﹣∠CDE﹣∠EDF=180°﹣45°﹣50°=85°;(2)设∠EDF=∠EAF=x°,∴∠BDF=180°﹣45°﹣x°=(135﹣x)°,∠B=(90﹣x)°,∴∠BFD=180°﹣(135﹣x)°﹣(90﹣x)°=(2x﹣45)°,∵△BDF中有两个内角相等,可分三种情况讨论:①当∠BDF=∠B时,令135﹣x=90﹣x,则方程无解,∴此情况不成立,舍去;②当∠BFD=∠B时,令2x﹣45=90﹣x,解得x=45,∴∠B=90°﹣45°=45°;③当∠BFD=∠BDF时,令2x﹣45=135﹣x,解得x=60,∴∠B=90°﹣60°=30°,综上所述,若△BDF中也有两个内角相等,则∠B的度数可能为45°或30°.。
2019-2020学年苏州市工业园区七年级下学期期末数学试卷一、选择题(本大题共10小题,共20.0分)1.已知a>b,则下列不等式中错误的是()A. a+2>b+2B. a−5<b−5C. −a<−bD. 4a>4b2.下列长度的三条线段中,能组成三角形的是()A. 3,4,8B. 5,6,11C. 4,6,7D. 4,4,103.无锡的光伏技术不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7mm2,这个数用科学记数法表示为()A. 7×10−6mm2B. 0.7×10−6mm2C. 7×10−7mm2D. 70×10−8mm24.下列计算正确的是()A. (2x)3=6x3B. (a+b)(b−a)=a2−b2x=4x3y D. −(−a3)2=−a6C. 2x2y÷125.若x2−mx+4是完全平方式,则m=()A. 8B. ±8C. 4D. ±46.如图,点P在∠MAN的角平分线上,点B,C分别在AM,AN上,作PR⊥AM,PS⊥AN,垂足分别是R,S.若∠ABP+∠ACP=180°,则下面三个结论:①AS=AR;②PC//AB;③△BRP≌△CSP.其中正确的是()A. ①②B. ②③C. ①③D. ①②③7. 在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC =5,BD =4,有下列结论:①AE//BC ;②∠ADE =∠BDC ;③△BDE 是等边三角形;④△ADE 的周长是9.其中,正确结论的个数是( )A. 1B. 2C. 3D. 4 8. ∠α的余角与∠α的补角之和为120°,∠α的度数是( )A. 60°B. 65°C. 70°D. 75° 9. 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F.若AB =6,BC =4√6,则FD 的长为( )A. 2B. 4C. √6D. 2√310. 如图,点D 是等边△ABC 的边AC 上一点,以BD 为边作等边△BDE ,点C ,E 在BD 同侧,下列结论:①∠ABD =30°;②CE//AB ;③CB 平分∠ACE ;④CE =AD ,其中错误的有( )A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共8小题,共16.0分)11. 点和直线的位置关系:______ 和______ .12. 二元一次方程x +y =2的非负整数解是______ .13. 若m 2=3,m y =5,则m 6−2y 的值是______.14. 已知关于x 、y 的二元一次方程组{ax +by =2bx +ay =7的解是{x =1y =2,那么a +b = ______ . 15. 若x +m 与2−x 的乘积是一个关于x 的二次二项式,则m 的值是______.16. 如果将一图形沿北偏东30°的方向平移2厘米,再沿某方向平移2厘米所得的图形与将原图形向正东方向平移2厘米所得的图形重合,则这一方向应为______ .17. 如图所示,三个圆是同心圆,则图中阴影部分的面积是 。
2019-2020学年江苏省苏州市工业园区七年级(下)期末数学试卷一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上.1.(2分)2﹣1等于()A.2B.﹣2C.D.﹣2.(2分)新型冠状病毒的平均直径约为0.00000012m,用科学记数法表示该数据为()A.1.2×10﹣8B.1.2×10﹣7C.12×10﹣8D.1.2×1073.(2分)下列各式计算正确的是()A.a2+2a3=3a5B.a•a2=a3C.a6÷a2=a3D.(a2)3=a5 4.(2分)已知三角形的两边长分别为3和5,则此三角形的周长不可能是()A.11B.13C.15D.175.(2分)如图,已知∠ABC=∠DCB.添加一个条件后,可得△ABC≌△DCB,则在下列条件中,不能添加的是()A.AC=DB B.AB=DC C.∠A=∠D D.∠ABD=∠DCA 6.(2分)如图,a∥b,将直角三角尺的两个锐角顶点分别落在a、b上.若∠1=70°,则∠2等于()A.10°B.15°C.20°D.30°7.(2分)若多项式9x2﹣mx+16是一个完全平方式,则m的值为()A.±24B.±12C.24D.128.(2分)已知方程组,则(x+y)(x﹣y)的值为()A.16B.﹣16C.2D.﹣29.(2分)对有理数x,y定义运算:x※y=ax+by,其中a,b是常数.如果2※(﹣1)=﹣4,3※2>1,那么a,b的取值范围是()A.a<﹣1,b>2B.a>﹣1,b<2C.a<﹣1,b<2D.a>﹣1,b>2 10.(2分)将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于()A.10°B.15°C.20°D.35°二、填空题:本大题共8小题,每小题2分,共16分。
2019年七年级下册数学期末总复习期末总复习模拟测试题一、选择题1.下列各式,是完全平方式的为( )①2244a ab b -+;②2242025x xy y ++;③4224816x x y y --;④42212a a a ++. A .①、③ B . ②、④ C . ①、② D .③、④2.用平方差公式计算2(1)(1)(1)x x x -++的结果正确的是( )A .4(1)x -B .41x +C .41x -D .4(1)x +3.从一 副扑克牌(除去大小王)中任取一张,抽到的可能性较小的是( )A .红桃B .6C .黑桃8D .梅花6或84. 如图,一只小狗在方砖上走来走去,则最终停在阴影方砖上的概率是( )A . 415B .13C . 15D .2155.一列列车自 2004年全国铁路第 5次大提速后,速度提高了26 km/h ,现在该列车从甲站 到乙站所用的时间比原来减少了1h ,已知甲、乙两站的路程是312 km ,若设列车提速前的速度是x (km/h ),则根据题意所列方程正确的是( )A .312312126x x -=+B .312312126x x-=+ C .312312126x x -=- D .312312126xχ-=- 6.若分式434x +的值为 1,则x 的取值应是( ) A .2 B .1 C .0 D . -17.下列各图中,是轴对称图案的是( )A .B .C .D .8.计算x 10÷x 4×x 6的结果是( )A .1B .0C .x 12D .x 369.如图,将四边形AEFG 变换到四边形ABCD,其中E 、G 分别是AB 、AD 的中点.下列叙述不正确的是( )A .这种变换是相似变换B .对应边扩大原来的2倍C .各对应角角度不变D .面积扩大到原来的2倍10.222(3)()(6)3a ab b -⋅⋅的计算结果为( ) A . 2472a b - B . 2412a b - C . 2412a b D . 2434a b11.把△ABC 先向左平移1 cm ,再向右平移2 cm ,再向左平移3 cm 。
2019年七年级数学下册期末压轴题专练1.如图1,将线段AB 平移至 DC,使点 A与点 D对应,点 B与点 C对应,连接 AD,BC.(1)填空:AB 与CD的位置关系为_______,BC与 AD的位置关系为_________.(2)点 E,G都在直线CD上,∠AGE=∠GAE,AF平分∠DAE 交直线 CD于F.①如图2,若G,E为射线 DC上的点,∠FAG=30°,求∠B的度数;②如图3,若 G,E为射线 CD上的点,∠FAG=α,求∠C的度数.2.已知:如图1,射线AB∥CD,∠CAB的角平分线交射线CD于点P1.(1)若∠C=50°,求∠AP1C的度数.(2)如图1,作∠P1AB的角平分线交射线CD于点P2.猜想∠AP1C与∠AP2C的数量关系,并说明理由.(3)如图2,在(2)的条件下,依次作出∠P2AB的角平分线AP3.∠P3AB的角平分线AP4,……“∠P n-1AB 的角平分线AP n.其中点P3,P4…,P n-1P n都在射线CD上,若∠AP n C=x,直接写出∠C的度数(用含x的代数式表示).3.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.4.已知BC∥OA,∠B=∠A=100°.试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.试求∠EOC的度数;(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值。
常州市教育学会学业水平监测七年级数学试题一、选择题(本大题共8小题)1.下列计算中,正确的是()A. B. C. D.2.下列图形中,由,能得到的是()A. B.C. D.3.不等式组的解集在数轴上表示正确的是A.B.C.D.4.下列各组线段能组成一个三角形的是A. 4cm,6cm,11cmB. 3cm,4cm,5cmC. 4cm,5cm,1cmD. 2cm,3cm,6cm5.若方程组的解满足,则a的值是()A. 6B. 7C. 8D. 96.下列命题是真命题的是()A. 同旁内角相等,两直线平行B. 若,则C. 如果,那么D. 平行于同一直线的两直线平行7.《九章算术》中有这样的问题:只闻隔壁人分银,不知多少银和人;每人6两少6两,每人半斤多半斤;试问各位善算者,多少人分多少银注:这里的斤是指市斤,1市斤两设共有x人,y两银子,下列方程组中正确的是()A. B. C. D.8.若关于x的不等式组所有整数解的和是10,则m的取值范围是()A. B. C. D.二、填空题(本大题共8小题)9.计算:.10.分解因式:.11.生物具有遗传多样性,遗传信息大多储存在DNA分子上一个DNA分子的直径约为,这个直径用科学记数法可表示为________cm.12.写出命题“互为倒数的两个数乘积为1”的逆命题:_______________________________________.13.若,,则.14.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案需8根火材棒,图案需15根火柴棒,,按此规律,图案需________________根火材棒.15.已知,则n的值是________________.16.如图,已知,,,则________________.三、计算题(本大题共4小题)17.计算:;.18.分解因式:;.19.解方程组和不等式组:20.求代数式的值,其中,,.21.22.23.24.25.26.四、解答题(本大题共5小题)27.如图,已知点E在AB上,CE平分,求证:.28.为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗已知2棵A种树苗和3棵B种树苗共需270元,3棵A种树苗和6棵B种树苗共需480元.、B两种树苗的单价分别是多少元该小区计划购进两种树苗共28棵,总费用不超过1550元,问最多可以购进A种树苗多少棵29.如图,从四边形ABCD的纸片中只剪一刀,剪去一个三角形,剩余的部分是几边形请画出示意图,并在图形下方写上剩余部分多边形的内角和.30.已知关于x、y的方程组求代数式的值;若,,求k的取值范围;若,请直接写出两组x,y的值.31.如图,直线,垂足为O,直线PQ经过点O,且点B在直线l上,位于点O下方,点C在直线PQ上运动连接BC过点C作,交直线MN于点A,连接点A、C与点O都不重合.小明经过画图、度量发现:在中,始终有一个角与相等,这个角是________________;当时,在图中画出示意图并证明;探索和之间的数量关系,并说明理由.常州市教育学会学业水平监测2018.6七年级数学试题答案和解析【答案】1. A2. C3. B4. B5. C6. D7. D8. A9.10.11.12. 如果两个数的乘积为1,那么这两个数互为倒数13. 2214.15. 516.17. 解:原式;原式.18. 解:原式;原式.19. 解:,,得:,将代入,得:,解得:,方程组的解为;,解不等式,得:;解不等式,得:,不等式组的解集为.20. 解:原式,当,,时,原式.21. 证明:平分,,又,,.22. 解:设A种树苗单价为x元,B种树苗单价为y元,根据题意,得,解方程组,得,答:A种树苗单价为60元,B中树苗单为50元.设购进A种树苗m棵,则购进B种树苗棵,根据题意,得,解不等式,得,因为m为整数,所以m的最大值是15,答:最多可以购进A种树苗15棵.23. 解:如图,剩余的部分是三角形,其内角和为,如图,剩余的部分是四边形,其内角和为,如图,剩余的部分是五边形,其内角和为.24. 解:,,得,,把代入,得,,,,,;,,,解得;,.25. 解:如图所示:,,,,,,.如图,设BC与OA相交于点E,在和中,,,又,,;如图,,,在四边形ABCO中,,即和互补,和的数量关系是相等或互补.【解析】1. 【分析】本题主要考查同底数幂的乘法,合并同类项,幂的乘方,同底数数幂的除法掌握法则是解题的关键根据同底数幂的乘法:底数不变,指数相加;合并同类项:把同类项的系数相加,字母和字母的指数不变;幂的乘方:底数不变,指数相乘;同底数幂的除法:底数不变,指数相减是解题的关键.【解答】解:,故A正确;B.,故B错误;C.,故C错误;D.,故D错误.故选A.2. 【分析】此题考查的是平行线的性质,根据两直线平行,同位角相等结合对顶角相等易得答案.【解答】解:由,能得到,故不合题意;B.由,根据两直线平行,内错角相等能得到,故不合题意;C.如图:,,又,.故C合题意;D.观察图形与为同旁内角,由,不能得到,故不合题意.故选C.3. 【分析】本题主要考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,再表示在数轴上即可判断.【解答】解:,解不等式,得,解不等式,刘,所以不等式组的解集为,不等式组的解集在数轴上表示如下:.故选B.4. 【分析】此题考查了三角形的三边关系判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,逐一进行分析即可.【解答】解:,不能组成三角形,故不合题意;B.,能组成三角形,故合题意;C.,不能组成三角形,故不合题意;D.,不能组成三角形,故不合题意;故选B.5. 【分析】此题考查的是二元一次方程组的解法以及二元一次方程组的解和一元一次方程的解法,利用加减消元法解方程组,将x,y的值用含a的代数式表示,将其代入,转化为关于a的一元一次方程求解即可.【解答】解:,,得:,解得:,,得:,解得:,,,解得:.故选C.6. 【分析】本题主要考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理利用平行线的判定定理,绝对值的性质,有理数的乘方进行判断即可.【解答】解:同旁内角互补,两直线平行,故A错误;B.若,则,则B错误;C.如果,,则,故C错误;D.平行于同一直线的两直线平行,故D正确.故选D.7. 【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组根据题意“每人6两少6两,每人半斤多半斤”可以列出相应的方程组,从而得出答案【解答】解:根据题意得:.故选D.8. 【分析】本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,要借助数轴做出正确的取舍首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【解答】解:,由得;由得;故原不等式组的解集为.又因为不等式组的所有整数解的和是,由此可以得到.故选A.9. 【分析】此题考查的是多项式乘多项式用其中一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加即可.【解答】解:.故答案为.10. 【分析】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键直接提取公因式xy进而分解因式得出即可.【解答】解:.故答案为.11. 【分析】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数绝对值小于1的正数也可以利用科学记数法表示,一般形式为与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:.故答案为.12. 【分析】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.【解答】解:命题“互为倒数的两个数乘积为1”的逆命题为如果两个数的乘积为1,那么这两个数互为倒数.故答案为如果两个数的乘积为1,那么这两个数互为倒数.13. 【分析】此题考查的是完全平方公式的灵活应用以及代数式的求值将已知条件中的两边平方,利用完全平方公式变形后整体代入即可求出的值.【解答】解:,,,,.故答案为22.14. 【分析】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化根据图案、、中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒根,令可得答案.【解答】解:图案需火柴棒:8根;图案需火柴棒:根;图案需火柴棒:根;图案n需火柴棒:根.故答案为.15. 【分析】此题考查的是幂的乘方法则的逆用以及同底数幂的乘法法则将已知条件逆用幂的乘法法则变形后根据等式性质即可求解.【解答】解:,,,,解得:.故答案为5.16. 【分析】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出的度数,注意:两直线平行,同位角相等延长ED交BC于F,根据平行线的性质求出,求出,根据三角形外角性质得出,代入求出即可.【解答】解:延长ED交AC于F,如图所示:,,,,,.故答案为.17. 此题考查的是实数的运算以及整式的混合运算熟练掌握相关的运算性质和运算法则是关键.根据零指数幂的性质、实数绝对值的性质以及负整数指数幂的性质化简即可;先根据完全平方公式和平方差公式进行去括号运算,再合并同类项即可.18. 此题主要考查了提公因式法与公式法的综合运用,关键是掌握分解因式的步骤,先提公因式,后用公式法.首先提公因式5m,再利用平方差进行分解即可;首先提公因式3b,再利用完全平方公式进行分解即可.19. 此题考查的是二元一次方程组的解法以及一元一次不等式组的解法熟练掌握解答步骤是关键.利用加减消元法即可求解;先分别求出每个不等式的解集,再找出它们解集的公共部分即可.20. 本题主要考查整式的化简求值掌握法则是解题的关键先根据单项式乘多项式的法则计算,再合并同类项,然后提公因式2y,最后把x、y、z的值代入化简后的代数式计算即可.21. 此题考查的是角平分线的定义以及平行线的判定方法根据角平分线定义可得,结合已知条件利用等量代换得到,利用内错角相等,两直线平行可得答案.22. 本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,列出二元一次方程组;根据总费用不超过1550元,列出关于m的一元一次不等式.设购进A种树苗每棵需要x元,B种树苗每棵需要y元,根据“购进2棵A种树苗与3棵B 种树苗共需270元;购进3棵A种树苗与6棵B种树苗共需480元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;设购进A种树苗m棵,则购进B种树苗棵,根据总费用不超过1550元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,即可得最多可以购进A种树苗的棵数.23. 此题考查的是图形的裁剪与多边形的内角和定理注意分情况讨论过四边形的两个顶点剪一刀,剩余图形为三角形;故其中一个顶点和一条边剪一刀,剩余图形为四边形;过四边形的两边剪一刀,剩余图形为五边形,利用多边形内角和定理分别求其内角和即可.24. 此题考查了解二元一次方程组,一元一次不等式组的解法,同底数幂的乘法解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.先解方程组求出x、y的值,然后根据同底数幂的乘法计算,最后代入计算即可;根据,,列出不等式组,解不等式组求出k的取值范围即可;由,即可得x、y的值.25. 【分析】此题考查的是平行线的判定和性质以及三角形内角和定理的应用通过观察图形结合已知条件联想相关的几何定理找出各角间的关系是关键.通过观察和动手操作易得答案;根据平行线的性质可得,结合已知条件易得,根据同旁内角互补,两直线平行可得答案;分情况讨论根据三角形内角和结合角的和差关系可得答案.【解答】解:经过画图、度量发现:在中,始终有一个角与相等,这个角是.故答案为;见答案;见答案.。
2019-2020学年苏州中学伟长实验部七年级下学期期末数学试卷一、选择题(本大题共10小题,共20.0分)1.下列各式:①(2a+1)(2a−1)=4a2−a−1;②(a−2b)(a+b)=a2−ab+2b2;③(x−2y)(3x+y)=3x2−5xy−2y2;④(m+2)(3m−1)=3m2+6m+12.其中错误的有()A. 1个B. 2个C. 3个D. 4个2.如图,将一条两边沿互相平行的纸带按图折叠,则∠α的度数等于()A. 50°B. 60°C. 75°D. 85°3.等腰三角形一个内角是80°,则另两个角的度数分别是()A. 80°;20°B. 50°;50°或80°;20°C. 50°;50°D. 20°;100°4.下列各组条件中,不能使两个直角三角形全等的是()A. 一条直角边和它的对角分别相等B. 斜边和一条直角边分别相等C. 斜边和一锐角分别相等D. 两个锐角分别相等5.如图,AB=AC,∠A=50°,DE垂直平分AB,则∠DBC的度数是()A. 50°B. 35°C. 25°D. 15°6.下列式子正确的是()A. a2>0B. a2≥0C. (a+1)2>1D. (a−1)2>17.已知等腰三角形的两条边长分别为4和8,则它的周长为()A. 16B. 20C. 16或20D. 148.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:a −b ,x −y ,x +y ,a +b ,x 2−y 2,a 2−b 2分别对应下列六个字:北、爱、我、河、游、美,现将(x 2−y 2)a 2−(x 2−y 2)b 2因式分解,结果呈现的密码信息可能是( )A. 我爱美B. 河北游C. 爱我河北D. 美我河北9.四边形ABCD 中,AD =BC ,BE =DF ,AE ⊥BD ,CF ⊥BD ,垂足分别为E ,F ,则四边形ABCD 一定是( )A. 正方形B. 菱形C. 平行四边形D. 矩形10. 如图,BE ⊥AC 于点D ,且AD =CD ,BD =ED.若∠ABC =72°,则∠E 等于( )A. 18°B. 36°C. 54°D. 72°二、填空题(本大题共10小题,共20.0分)11. 若实数a 、b 满足(4a +4b)(4a +4b −2)−8=0,则a +b =______.12. 课堂上学习了勾股定理后,知道“勾三、股四、弦五”.王老师给出一组数让学生观察:3,4,5;5,12,13;7,24,25;9,40,41;…学生发现这些勾股数的勾都是奇数,且从3起就没有间断过,于是王老师提出以下问题让学生解决. (1)请你根据上述的规律写出下一组勾股数;11,______;(2)若第一个数用字母a(a 为奇数,且a ≥3)表示,那么后两个数用含a 的代数式分别怎么表示?聪明的小明发现每组第二个数有这样的规律4=32−12,12=52−12,24=72−12,……,于是他很快表示了第二数为a 2−12,则用含a 的代数式表示第三个数为______.13. 已知A =x 2−x +1,B =x −2,则2A −3B = ______ .14.若一个等腰三角形的周长是16,则其底边长y与腰长x之间的函数关系式是______(要求注明自变量x的取值范围).15.如图,△ABC为等腰直角三角形,∠ABC=90°,△ADB为等边三角形,则∠ADC=______°.16.如图,在等边△ABC的边AC的延长线上取一点E,以CE为边作等边△CDE,使它与△ABC位于直线AE的同侧.①△ACD≌△BCE;②△ACP≌△BCQ;③△DCP≌△ECQ;④∠ARB=60°;⑤PQ//AE;⑥△CPQ是等边三角形.上述结论正确的有______.17.若关于x的多项式x2−px−6含有因式x−3,则实数p的值为______ .18.如果x2+kx−6可以用十字相乘法因式分解,请你写出一个符合条件的整数k=______ .19.如图,等腰直角△ABC中,∠BAC=90°,AB=AC,D是AC的中点,EC⊥BD于E,交BA的延长线于F,若BF=12,则△FBC的面积为=______.20.如图,AD平分∠BAO,D(0,−3),AB=10,则△ABD的面积为______.三、解答题(本大题共6小题,共60.0分)21.分解因式:(1)ax+bx(2)x4−y4(3)(a+b)2−4a(a+b)+4a222.如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC的三个顶点都在格点上,且直线m、n互相垂直.(1)画出△ABC关于直线n的对称图形△A′B′C′;(2)直线m上存在一点P,使△APB的周长最小;①在直线m上作出该点P;(保留画图痕迹)②△APB的周长的最小值为______.(直接写出结果)23.如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB于点G.求证:CG垂直平分AB.24.阅读下面材料:学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.小聪想:要想解决问题,应该对∠B进行分类研究.∠B可分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当∠B是直角时,如图1,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是锐角时,如图2,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则△ABC和△DEF的关系是______;A.全等B.不全等C.不一定全等第三种情况:当∠B是钝角时,如图3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°,求证:△ABC≌△DEF.25.解下列不等式(组)(1)2x−1≤3x−1 2(2){2x+5<3(x+1) x−12≤x326.已知:如图,点A,F,C,D在同一直线上,AF=DC,AB//DE,AB=DE,连接BC,BF,CE,EF.求证:四边形BCEF是平行四边形.【答案与解析】1.答案:C解析:解:①∵左边=(2a+1)(2a−1)=4a2−1≠右边,∴①错误;②∵左边=(a−2b)(a+b)=a2+ab−2ab−2b2=a2−ab−2b2≠右边,∴②错误;③∵左边=(x−2y)(3x+y)=3x2+xy−6xy−2y2=3x2−5xy−2y2=右边,∴③正确;④∵左边=(m+2)(3m−1)=3m2−m+6m−2=3m2+5m−2≠右边,∴④错误.综上,错误的有3个.故选:C.分别按照平方差公式和多项式乘法的运算法则计算验证即可.本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.2.答案:C解析:解:∵AD//BC,∴∠2=∠1=30°,∴2α+30°=180°,∴α=75°,故选C.由平行线的性质可知∠2=∠1,由折叠的性质可知2α+30°=180°,列方程求解.本题考查了折叠的性质,平行线的性质.3.答案:B解析:解:分情况讨论:=50°;(1)若等腰三角形的顶角为80°时,另外两个内角=180°−80°2(2)若等腰三角形的底角为80°时,它的另外一个底角为80°,顶角为180°−80°−80°=20°.故选:B.已知给出了一个内角是80°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.本题主要考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.4.答案:D解析:解:A、根据AAS或ASA都可以证得这两个直角三角形全等,故本选项不符合题意;B、根据HL可以证得这两个直角三角形全等,故本选项不符合题意;C、根据AAS或ASA都可以证得这两个直角三角形全等,故本选项不符合题意;D、判定两个直角三角形是否全等,必须有边的参与,故本选项符合题意;故选:D.依据全等三角形的判定定理进行判断即可.考查了直角三角形全等的判定,直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.5.答案:D解析:解:∵∠A=50°,AB=AC,(180°−∠A)=65°,∴∠ABC=∠ACB=12又∵DE垂直且平分AB,∴DB=AD,∴∠ABD=∠A=50°,∴∠DBC=∠ABC−∠ABD=65°−50°=15°,即∠DBC的度数是15°.故选:D.已知∠A=50°,AB=AC可得∠ABC=∠ACB,再由线段垂直平分线的性质可求出∠ABC=∠A,易求∠DBC.本题考查的是等腰三角形的性质以及线段垂直平分线的性质.垂直平分线上任意一点,到线段两端点的距离相等.6.答案:B解析:解:a2≥0,A错误;B正确;(a+1)2≥0,C错误;(a−1)2≥0,D错误.根据偶次方具有非负性解答即可.本题考查的是非负数的性质,掌握偶次方具有非负性是解题的关键.7.答案:B解析:解:若4为腰,8为底边,此时4+4=8,不能构成三角形,故4不能为腰; 若4为底边,8为腰,此时三角形的三边分别为4,8,8,周长为4+8+8=20, 综上三角形的周长为20. 故选:B .因为等腰三角形的腰与底边不确定,故以4为底边和腰两种情况考虑:若4为腰,则另外一腰也为4,底边就为8,根据4+4=8,不符合三角形的两边之和大于第三边,即不能构成三角形;若4为底边,腰长为8,符合构成三角形的条件,求出此时三角形的周长即可.此题考查了等腰三角形的性质,以及三条线段构成三角形的条件,利用了分类讨论的数学思想,由等腰三角形的底边与腰长不确定,故分两种情况考虑,同时根据三角形的两边之和大于第三边,舍去不能构成三角形的情况.8.答案:C解析:解:原式=(x 2−y 2)(a 2−b 2)=(x −y)(x +y)(a −b)(a +b) 由题意可知:(x −y)(x +y)(a −b)(a +b)可表示为“爱我河北” 故选:C .将原式进行因式分解即可求出答案本题考查因式分解的应用,涉及平方差公式,提取公因式法,并考查学生的阅读理解能力9.答案:C解析:证明:∵BE =DF , ∴BE −EF =DF −EF , 即BF =DE ,∵AE ⊥BD ,CF ⊥BD , ∴∠AED =∠CFB =90°,在Rt △ADE 与Rt △CBF 中,{AD =BC DE =BF ,∴Rt △ADE≌Rt △CBF(HL), ∴∠ADE =∠CBF ,∴四边形ABCD是平行四边形,故选:C.根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD//BC,根据平行四边形的判定定理即可得到结论.本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.10.答案:B解析:解:∵BE⊥AC,AD=DC,∴BA=BC,∴∠ABD=∠CBD=12∠ABC=36°,在△ADB和△CDE中,{AD=DC∠ADB=∠EDC BD=DE,∴△ADB≌△CDE,∴∠E=∠ABD=36°,故选:B.首先证明BE平分∠ABC,再证明△ABD≌△CED,可得∠E=∠ABD即可解决问题;本题考查全等三角形的判定和性质、线段的垂直平分线的性质、等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题.11.答案:−12或1解析:解:设a+b=x,则由原方程,得4x(4x−2)−8=0,整理,得16x2−8x−8=0,即2x2−x−1=0,分解得:(2x+1)(x−1)=0,解得:x1=−12,x2=1.则a+b的值是−12或1.故答案是:−12或1.设a+b=x,则原方程转化为关于x的一元二次方程,通过解该一元二次方程来求x即(a+b)的值.本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.12.答案:60、61 a2+12解析:解:(1)∵3、4、5;5、12、13;7、24、25;9、40、41;…,∴11,60,61;故答案为:60,61;(2)第一个数用字母a(a为奇数,且a≥3)表示,第二数为a2−12,则用含a的代数式表示第三个数为a2−12+1=a2+12,故答案为:a2+12.(1)分析所给四组的勾股数:3、4、5;5、12、13;7、24、25;9、40、41;可得下一组一组勾股数:11,60,61;(2)根据所提供的例子发现股是勾的平方减去1的二分之一,弦是勾的平方加1的二分之一.本题属规律型问题,考查的是勾股数之间的关系,根据题目中所给的勾股数及关系式进行猜想、计算即可.13.答案:2x2−5x+8解析:解:∵A=x2−x+1,B=x−2,∴2A−3B=2(x2−x+1)−3(x−2)=2x2−2x+2−3x+6=2x2−5x+8.故答案为2x2−5x+8.将A=x2−x+1,B=x−2代入2A−3B,去括号、合并同类项即可.本题考查了整式的加减,掌握去括号、合并同类项法则是解题的关键.14.答案:y=16−2x(4<x<8)解析:解:由题意得:y+2x=16,即:y=16−2x,{16−2x>016−2x>2x,解得:4<x<8.故答案为:y=16−2x(4<x<8).等腰三角形的底边长=周长−2×腰长,根据2腰长的和大于底边长及底边长为正数可得自变量的取值.此题考查了根据实际问题列一次函数关系式;判断出等腰三角形腰长的取值范围是解决本题的难点.15.答案:135解析:本题考查了等腰直角三角形的性质,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.利用等腰三角形的性质分别求出∠ADB,∠BDC即可解决问题.解:∵△ABD是等边三角形,∴∠ABD=∠ADB=60°,BA=BD,∵BA=BC,∠ABC=90°,∴BD=BC,∠CBD=30°,∴∠BDC=∠BCD=12(180°−30°)=75°,∴∠ADC=∠ADB+∠BDC=135°,故答案为135.16.答案:①②③④⑤⑥解析:解:∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,∠ACB=∠DCE=∠BCD=60°,在△ACD与△BCE中,{AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS),故①正确;∴∠DAC=∠EBC,∠CEB=∠CDA,在△ACP和△BCQ中,{∠DAC=∠EBCAC=BC∠ACB=∠BCQ=60°,∴△ACP≌△BCQ(ASA),故②正确;∴CP=CQ,又∵∠BCD=60°,∴△PCQ是等边三角形,故⑥正确,∴∠CPQ=∠CQP=60°,∴∠ACB=∠CPQ,∴AC//PQ,故⑤正确;∵∠DAC=∠EBC,∠APC=∠BPR,∴∠ACB=∠BRP=60°,故④正确;在△DCP和△ECQ中,{DC=CE∠DCP=∠DCE=60°CP=CQ,∴△DCP≌△ECQ(SAS),故选③正确;故答案为①②③④⑤⑥.由“SAS”可证△ACD≌△BCE,△DCP≌△ECQ,可得∠DAC=∠EBC,由“ASA”可证△ACP≌△BCQ,可得CP=CQ,再由全等三角形的性质和等边三角形的性质可得△PCQ是等边三角形,∠ACB=∠BRP=60°,AC//PQ,即可求解.本题考查了全等三角形的判定与性质,以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.17.答案:1解析:解:(x−3)(x+2)=x2−x−6,所以p的数值是1.故答案为:1.掌握多项式乘法的基本性质,x−3中−3与2相乘可得到−6,则可知:x2−px−6含有因式x−3和x+2.本题考查了因式分解的意义,注意因式分解与整式的运算的综合运用.18.答案:±1或±5(任意一个即可)解析:解:当x2+kx−6=(x+3)(x−2)时,k=3+(−2)=1,当x2+kx−6=(x−3)(x+2)时,k=−3+2=−1,当x2+kx−6=(x+6)(x−1)时,k=6+(−1)=5,当x2+kx−6=(x−6)(x+1)时,k=−6+1=−5,综上所述:±1或±5,故答案为:±1或±5(任意一个即可).把−6分成3和−2,−3和2,6和−1,−6和1,进而得出即原式分解为(x+3)(x−2),(x−3)(x+2),(x+6)(x−1),(x−6)(x+1),即可得到答案.本题主要考查了对因式分解--十字相乘法的理解和掌握,理解x2+(a+b)x+ab=(x+a)(x+b)是解此题的关键.19.答案:48解析:解:∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,且AB=AC,∠BAD=∠CAF∴△ABD≌△ACF(SAS),∴AD=AF,∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,×AC×BF=48∴△FBC的面积=12故答案为:48先求出∠ABD=∠ACF,根据ASA证△ABD≌△ACF,推出AD=AF,得出AB=AC=2AD=2AF,BF×AC,代入求出求出AF长,求出AB、AC长,根据三角形的面积公式得出△FBC的面积等于12即可.本题考查了全等三角形的性质和判定,三角形的面积,等腰直角三角形的应用,求出AF=AD是本题的关键.20.答案:15解析:【试题解析】本题考查了角平分线的性质,三角形的面积,能根据角平分线性质得出DE=OD是解此题的关键,解题时注意:角平分线上的点到这个角两边的距离相等.过D作DE⊥AB于E,由角平分线的性质,即可求得DE的长,即可求得△ABD的面积.解:如图,过D作DE⊥AB于E,∵AD平分∠BAO,∠AOD=90°,D(0,−3),∴DE=DO=3,∵AB=10,∴△ABD的面积=12AB⋅DE=12×10×3=15.故答案为15.21.答案:解:(1)ax+bx=x(a+b);(2)x4−y4=(x2+y2)(x2−y2)=(x2+y2)(x−y)(x+y);(3)(a+b)2−4a(a+b)+4a2=(a+b−2a)2=(b−a)2.解析:此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.(1)直接提取公因式x,进而分解因式即可;(2)直接利用平方差公式分解因式即可;(3)直接利用完全平方公式分解因式即可.22.答案:(1)如图△A′B′C′为所求图形.(2)①如图:点P为所求点.②√10+3√2.解析:解:(1)见答案;(2)①见答案;②∵△ABP的周长=AB+AP+BP=AB+AP+B′′P∴当AP与PB′′共线时,△APB的周长有最小值.∴△APB的周长的最小值AB+AB′′=√10+3√2故答案为:√10+3√2(1)根据轴对称的性质,可作出△ABC关于直线n的对称图形△A′B′C′;(2)①作点B关于直线m的对称点B′′,连接B′′A与x轴的交点为点P;②由△ABP的周长=AB+AP+BP=AB+AP+B′′P,则当AP与PB′′共线时,△APB的周长有最小值.本题考查了轴对称变换,勾股定理,最短路径问题,熟练掌握轴对称的性质是本题的关键.23.答案:证明:∵CA=CB∴∠CAB=∠CBA∵△AEC和△BCD为等腰直角三角形,∴∠CAE=∠CBD=45°,∠FAG=∠FBG,∴∠FAB=∠FBA,∴AF=BF,在三角形ACF和△CBF中,{AF =BF AC =BC CF =CF,∴△ACF≌△BCF(SSS),∴∠ACF =∠BCF∴AG =BG ,CG ⊥AB(三线合一),即CG 垂直平分AB .解析:求证△ACF≌△BCF 可得∠ACF =∠BCF ,根据等腰三角形底边三线合一即可解题.本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,考查了等腰三角形底边三线合一的性质.24.答案:C解析:解:第二种情况:如图1所示:以F 为圆心,AC 长为半径画弧,交射线EM 于D 、D′;则DF =D′F =AC ,△DEF≌△ABC ,△D′EF 和△ABC 不全等;故选:C ;第三种情况:证明:如图2所示:过点C 作CG ⊥AB 交AB 的延长线于点G ,过点F 作DH ⊥DE 交DE 的延长线于点H ,∵∠B =∠E ,∴180°−∠B =180°−∠E ,即∠CBG =∠FEH ,在△CBG 和△FEH 中,{∠CBG =∠FEH ∠G =∠H =90°BC =EF,∴△CBG≌△FEH(AAS),∴CG =FH ,在Rt △ACG 和Rt △DFH 中,{AC =DF CG =FH, ∴Rt △ACG≌Rt △DFH(HL),∴∠A =∠D ,在△ABC 和△DEF 中,{∠A =∠D∠B =∠E AC =DF,∴△ABC≌△DEF(AAS).第二种情况:以F 为圆心,AC 长为半径画弧,交射线EM 于D 、D′;则DF =D′F =AC ,△DEF≌△ABC ,△D′EF 和△ABC 不全等;第三种情况:过点C 作CG ⊥AB 交AB 的延长线于点G ,过点F 作DH ⊥DE 交DE 的延长线于点H ,先证明△CBG≌△FEH ,得出CG =FH ,再证明Rt △ACG≌Rt △DFH ,得出∠A =∠D ,再由AAS 即可证出△ABC≌△DEF .本题考查了全等三角形的判定与性质;熟练掌握三角形全等的判定方法,证明三角形全等是解决问题的关键.25.答案:解:(1)4x −2≤3x −1,4x −3x ≤−1+2,x ≤1;(2)解不等式2x +5<3(x +1),得:x >2,解不等式x−12≤x 3,得:x ≤3, 则不等式组的解集为2<x ≤3.解析:(1)根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.答案:证明:∵AB//DE ,∴∠A =∠D ,∵AF =DC ,∴AC =DF ,在△ABC 和△DEF 中,{AB =DE ∠A =∠D AC =DF,∴△ABC≌△DEF ,∴BC=EF,∠ACB=∠DFE,∴BC//EF,∴四边形BCEF是平行四边形.解析:本题考查平行四边形的判定、全等三角形的判定和性质等知识,解题的关键是准确寻找全等三角形的全等的条件,属于中考常考题型.先根据条件证明△ABC≌△DEF,然后可得∠ACB=∠DFE,从而可得BC//EF,再结合BC=EF,可得四边形BCEF为平行四边形.。
(人教版)2019—(人教版)2019—2020年七年级上册期末数学试卷(含解析)一、选择题:每小题3分;共计30分.请将答案写在题后面的表格中1.下列方程中;是一元一次方程的是()A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=52.下列说法正确的是()A.在同一平面内;a;b;c是直线;且a∥b;b∥c;则a∥cB.在同一平面内;a;b;c是直线;且a⊥b;b⊥c;则a⊥cC.在同一平面内;a;b;c是直线;且a∥b;b⊥c;则a∥cD.在同一平面内;a;b;c是直线;且a∥b;b∥c;则a⊥c3.下列四个实数中;是无理数的为()A.B.C.D.4.若关于x的方程2x+a﹣4=0的解是x=﹣2;则a的值等于()A.﹣8 B.0 C.8 D.25.在平面直角坐标系中;将点A(﹣1;4)向右平移2个单位长度;再向上平移3个单位长度;则平移后对应点的坐标是()A.C.6.如图所示;点E在AC的延长线上;下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°7.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1;﹣1);(﹣1;2);(3;﹣1);则第四个顶点的坐标为()A.C.8.某村原有林地108公顷;旱地54公顷;为保护环境;需把一部分旱地改造为林地;使旱地面积占林地面积的20%.设把x公顷旱地改为林地;则可列方程()A.54﹣x=20%×108 B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)9.如图;a∥b;c;d是截线;∠1=70°;∠2﹣∠3=30°;则∠4的大小是()A.100°B.105°C.110°D.120°10.下列四个式子:①;②<8;③<1;④>0.5.其中大小关系正确的式子的个数是()A.1个B.2个C.3个D.4个二、填空题:每小题3分;共计30分.请将答案写在题后面的表格中11.点A(a;b)在x轴上;则ab= .12.实数27的立方根是.13.列等式表示“比a的3倍大5的数等于a的4倍”为.14.把命题“对顶角相等”改写成“如果…那么…”的形式:.15.已知(x﹣1)2=4;则负数x的值为.16.如图;a∥b;∠1=∠2;∠3=40°;则∠4等于度.17.有一列数;按一定规律排成1;﹣3;9;﹣27;81;﹣243;…;其中某三个相邻数的和是5103;则这三个数中最小的数是.18.如图;直线AB.CD相交于点O;OE⊥AB;O为垂足;如果∠EOD=38°;则∠AOC= 度.19.以下四个命题:①在同一平面内;过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截;同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点P(x;y)的坐标满足xy<0;那么点P一定在第二象限.其中正确命题的序号为.20.在风速为24千米/时的条件下;一架飞机顺风从A机场飞到B机场要用2.8小时;它逆风飞行同样的航线要用3小时;则A;B两机场之间的航程为千米.三、解答题:其中21-22题各8分;23题6分;24题8分;25-27题各10分;共计60分21.计算:(1)﹣(2)|﹣1.7|+|﹣1.8|22.解下列方程(1)2(x+8)=3(x﹣1)(2)3x+=.23.完成下面的证明:如图;∠1+∠3=180°;∠CDE+∠B=180°;求证:∠A=∠4.证明;∵∠1=∠2()又∠1+∠3=180°;∴∠2+∠3=180°;∴AB∥DE()∴∠CDE+ =180°()又∠CDE+∠B=180°;∴∠B=∠C∴AB∥CD()∴∠A=∠4()24.阅读下面“将无限循环小数化为分数”材料;并解决相应问题:我们知道分数写成小数形式即0.;反过来;无限循环小数0.写成分数形式即.一般地;任何一个无限循环小数都可以写成分数形式吗?如果可以;应怎样写呢?先以无限循环小数0.为例进行讨论.设0.=x;由0.=0.777…可知;10x=7.777…;所以10x﹣x=7;解方程;得x=.于是;得0.=.再以无限循环小数0.为例;做进一步的讨论.无限循环小数0.=0.737373…;它的循环节有两位;类比上面的讨论可以想到如下的做法.设0.=x;由0.=0.737373…可知;100x=73.7373…;所以100x﹣x=73.解方程;得x=;于是;得0.=.请仿照材料中的做法;将无限循环小数0.化为分数;并写出转化过程.25.如图;直线AB;CD相交于点O;OA平分∠EOC;且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2;点F在OC上;直线GH经过点F;FM平分∠OFG;且∠MFH﹣∠BOD=90°;求证:OE∥GH.26.元旦期间;某玩具店从玩具批发市场批发玩具进行零售;部分玩具批发价格与零售价格如下表:玩具型号 A B C批发价(元/个)20 24 28零售价(元/个)25 30 40请解答下列问题:(1)第一天;该玩具店批发A;B两种型号玩具共59个;用去了1344元钱;这两种型号玩具当天全部售完后一共能赚多少元钱?(2)第二天;该玩具店用第一天全部售完后的总零售价钱批发A;B;C三种型号玩具中的两种玩具共68个;且当天全部售完;请通过计算说明该玩具店第二天应如何进货才能使全部售完后赚的钱最多?27.如图;在平面直角坐标系中;点O为坐标系原点;点A(3a;2a)在第一象限;过点A向x轴作垂线;垂足为点B;连接OA;S△AOB=12.点M从点O出发;沿y轴的正半轴以每秒2个单位长度的速度运动;点N从点B出发;沿射线BO以每秒3个单位长度的速度运动;点M与点N同时出发;设点M的运动时间为t秒;连接AM ;AN;MN.(1)求a的值;(2)当0<t<2时;①请探究∠ANM;∠OMN;∠BAN之间的数量关系;并说明理由;②试判断四边形AMON的面积是否变化?若不变化;请求出;若变化;请说明理由.(3)当OM=ON时;请求出t的值及△AMN的面积.2015-2016学年黑龙江省哈尔滨市南岗区七年级(上)期末数学试卷参考答案与试题解析一、选择题:每小题3分;共计30分.请将答案写在题后面的表格中1.下列方程中;是一元一次方程的是()A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=5【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:只含有一个未知数(元);且未知数的次数是1;这样的方程叫一元一次方程可得答案.【解答】解:A、是一元二次方程;故此选项错误;B、是一元一次方程;故此选项正确;C、是二元一次方程;故此选项错误;D、是二元二次方程;故此选项错误;故选:B.【点评】此题主要考查了一元一次方程的定义;关键是掌握只含有一个未知数;未知数的指数是1;一次项系数不是0.2.下列说法正确的是()A.在同一平面内;a;b;c是直线;且a∥b;b∥c;则a∥cB.在同一平面内;a;b;c是直线;且a⊥b;b⊥c;则a⊥cC.在同一平面内;a;b;c是直线;且a∥b;b⊥c;则a∥cD.在同一平面内;a;b;c是直线;且a∥b;b∥c;则a⊥c【考点】平行线;垂线.【分析】根据题意画出图形;从而可做出判断.【解答】解:先根据要求画出图形;图形如下图所示:根据所画图形可知:A正确.故选:A.【点评】本题主要考查的是平行线;根据题意画出符合题意的图形是解题的关键.3.下列四个实数中;是无理数的为()A.B.C.D.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念;一定要同时理解有理数的概念;有理数是整数与分数的统称.即有限小数和无限循环小数是有理数;而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是有理数;故A错误;B、是有理数;故B错误;C、是有理数;故C错误;D、是无理数;故D正确;故选:D.【点评】此题主要考查了无理数的定义;其中初中范围内学习的无理数有:π;2π等;开方开不尽的数;以及像0.1010010001…;等有这样规律的数.4.若关于x的方程2x+a﹣4=0的解是x=﹣2;则a的值等于()A.﹣8 B.0 C.8 D.2【考点】一元一次方程的解.【分析】把x=﹣2代入原方程;得到关于a的一元一次方程;解方程得到答案.【解答】解:由题意得;2×(﹣2)+a﹣4=0;解得:a=8;故选:C.【点评】本题考查的是方程的解的定义;使方程两边的值相等的未知数的值是方程的解.5.在平面直角坐标系中;将点A(﹣1;4)向右平移2个单位长度;再向上平移3个单位长度;则平移后对应点的坐标是()A.C.【考点】坐标与图形变化-平移.【分析】根据横坐标;右移加;左移减;纵坐标;上移加;下移减可得平移后对应点的坐标是(﹣1+2;4+3);再计算即可.【解答】解:点A(﹣1;4)向右平移2个单位长度;再向上平移3个单位长度;平移后对应点的坐标是(﹣1+2;4+3);即(1;7);故选:A.【点评】此题主要考查了坐标与图形的变化﹣﹣平移;关键是掌握点的坐标的变化规律.6.如图所示;点E在AC的延长线上;下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°【考点】平行线的判定.【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、根据内错角相等;两直线平行可得BD∥AC;故此选项错误;B、根据内错角相等;两直线平行可得AB∥CD;故此选项正确;C、根据内错角相等;两直线平行可得BD∥AC;故此选项错误;D、根据同旁内角互补;两直线平行可得BD∥AC;故此选项错误;故选:B.【点评】此题主要考查了平行线的判定;关键是掌握平行线的判定定理.7.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1;﹣1);(﹣1;2);(3;﹣1);则第四个顶点的坐标为()A.C.【考点】坐标与图形性质;矩形的性质.【分析】本题可在画出图后;根据矩形的性质;得知第四个顶点的横坐标应为3;纵坐标应为2.【解答】解:如图可知第四个顶点为:即:(3;2).故选:B.【点评】本题考查学生的动手能力;画出图后可很快得到答案.8.某村原有林地108公顷;旱地54公顷;为保护环境;需把一部分旱地改造为林地;使旱地面积占林地面积的20%.设把x公顷旱地改为林地;则可列方程()A.54﹣x=20%×108 B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)【考点】由实际问题抽象出一元一次方程.【分析】设把x公顷旱地改为林地;根据旱地面积占林地面积的20%列出方程即可.【解答】解:设把x公顷旱地改为林地;根据题意可得方程:54﹣x=20%(108+x).故选B.【点评】本题考查一元一次方程的应用;关键是设出未知数以以改造后的旱地与林地的关系为等量关系列出方程.9.如图;a∥b;c;d是截线;∠1=70°;∠2﹣∠3=30°;则∠4的大小是()A.100°B.105°C.110°D.120°【考点】平行线的性质.【分析】首先根据邻补角的定义求得∠2的度数;则∠3即可求得;然后根据平行线的性质求得∠5;进而求得∠4.【解答】解:∠2=180°﹣∠1=180°﹣70°=110°;∵∠2﹣∠3=30°;∴∠3=∠2﹣30°=110°﹣30°=80°;∵a∥b;∴∠5=∠3=80°;∴∠4=180°﹣∠5=180°﹣80°=100°.故选A.【点评】本题考查了邻补角的定义和平行线的性质;两直线平行;同位角相等;理解角之间的位置关系是关键.10.下列四个式子:①;②<8;③<1;④>0.5.其中大小关系正确的式子的个数是()A.1个B.2个C.3个D.4个【考点】实数大小比较.【专题】推理填空题;实数.【分析】①两个正数;哪个数的越大;则它的算术平方根就越大;据此判断即可.②首先分别求出、8的平方各是多少;然后根据两个正数;哪个数的平方越大;则这个数就越大;判断出、8的大小关系即可.③根据﹣1所得的差的正负;判断出、1的大小关系即可.④根据﹣0.5所得的差的正负;判断出、0.5的大小关系即可.【解答】解:∵8<10;∴<;∴①正确;=65;82=64;∵65>64;∴>8;∴②不正确;∵﹣1=<=0;∴<1;∴③正确;∵﹣0.5=>=0;∴>0.5;∴④正确.综上;可得大小关系正确的式子的个数是3个:①③④.故选:C.【点评】(1)此题主要考查了实数大小比较的方法;要熟练掌握;解答此题的关键是要明确:正实数>0>负实数;两个负实数绝对值大的反而小.(2)解答此题的关键还要明确:两个正数;哪个数的平方越大;则这个数就越大.二、填空题:每小题3分;共计30分.请将答案写在题后面的表格中11.点A(a;b)在x轴上;则ab= 0 .【考点】点的坐标.【分析】根据x轴上点的纵坐标等于零;可得b的值;根据有理数的乘法;可得答案.【解答】解:由点A(a;b)在x轴上;得b=0.则ab=0;故答案为:0.【点评】本题考查了点的坐标;利用x轴上点的纵坐标等于零得出b的值是解题关键.12.实数27的立方根是 3 .【考点】立方根.【专题】计算题.【分析】如果一个数x的立方等于a;那么x是a的立方根;根据此定义求解即可.【解答】解:∵3的立方等于27;∴27的立方根等于3.故答案为3.【点评】此题主要考查了求一个数的立方根;解题时先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算;用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.13.列等式表示“比a的3倍大5的数等于a的4倍”为3a+5=4a .【考点】等式的性质.【分析】根据等量关系;可得方程.【解答】解:由题意;得3a+5=4a;故答案为:3a+5=4a.【点评】本题主要考查了等式的基本性质;理解题意是解题关键.14.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角;那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等;放在“如果”的后面;结论是这两个角的补角相等;应放在“那么”的后面.【解答】解:题设为:对顶角;结论为:相等;故写成“如果…那么…”的形式是:如果两个角是对顶角;那么它们相等;故答案为:如果两个角是对顶角;那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式;“如果”后面是命题的条件;“那么”后面是条件的结论;解决本题的关键是找到相应的条件和结论;比较简单.15.已知(x﹣1)2=4;则负数x的值为﹣1 .【考点】有理数的乘方.【专题】计算题;实数.【分析】方程利用平方根定义求出解;即可确定出负数x的值.【解答】解:方程(x﹣1)2=4;开方得:x﹣1=2或x﹣1=﹣2;解得:x=3或x=﹣1;则负数x的值为﹣1.故答案为:﹣1.【点评】此题考查了有理数的乘方;熟练掌握运算法则是解本题的关键.16.如图;a∥b;∠1=∠2;∠3=40°;则∠4等于70 度.【考点】平行线的性质.【分析】根据两条直线平行;同旁内角互补可以得∠1+∠2=140°;求出∠2;再利用平行线的性质得出∠4.【解答】解:∵a∥b;∴∠2+∠1+∠3=180°;∵∠1=∠2;∠3=40°;∴∠2=70°;∴∠4=70°;故答案为:70【点评】此题考查平行线的性质;关键是主要运用了平行线的性质解答.17.有一列数;按一定规律排成1;﹣3;9;﹣27;81;﹣243;…;其中某三个相邻数的和是5103;则这三个数中最小的数是﹣2187 .【考点】规律型:数字的变化类.【专题】计算题;推理填空题.【分析】观察所给的数发现:它们的一般式为(﹣3)n﹣1;而其中某三个相邻数的和是5103;设第一个的数为x;由此即可得到关于x的方程;解方程即可求解.【解答】解:设第一个的数为x;依题意得x﹣3x+9x=5103;∴x=729;∴﹣3x=﹣2187.∴最小的数为﹣2187.故答案为:﹣2187.【点评】此题主要考查了数字的变化规律;解题的关键是首先认真观察所给数字;然后找出隐含的规律即可解决问题.18.如图;直线AB.CD相交于点O;OE⊥AB;O为垂足;如果∠EOD=38°;则∠AOC= 52 度.【考点】垂线;对顶角、邻补角.【分析】根据垂线的定义;可得∠AOE=90°;根据角的和差;可得∠AOD的度数;根据邻补角的定义;可得答案.【解答】解:∵OE⊥AB;∴∠AOE=90°;∴∠AOD=∠AOE+∠EOD=90°+38°=128°;∴∠AOC=180°﹣∠AOD=180°﹣128°=52°;故答案为:52.【点评】本题考查了垂线的定义;对顶角相等;邻补角的和等于180°;要注意领会由垂直得直角这一要点.19.以下四个命题:①在同一平面内;过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截;同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点P(x;y)的坐标满足xy<0;那么点P一定在第二象限.其中正确命题的序号为①③.【考点】命题与定理.【分析】根据在同一平面内;过一点有且只有一条直线与已知直线垂直;两条平行的直线被第三条直线所截;同旁内角互补;数轴上的点与实数是一一对应关系;点P(x;y)的坐标满足xy<0;则点P的横纵坐标符号相反;可得P在二、四象限进行分析.【解答】解:①在同一平面内;过一点有且只有一条直线与已知直线垂直;说法正确;②两条直线被第三条直线所截;同旁内角互补;说法错误;③数轴上的每一个点都表示一个实数;说法正确;④如果点P(x;y)的坐标满足xy<0;那么点P一定在第二象限;说法错误;正确的命题有①③;故答案为:①③.【点评】此题主要考查了命题与定理;关键是熟练掌握课本上所学的定理.20.在风速为24千米/时的条件下;一架飞机顺风从A机场飞到B机场要用2.8小时;它逆风飞行同样的航线要用3小时;则A;B两机场之间的航程为2016 千米.【考点】一元一次方程的应用.【分析】设无风时飞机的航速是x千米/时;根据顺风速度×顺风时间=逆风速度×逆风时间;列出方程求出x的值;进而求解即可.【解答】解:设无风时飞机的航速是x千米/时;依题意得:2.8×(x+24)=3×(x﹣24);解得:x=696;则3×(696﹣24)=2016(千米).答:A;B两机场之间的航程是2016千米.故答案为2016.【点评】此题考查了一元一次方程的应用;用到的知识点是顺风速度=无风时的速度+风速;逆风速度=无风时的速度﹣风速;关键是根据顺风飞行的路程等于逆风飞行的路程列出方程.三、解答题:其中21-22题各8分;23题6分;24题8分;25-27题各10分;共计60分21.计算:(1)﹣(2)|﹣1.7|+|﹣1.8|【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用立方根及算术平方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简;合并即可得到结果.【解答】解:(1)原式=4﹣9=﹣5;(2)原式=﹣1.7+1.8﹣=0.1.【点评】此题考查了实数的运算;熟练掌握运算法则是解本题的关键.22.解下列方程(1)2(x+8)=3(x﹣1)(2)3x+=.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)根据解方程的一般步骤:去括号、移项、合并同类项、系数化为1;可得方程的解;(2)两边都乘以分母的最小公倍数6去分母后;去括号、移项、合并同类项、系数化为1后可得方程的解.【解答】解:(1)去括号;得:2x+16=3x﹣3;移项;得:2x﹣3x=﹣3﹣16;合并同类项;得:﹣x=﹣19;系数化为1;得:x=19;(2)去分母;得:18x+3(x﹣1)=2(2x﹣1);去括号;得:18x+3x﹣3=4x﹣2;移项;得:18x+3x﹣4x=﹣2+3;合并同类项;得:17x=1;系数化为1;得:x=.【点评】本题主要考查解一元一次方程的基本技能;熟练掌握去分母、去括号、移项、合并同类项、系数化为1是关键.23.完成下面的证明:如图;∠1+∠3=180°;∠CDE+∠B=180°;求证:∠A=∠4.证明;∵∠1=∠2(对顶角相等)又∠1+∠3=180°;∴∠2+∠3=180°;∴AB∥DE(同旁内角互补;两直线平行)∴∠CDE+ ∠C =180°(两直线平行;同旁内角互补)又∠CDE+∠B=180°;∴∠B=∠C∴AB∥CD(内错角相等;两直线平行)∴∠A=∠4(两直线平行;内错角相等)【考点】平行线的判定与性质.【专题】推理填空题.【分析】欲证明∠A=∠4;只需推知AB∥CD;利用平行线的性质即可证得结论.【解答】证明:∵∠1=∠2(对顶角相等);又∠1+∠3=180°;∴∠2+∠3=180°;∴AB∥DE(同旁内角互补;两直线平行);∴∠CDE+∠C=180°(两直线平行;同旁内角互补);又∠CDE+∠B=180°;∴∠B=∠C.∴AB∥CD(内错角相等;两直线平行);∴∠A=∠4(两直线平行;内错角相等).故答案是:对顶角相等;同旁内角互补;两直线平行;∠C;两直线平行;同旁内角互补;错角相等;两直线平行;两直线平行;内错角相等.【点评】本题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.24.阅读下面“将无限循环小数化为分数”材料;并解决相应问题:我们知道分数写成小数形式即0.;反过来;无限循环小数0.写成分数形式即.一般地;任何一个无限循环小数都可以写成分数形式吗?如果可以;应怎样写呢?先以无限循环小数0.为例进行讨论.设0.=x;由0.=0.777…可知;10x=7.777…;所以10x﹣x=7;解方程;得x=.于是;得0.=.再以无限循环小数0.为例;做进一步的讨论.无限循环小数0.=0.737373…;它的循环节有两位;类比上面的讨论可以想到如下的做法.设0.=x;由0.=0.737373…可知;100x=73.7373…;所以100x﹣x=73.解方程;得x=;于是;得0.=.请仿照材料中的做法;将无限循环小数0.化为分数;并写出转化过程.【考点】一元一次方程的应用.【专题】阅读型.【分析】先设0.=x;由0.=0.9898…;得100x=98.9898…;100x﹣x=98;再解方程即可.【解答】解:设0.=x;由0.=0.9898…;得100x=98.9898…;所以100x﹣x=98;解方程得:x=.于是0.=.【点评】此题主要考查了一元一次方程的应用;解答本题的关键是找出其中的规律;即通过方程形式;把无限小数化成整数形式.25.如图;直线AB;CD相交于点O;OA平分∠EOC;且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2;点F在OC上;直线GH经过点F;FM平分∠OFG;且∠MFH﹣∠BOD=90°;求证:OE∥GH.【考点】平行线的判定;角的计算.【分析】(1)根据邻补角的定义求出∠EOC;再根据角平分线的定义求出∠AOC;然后根据对顶角相等解答.(2)由已知条件和对顶角相等得出∠MFC=∠MFH=∠BOD+90°=126°;得出∠ONF=90°;求出∠OFM=54°;延长∠OFG=2∠OFM=108°;证出∠OFG+∠EOC=180°;即可得出结论.【解答】解:∵∠EOC:∠EOD=2:3;∴∠EOC=180°×=72°;∵OA平分∠EOC;∴∠AOC=∠EOC=×72°=36°;∴∠BOD=∠AOC=36°.(2)延长FM交AB于N;如图所示:∵∠MFH﹣∠BOD=90°;FM平分∠OFG;∴∠MFC=∠MFH=∠BOD+90°=126°;∴∠ONF=126°﹣36°=90°;∴∠OFM=90°﹣36°=54°;∴∠OFG=2∠OFM=108°;∴∠OFG+∠EOC=180°;∴OE∥GH.【点评】本题考查了平行线的判定、角平分线定义、角的互余关系等知识;熟练掌握平行线的判定、角平分线定义是解决问题的关键;(2)有一定难度.26.元旦期间;某玩具店从玩具批发市场批发玩具进行零售;部分玩具批发价格与零售价格如下表:玩具型号 A B C批发价(元/个)20 24 28零售价(元/个)25 30 40请解答下列问题:(1)第一天;该玩具店批发A;B两种型号玩具共59个;用去了1344元钱;这两种型号玩具当天全部售完后一共能赚多少元钱?(2)第二天;该玩具店用第一天全部售完后的总零售价钱批发A;B;C三种型号玩具中的两种玩具共68个;且当天全部售完;请通过计算说明该玩具店第二天应如何进货才能使全部售完后赚的钱最多?【考点】一元一次方程的应用.【分析】(1)设A种型号玩具批发了x个;则B种型号玩具批发了(59﹣x)个;题中的等量关系为:A种型号玩具的个数×A种型号玩具的批发价+B种型号玩具的个数×B种型号玩具的批发价=1344元;依此列出方程;解方程求出x的值;则当天赚的钱=(A种型号玩具的零售价﹣批发价)×A种型号玩具的个数+(B种型号玩具的零售价﹣批发价)×B种型号玩具的个数;(2)分三种情况:①购买A;B两种型号玩具;②购买A;C两种型号玩具;③购买B;C两种型号玩具.分别求出每一种情况下全部售完后赚的钱;比较即可.【解答】解:(1)设A种型号玩具批发了x个;则B种型号玩具批发了(59﹣x)个;由题意得:20x+24(59﹣x)=1344;解得x=18;所以59﹣x=41.则18×(25﹣20)+41×(30﹣24)=336(元).答:这两种型号玩具当天全部售完后一共能赚336元钱;(2)该玩具店用第一天全部售完后的总零售价为:1344+336=1680(元).分三种情况:①购买A;B两种型号玩具.设A种型号玩具批发了a个;则B种型号玩具批发了(68﹣a)个;由题意得:20a+24(68﹣a)=1680;解得a=12;所以68﹣a=56.则12×(25﹣20)+56×(30﹣24)=396(元);②购买A;C两种型号玩具.设A种型号玩具批发了b个;则B种型号玩具批发了(68﹣b)个;由题意得:20b+28(68﹣a)=1680;解得b=28;。
2019-2020学年七年级数学下册期末测试卷一.选择题(共10小题)1.下面图形分别表示低碳、节水、节能和绿色食品四个标志,其中的轴对称图形是()A.B.C.D.2.下列运算正确的是()A.(a2)3=a5B.3a2+a=3a3C.a5÷a2=a3(a≠0)D.a(a+1)=a2+13.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米4.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.B.C.D.15.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(x+1)(﹣x﹣1)C.(﹣m﹣n)(﹣m+n)D.(3x﹣y)(﹣3x+y)6.一副三角板如图放置,若AB∥DE,则∠1的度数为()A.105°B.120°C.135°D.150°7.如图,爸爸从家(点O)出发,沿着等腰三角形AOB的边OA→AB→BO的路径去匀速散步,其中OA=OB.设爸爸距家(点O)的距离为S,散步的时间为t,则下列图形中能大致刻画S与t之间函数关系的图象是()A.B.C.D.8.如图,小红想用一条彩带缠绕易拉罐,正好从A点绕到正上方B点共四圈,已知易拉罐底面周长是12cm,高是20cm,那么所需彩带最短的是()A.13cm B.4cm C.4cm D.52cm9.如图,在△ABC中,E为AC的中点,AD平分∠BAC,BA:CA=2:3,AD与BE相交于点O,若△OAE的面积比△BOD的面积大1,则△ABC的面积是()A.8B.9C.10D.1110.如图,△ABC中,∠BAC=108°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是()A.20°B.24°C.30°D.36°二.填空题(共6小题)11.若x2﹣x+k是完全平方式,则k的值为.12.如图,在△ABC中,AC=BC,把△ABC沿AC翻折,点B落在点D处,连接BD,若∠CBD=16°,则∠BAC=°.13.若n满足(n﹣2019)2+(2020﹣n)2=1,则(n﹣2019)(2020﹣n)=.14.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为40°,则∠B=.15.已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为.16.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=,ON=6,点P、Q 分别在边OB、OA上,则MP+PQ+QN的最小值是.三.解答题(共7小题)17.计算:(1)(2x2)3﹣2x2•x3+2x5;(2)(x+y+2)(x+y﹣2)﹣(x+2y)2+3y2.18.先化简,再求值:(5x3y2﹣3x2y3)÷(﹣xy)﹣3x(2xy﹣y2),其中x=﹣,y=3.19.如图,已知△ABC,AB<BC,请用尺规作图的方法在BC上取一点P,使得P A+PC=BC(保留作图痕迹,不写作法)20.如图,C是线段AB的中点,且CD∥BE,CD=BE.试猜想AD与CE平行吗?并说明理由.21.在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.22.某商场的一种书法笔每只售价25元,书法练习本每本售价5元.为促销,商场制定了两种优惠方案:买一支书法笔就赠送一本书法练习本;方案二:按够买金额的九折付款,我校书法社团够买10支书法笔,x(x>10)本练习本.(1)请你写出两种优惠方案的实际付款金额y(元)与x(本)之间的关系式.(2)当购买多少本书法练习本时,两种优惠方案的实付金额一样?23.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C →B→A的路径,以2cm每秒的速度运动,设运动时间为t秒.(1)当t=1s时,求△ACP的面积.(2)t为何值时,线段AP是∠CAB的平分线?(3)请利用备用图2继续探索:当△ACP是等腰三角形时,求t的值.参考答案与试题解析一.选择题(共10小题)1.下面图形分别表示低碳、节水、节能和绿色食品四个标志,其中的轴对称图形是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.2.下列运算正确的是()A.(a2)3=a5B.3a2+a=3a3C.a5÷a2=a3(a≠0)D.a(a+1)=a2+1【分析】根据合并同类项法则,幂的乘方的性质,单项式与多项式乘法法则,同底数幂的除法的性质对各选项分析判断后利用排除法求解.【解答】解:A、(a2)3=a6,故本选项错误;B、3a2+a,不是同类项,不能合并,故本选项错误;C、a5÷a2=a3(a≠0),正确;D、a(a+1)=a2+a,故本选项错误.故选:C.3.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米【分析】0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米.小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,在本题中a为5,n为5前面0的个数.【解答】解:0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米=5×10﹣10米.故选:D.4.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.B.C.D.1【分析】列举出所有等可能的情况数,找出能构成三角形的情况数,即可求出所求概率.【解答】解:从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)==,故选:B.5.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(x+1)(﹣x﹣1)C.(﹣m﹣n)(﹣m+n)D.(3x﹣y)(﹣3x+y)【分析】利用平方差公式的结构特征判断即可.【解答】解:能用平方差公式计算的是(﹣m﹣n)(﹣m+n),故选:C.6.一副三角板如图放置,若AB∥DE,则∠1的度数为()A.105°B.120°C.135°D.150°【分析】利用平行线的性质以及三角形的内角和定理即可解决问题.【解答】解:如图,延长EF交AB于H.∵AB∥DE,∴∠BHE=∠E=45′,∴∠1=180°﹣∠B﹣∠EHB=180°﹣30°﹣45°=105°,故选:A.7.如图,爸爸从家(点O)出发,沿着等腰三角形AOB的边OA→AB→BO的路径去匀速散步,其中OA=OB.设爸爸距家(点O)的距离为S,散步的时间为t,则下列图形中能大致刻画S与t之间函数关系的图象是()A.B.C.D.【分析】根据题意可以得到各段内爸爸距家(点O)的距离为S与散步的时间为t之间的关系,从而可以得到哪个选项是正确的.【解答】解:由题意可得,△AOB为等腰三角形,OA=OB,爸爸从家(点O)出发,沿着OA→AB→BO的路径去匀速散步,则从O到A的过程中,爸爸距家(点O)的距离S随着时间的增加而增大,从A到AB的中点的过程中,爸爸距家(点O)的距离S随着时间的增加而减小,从AB的中点到点B的过程中,爸爸距家(点O)的距离S随着时间的增加而增大,从点B到点O的过程中,爸爸距家(点O)的距离S随着时间的增加而减小,故选:D.8.如图,小红想用一条彩带缠绕易拉罐,正好从A点绕到正上方B点共四圈,已知易拉罐底面周长是12cm,高是20cm,那么所需彩带最短的是()A.13cm B.4cm C.4cm D.52cm【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【解答】解:由图可知,彩带从易拉罐底端的A处绕易拉罐4圈后到达顶端的B处,将易拉罐表面切开展开呈长方形,则螺旋线长为四个长方形并排后的长方形的对角线长,∵易拉罐底面周长是12cm,高是20cm,∴x2=(12×4)2+202,所以彩带最短是52cm.故选:D.9.如图,在△ABC中,E为AC的中点,AD平分∠BAC,BA:CA=2:3,AD与BE相交于点O,若△OAE的面积比△BOD的面积大1,则△ABC的面积是()A.8B.9C.10D.11【分析】作DM⊥AC于M,DN⊥AB于N.首先证明BD:DC=2:3,设△ABC的面积为S.则S△ADC=S,S△BEC=S,构建方程即可解决问题;【解答】解:作DM⊥AC于M,DN⊥AB于N.∵AD平分∠BAC,DM⊥AC于M,DN⊥AB于N,∴DM=DN,∴S△ABD:S△ADC=BD:DC=•AB•DN:•AC•DM=AB:AC=2:3,设△ABC的面积为S.则S△ADC=S,S△BEC=S,∵△OAE的面积比△BOD的面积大1,∴△ADC的面积比△BEC的面积大1,∴S﹣S=1,∴S=10,故选:C.10.如图,△ABC中,∠BAC=108°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是()A.20°B.24°C.30°D.36°【分析】在DC上取DE=DB.连接AE,在Rt△ABD和Rt△AED中,BD=ED,AD=AD.证明△ABD≌△AED(HL)即可求解.【解答】解:如图,在DC上取DE=DB,连接AE.在Rt△ABD和Rt△AED中,,∴Rt△ABD≌Rt△AED(HL).∴AB=AE,∠B=∠AED.又∵AB+BD=DC,∴EC=DC﹣DE=DC﹣BD=(AB+BD)﹣BD=AB=AE,即EC=AE,∴∠C=∠CAE,∴∠B=∠AED=2∠C,又∵∠B+∠C=180°﹣∠BAC=72°,∴3∠C=72°,∴∠C=24°,故选:B.二.填空题(共6小题)11.若x2﹣x+k是完全平方式,则k的值为.【分析】根据完全平方公式的特点,知一次项是两个数的积的2倍,则可以确定第二个数,进一步确定k值.【解答】解:根据完全平方公式的特点,知第一个数是x,则第二个数应该是,则k ==.故答案为:.12.如图,在△ABC中,AC=BC,把△ABC沿AC翻折,点B落在点D处,连接BD,若∠CBD=16°,则∠BAC=37°.【分析】根据翻转变换的性质得到CB=CD,∠ACB=∠ACD,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:由折叠的性质可知,CB=CD,∠ACB=∠ACD,∵∠CBD=16°,CB=CD,∴∠DCB=180°﹣16°×2=148°,∴∠ACB=∠ACD==106°,∵CA=CB,∴∠BAC==37°,故答案为:37.13.若n满足(n﹣2019)2+(2020﹣n)2=1,则(n﹣2019)(2020﹣n)=0.【分析】根据完全平方公式得到[(n﹣2019)+(2020﹣n)]2=(n﹣2019)2+2(n﹣2019)(2020﹣n)+(2020﹣n)2=1,由于(n﹣2019)2+(2020﹣n)2=1,代入计算即可求解.【解答】解:∵(n﹣2019)2+(2020﹣n)2=1,∴[(n﹣2019)+(2020﹣n)]2=(n﹣2019)2+2(n﹣2019)(2020﹣n)+(2020﹣n)2=1+2(n﹣2019)(2020﹣n)=1,∴(n﹣2019)(2020﹣n)=0.故答案为:0.14.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为40°,则∠B=65°或25°.【分析】根据△ABC中∠A为锐角与钝角分为两种情况解答.【解答】解:(1)当AB的中垂线MN与AC相交时,∵∠AMD=90°,∴∠A=90°﹣40°=50°,∵AB=AC,∴∠B=∠C=(180°﹣∠A)=65°;(2)当AB的中垂线MN与CA的延长线相交时,∴∠DAB=90°﹣40°=50°,∵AB=AC,∴∠B=∠C=∠DAB=25°.故答案为65°或25°.15.已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为8:40.【分析】根据甲60分走完全程4千米,求出甲的速度,再由图中两图象的交点可知,两人在走了2千米时相遇,从而可求出甲此时用了0.5小时,则乙用了(0.5﹣)小时,所以乙的速度为:2÷,求出乙走完全程需要时间,此时的时间应加上乙先前迟出发的20分,即可求出答案.【解答】解:因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5﹣)小时,所以乙的速度为:2÷=12,所以乙走完全程需要时间为:4÷12=(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40.16.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=,ON=6,点P、Q 分别在边OB、OA上,则MP+PQ+QN的最小值是.【分析】作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值;证出△ONN′为等边三角形,△OMM′为等边三角形,得出∠N′OM′=90°,由勾股定理求出M′N′即可.【解答】解:作M关于OB的对称点M′,作N关于OA的对称点N′,如图所示:连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,OM′=OM=,ON′=ON=6,∴在Rt△M′ON′中,M′N′===.故答案为:.三.解答题(共7小题)17.计算:(1)(2x2)3﹣2x2•x3+2x5;(2)(x+y+2)(x+y﹣2)﹣(x+2y)2+3y2.【分析】(1)根据积的乘方、同底数幂的乘法可以解答本题;(2)根据平方差公式和完全平方公式可以解答本题.【解答】解:(1)(2x2)3﹣2x2•x3+2x5=8x6﹣2x5+2x5=8x6;(2)(x+y+2)(x+y﹣2)﹣(x+2y)2+3y2=[(x+y)+2][(x+y)﹣2]﹣(x2+4xy+4y2)+3y2=(x+y)2﹣4﹣x2﹣4xy﹣4y2+3y2=x2+2xy+y2﹣4﹣x2﹣4xy﹣4y2+3y2=﹣2xy﹣4.18.先化简,再求值:(5x3y2﹣3x2y3)÷(﹣xy)﹣3x(2xy﹣y2),其中x=﹣,y=3.【分析】根据多项式除以单项式和单项式乘多项式可以化简题目中的式子,然后将x、y 的值代入化简后的式子即可解答本题.【解答】解:(5x3y2﹣3x2y3)÷(﹣xy)﹣3x(2xy﹣y2)=﹣5x2y+3xy2﹣6x2y+3xy2=﹣11x2y+6xy2,当x=﹣,y=3时,原式=﹣11×(﹣)2×3+6×(﹣)×32=.19.如图,已知△ABC,AB<BC,请用尺规作图的方法在BC上取一点P,使得P A+PC=BC(保留作图痕迹,不写作法)【分析】作AB的垂直平分线交BC于P,则P A=PB,所以P A+PC=PB+PC=BC.【解答】解:如图,点P为所作.20.如图,C是线段AB的中点,且CD∥BE,CD=BE.试猜想AD与CE平行吗?并说明理由.【分析】根据C是线段AB的中点,可得AC=BC,再根据CD∥BE,可得∠ACD=∠CBE,再根据SAS证明△ACD和△CBE全等,得∠A=∠BCE,进而证明AD∥CE.【解答】解:AD与CE平行,理由如下:∵C是线段AB的中点,∴AC=BC,∵CD∥BE,∴∠ACD=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(SAS),∴∠A=∠BCE,∴AD∥CE.21.在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【解答】解:(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是从村庄C到河边的最近路(2)设AC=x在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4由勾股定理得:AC2=AH2+CH2∴x2=(x﹣1.8)2+(2.4)2解这个方程,得x=2.5,答:原来的路线AC的长为2.5千米.22.某商场的一种书法笔每只售价25元,书法练习本每本售价5元.为促销,商场制定了两种优惠方案:买一支书法笔就赠送一本书法练习本;方案二:按够买金额的九折付款,我校书法社团够买10支书法笔,x(x>10)本练习本.(1)请你写出两种优惠方案的实际付款金额y(元)与x(本)之间的关系式.(2)当购买多少本书法练习本时,两种优惠方案的实付金额一样?【分析】(1)y1(元)=书法笔总价钱+(x﹣10)本练习本总价钱;y2(元)=(书法笔总价钱+练习本总价钱)×0.9,根据这两个相等关系列式即可;(2)比较(1)中的关系式列出方程解答即可.【解答】解:(1)y1=25×10+(x﹣10)×5=5x+200;y2=(25×10+5x)×0.9=4.5x+225.(2)当y1=y2时,即5x+200=4.5x+225,解得:x=50;答:当购买50本书法练习本时,两种优惠方案的实付金额一样23.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C →B→A的路径,以2cm每秒的速度运动,设运动时间为t秒.(1)当t=1s时,求△ACP的面积.(2)t为何值时,线段AP是∠CAB的平分线?(3)请利用备用图2继续探索:当△ACP是等腰三角形时,求t的值.【分析】(1)当t=1s时,△ACP是直角三角形,根据公式求△ACP的面积;(2)如图3,过P作PH⊥AB于H,Rt△PHB中,PB=8﹣2t,根据勾股定理列方程可求解;(3)分四种情况进行讨论:①如图4,根据AC=CP列式求解;②如图5,根据AC=AP列式求解;③如图6,AP=PC,根据AP=PB列式求解;④如图7,AC=CP,根据AP的值列式求解.【解答】解:(1)如图1,点P在BC上,由题意得:CP=2t,当t=1时,PC=2,∴S△ACP=AC•PC=×6×2=6;如图2,Rt△ACB中,由勾股定理得:AB==10,(2)如图3,AP平分∠CAB,过P作PH⊥AB于H,∵∠C=90°,∴PC=PH=2t,∵∠C=∠AHP=90°,AP=AP,∴△ACP≌△AHP,∴AH=AC=6,∴BH=4,在Rt△PHB中,PB=8﹣2t,∴(2t)2+42=(8﹣2t)2,t=;则当t=时,线段AP是∠CAB的平分线;(3)当△ACP是等腰三角形时,有四种情况:①如图4,AC=CP,2t=6,t=3,②如图5,AC=AP,18﹣2t=6,t=6,③如图6,AP=PC,过P作PG⊥AC于G,∵∠C=90°,∴PG∥BC,∴AP=PB,即18﹣2t=2t﹣8,t=,④如图7,AC=CP,过C作CM⊥AB于M,∴AM=PM,tan∠CAB==,设CM=4x,AM=3x,则AC=5x,5x=6,x=,∴AP=6x=6×=,18﹣2t=,t=5.4,综上所述,当△ACP是等腰三角形时,t的值是3s或6s或s或5.4s.1、三人行,必有我师。
苏州市工业园区2019~2019学年第二学期期末教学调研
初一数学
一、选择题(本大题共10小题,每小题2分,共20分,每小题只有一个选项是正确的,把正确选项前的字母填入下表中)
题号 1 2 3 4 5 6 7 8 9 10 答案
1.下列各方程中是二元一次方程的是 A .122x y +
= B .5xy x += C .22350x y +-= D .124
x y
+=- 2.三角形的高线是
A .直线
B .线段
C .射线
D .三种情况都可能 3.用下列各组数据作为长度的三条线段能组成三角形的是
A .3,3,8
B .5,6,11
C .3,4,5
D .2,7,4 4.“如果a ,b 是实数,那么a +b =b +a ”是
A .必然事件
B .不可能事件
C .随机事件
D .无法确定 5.若(x +k)(x -4)的积中不含有x 的一次项,则k 的值为
A .0
B .4
C .-4
D .-4或4 6.用操作计算器的方法计算(3.1×105)×(7.6×108),按的第5个键是
7.如图,已知AB ∥CD ,AB =CD ,AE =FD ,则图中的全等三角形有
A .1对
B .2对
C .3对
D .4对
8.若方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则方程组()()()()223113
325130.9x y x y ⎧+--=⎪⎨++-=⎪⎩的解是
A .8.31.2x y =⎧⎨=⎩
B .10.32.2x y =⎧⎨=⎩
C . 6.32.2x y =⎧⎨=⎩
D .10.3
0.2x y =⎧⎨=⎩
9.如图,AB ∥DE ,则下列说法中一定正确的是
A .∠1=∠2+∠3
B .∠1+∠2-∠3=180°
C .∠1+∠2+∠3=270°
D .∠1-∠2+∠3=90°
10.现有纸片:4张边长为a 的正方形,3张边长为b 的正方形,8张宽为a 、长为b 的长方形,用这15
张纸片重新拼出一个长方形,那么该长方形的长为
A .2a +3b
B .2a +b
C .a +3b
D .无法确定
二、填空题(本大题共10小题,每小题2分,共20分)请把最后结果填在题中横线上. 11.三角形的内角和是_______度. 12.若2x +y -3=0,则4x ×2y =_______.
13.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156m ,则这个数用科学记
数法表示是_______m .
14.若a +b =6,ab =4,则(a -b )2=_______.
15.若多项式x 2+k x -6有一个因式是(x -2),则k =_______
16.如图,ABCDE 是封闭折线,则∠A 十∠B +∠C +∠D +∠E 为_______度.
17.如图,△ABE 和△ACD 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠BAC =150°,则∠θ的
度数是_______.
18.方程5x +3y =54共有_______组正整数解..... 19.下列各式是个位数为5的整数的平方运算:
152=225;252=625;352=1225;452=2025;552=3025;652=4225;………; 观察这些数都有规律,如果x 2=9025,试利用该规律直接写出x 为_______.
20.如图,△ABC 的顶点都在小正方形的顶点上,在方格纸上画的格点三角形与△ABC 全等且仅有1条
公共边,不同的三角形共有_______个.
三、解答题(本大题共11小题,共60分,解答应写出必要的计算过程、推演步骤或文字说明)
21.(本小题5分)计算:()()()0
320112011130.252⎛⎫-+---⨯ ⎪⎝⎭
22.(本小题5分)解方程组:
32
210 x y
x y
-=⎧
⎨
+=⎩
23.(本小题5分)分解因式:
(1) 4x2-1 (2)81x4-72x2y2+16y4
24.(本小题5分)先化简,再求值:(x+y)2-3x(x+3y)+2(x+2y)(x-2y),其中x=-1
3
,y=
1
3
.
25.(本小题5分)为增强学生的身体素质,教育行政部门
规定学生每天参加户外活动的平均时间不少于1小
时,为了解学生参加户外活动的情况,对部分学生参加
户外活动的时间进行抽样调查,并将调查结果绘制作成
如右方两幅不完整的统计图,请你根据图中提供的信息
解答下列问题:
(1)这次调查的人数有_______人;
(2)求表示户外活动时间l小时的扇形圆心角的度数为_______.
(3)本次调查中学生参加户外活动的平均时间是否符合要求?
请说明理由.
26.(本小题5分)如图,AD∥BC,AB∥DE,点E在BC上,若∠AEB=∠DEC.∠AED=50℃,则∠BAD 为多少度?
27.(本小题5分)在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了.请判断以下事件是可能发生,还是不可能发生,或者必然发生.
(1)从口袋中任意取出1个球,是一个白球;
(2)从口袋中一次任意取出5个球,全是蓝球;
(3)从口袋中一次任意取出5个球,只有蓝球和白球,没有红球;
(4)从口袋中一次任意取出6个球,恰好红、蓝、白三种颜色的球都齐全了;
(5)从口袋中一次任意取出6个球,有红色的球;
28.(本小题6分)如图,在△ABC中,∠B=30°,∠C=50°,AE是∠BAC的平分线,AD是高.
(1)求∠BAE的度数;
(2)求∠EAD的度数.
29.(本小题6分)用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,
求每块地砖的长与宽。
30.(本小题6分)如图1和图2,∠ACB=90°,AC=BC,BD⊥DE,AE⊥DE,垂足分别为D、E.
(1)图1中,①证明:△ACE≌△CBD;
②若AE=a,BD=b,计算△ACB的面积.
(2)图2中,若AE=a,BD=b,(b>a)计算梯形ADBE的面积.
综合与实践活动
31.(本小题7分)为了有效的使用好资源,某市电业局从2005年1月起进行居民峰谷用电试点,每天8:00~21:00用一度电为0.56元(峰电价),21:00~次日8:00用一度电为0.35元(谷电价),而目前不使用“峰谷”电的居民用一度电为0.53元
(1)同学小丽家某月使用“峰谷电”后,应支付电费99.4元,已知“峰电”度数占总用电度数的70%,请你
计算一下,小丽家当月使用“峰电”和“谷电”各多少度?
(2)假设小丽家该月用电210度,请你计算一下:当“峰电”用电量不超过多少度时,使用“峰谷”电合
算?。