2019年苏州市工业园区七年级上册期末数学试题(有答案)-精选
- 格式:doc
- 大小:313.00 KB
- 文档页数:20
2019-2020学年江苏省苏州市工业园区七年级(上)期末数学试卷一、选择题(20分)1.(3分)5-的相反数是( ) A .5-B .5C .15D .15-2.(3分)若x y >,则下列式子错误的是( ) A .33x y ->-B .33x y ->-C .32x y +>+D .33x y> 3.(3分)国家体育场“鸟巢”的建筑面积达2258000m ,用科学记数法表示为( ) A .525.810⨯B .52.5810⨯C .62.5810⨯D .70.25810⨯4.(3分)下列计算正确的是( ) A .325a b ab += B .532y y -= C .277a a a +=D .22232x y yx x y -=5.(3分)下列图形中,能够折叠成一个正方体的是( )A .B .C .D .6.(3分)已知点在线段上,下列条件中不能确定点C 是线段AB 中点的是( ) A .AC BC =B .2AB AC =C .AC BC AB +=D .12BC AB =7.(3分)如图,一副三角尺按不同的位置摆放,摆放位置中α∠与β∠一定相等的图形个数共有( )A .1个B .2个C .3个D .4个8.(3分)已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( ) A .51x --B .51x +C .131x -D .26131x x +-9.(3分)甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队.如果设应从乙队调x 人到甲队,列出的方程正确的是( ) A .1272(196)3x x +=-B .1(272)1963x x -=-C .1(272)1963x x +=-D .12721963x x ⨯+=-10.(3分)在一列数:1a ,2a ,3a ,⋯,n a 中,17a =,21a =,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2021个数是( ) A .1B .3C .7D .9二、填空题(16分)11.(3分)单项式33x y -的系数是 ,次数是 .12.(3分)若3842α'∠=︒,则α∠的余角是 .13.(3分)如图是一把剪刀,若60AOB COD ∠+∠=︒,则BOD ∠= ︒.14.(3分)如图所示,将图沿虚线折起来,得到一个正方体,那么“3”的对面是 (填编号).15.(3分)已知关于x 的方程359k x -=的解是非负数,则k 的取值范围为 . 16.(3分)已知有理数a 、b 表示的点在数轴上的位置如图所示,化简:|||1|b a a --+= .17.(3分)如图是一个数值转换机.若输出的结果为10,则输入a 的值为 .18.(3分)在数轴上,点A(表示整数)a在原点O的左侧,点B(表示整数)b在原点O的右侧,若||2019a b-=,且2AO BO=,则a b+的值为.三、解答题(64分)19.(6分)计算:(1)12(8)(7)15--+--(2)42112(3)522-+⨯--÷⨯20.(6分)解方程或不等式(1)123123x x+--=(2)2(3)4(3)x x x+>--21.(5分)求不等式组2151132513(1)x xx x-+⎧-⎪⎨⎪-<+⎩的整数解.22.(5分)先化简,再求值:22222(32)3(3)a b ab ab a b---+,其中2|1|(2)0a b-++=.23.(6分)在如图所示的55⨯的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使//CD AB,并画出直线CD;②标出格点E,使CE AB⊥,并画出直线CE.(2)计算ABC∆的面积.24.(5分)用5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是立方单位,表面积是平方单位(包括底面积);(2)请在方格纸中用实线画出它的三个视图.25.(6分)定义一种新运算“⊕”: 2a b a ab =-⊕,比如1(3)211(3)5-=⨯-⨯-=⊕ (1)求(2)3-⊕的值;(2)若(3)(1)5x x -=+⊕⊕,求x 的值;(3)若12(1)x y =⊕⊕,求代数式241x y ++的值. 26.(7分)请用一元一次方程解决下面的问题:一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售,将亏本30元;如果按标价的8折出售,将盈利60元. (1)每件服装的标价是多少元? (2)为保证不亏本,最多能打几折?27.(9分)如图,直线AB 与CD 相交于点O ,OE 是COB ∠的平分线,OE OF ⊥. (1)图中BOE ∠的补角是 ;(2)若2COF COE ∠=∠,求BOE ∠的度数;(3)试判断OF 是否平分AOC ∠,并说明理由;请说明理由.28.(9分)如图,在数轴上,点A 表示10-,点B 表示11,点C 表示18.动点P 从点A 出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q 从点C 出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t 秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN PC的值.2019-2020学年江苏省苏州市工业园区七年级(上)期末数学试卷参考答案与试题解析一、选择题(20分)1.(3分)5-的相反数是( ) A .5-B .5C .15D .15-【分析】根据相反数的定义直接求得结果. 【解答】解:5-的相反数是5. 故选:B .【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.(3分)若x y >,则下列式子错误的是( ) A .33x y ->-B .33x y ->-C .32x y +>+D .33x y> 【分析】根据不等式的性质对各个选项逐一判断,选出错误一项即可. 【解答】解:x y >,x y ∴-<-,33x y ∴-<-,A 错误; x y >,33x y ∴->-,正确;x y >,33x y ∴+>+,32x y ∴+>+,C 正确; x y >,∴33x y>,D 正确, 故选:A .【点评】本题考查的是不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变.3.(3分)国家体育场“鸟巢”的建筑面积达2258000m ,用科学记数法表示为( ) A .525.810⨯B .52.5810⨯C .62.5810⨯D .70.25810⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:将258000用科学记数法表示为52.5810⨯. 故选:B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(3分)下列计算正确的是( ) A .325a b ab += B .532y y -= C .277a a a +=D .22232x y yx x y -=【分析】根据合并同类项的法则,可得答案. 【解答】解:A 、不是同类项不能合并,故A 错误;B 、系数相加字母部分不变,故B 错误;C 、系数相加字母部分不变,故C 错误;D 、系数相加字母部分不变,故D 正确;故选:D .【点评】本题考查了合并同类项,系数相加字母部分不变,注意不是同类项的不能合并. 5.(3分)下列图形中,能够折叠成一个正方体的是( )A .B .C .D .【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:正方体的展开图的每个面都有对面,故B 符合题意; 故选:B .【点评】本题考查了展开图折叠成几何体,只要有“田”字格的展开图都不是正方体的表面展开图.6.(3分)已知点在线段上,下列条件中不能确定点C 是线段AB 中点的是( ) A .AC BC =B .2AB AC = C .AC BC AB +=D .12BC AB =【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A 、B 、D 都可以确定点C 是线段AB 中点【解答】解:A 、AC BC =,则点C 是线段AB 中点;B 、2AB AC =,则点C 是线段AB 中点;C 、AC BC AB +=,则C 可以是线段AB 上任意一点;D 、12BC AB =,则点C 是线段AB 中点. 故选:C .【点评】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可. 7.(3分)如图,一副三角尺按不同的位置摆放,摆放位置中α∠与β∠一定相等的图形个数共有( )A .1个B .2个C .3个D .4个【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【解答】解:图①,18090αβ∠+∠=︒-︒,互余; 图②,根据同角的余角相等,αβ∠=∠; 图③,180αβ∠+∠=︒,互补. 图④,根据等角的补角相等αβ∠=∠; 故选:B .【点评】本题考查了余角和补角,是基础题,熟记概念与性质是解题的关键. 8.(3分)已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( ) A .51x --B .51x +C .131x -D .26131x x +-【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果. 【解答】解:根据题意列得:2222(341)(39)3413951x x x x x x x x x +--+=+---=--. 故选:A .【点评】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.9.(3分)甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队.如果设应从乙队调x 人到甲队,列出的方程正确的是( ) A .1272(196)3x x +=-B .1(272)1963x x -=-C .1(272)1963x x +=-D .12721963x x ⨯+=-【分析】等量关系为:乙队调动后的人数13=甲队调动后的人数,把相关数值代入求解即可.【解答】解:设应该从乙队调x 人到甲队, 1196(272)3x x -=+,故选:C .【点评】考查了一元一次方程的应用,得到调动后的两队的人数的等量关系是解决本题的关键.10.(3分)在一列数:1a ,2a ,3a ,⋯,n a 中,17a =,21a =,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2021个数是( ) A .1B .3C .7D .9【分析】根据题意可以写出这列数的前几个数,从而可以发现数字的变化特点,进而可以得到这一列数中的第2021个数. 【解答】解:由题意可得, 17a =, 21a =, 37a =, 47a =, 59a =, 63a =, 77a =, 81a =,⋯,202163365÷=⋯,∴这一列数中的第2021个数是9,故选:D .【点评】本题考查数字的变化类、尾数特征,解答本题的关键是明确题意,发现数字的变化的特点,求出相应的数据. 二、填空题(16分)11.(3分)单项式33x y -的系数是 13- ,次数是 .【分析】根据单项式系数及次数的定义进行解答即可.【解答】解:单项式33x y -的数字因数是13-,所有字母指数的和314=+=,∴此单项式的系数是13-,次数是4,故答案为:13-,4.【点评】本题考查的是单项式,熟知单项式系数及次数的定义是解答此题的关键. 12.(3分)若3842α'∠=︒,则α∠的余角是 5118'︒ . 【分析】根据互为余角的两角之和为90︒,即可得出答案. 【解答】解:3842a ∠=︒',a ∴∠的余角是9038425118︒-︒'=︒'.故答案为:5118︒'.【点评】本题考查了余角的知识,属于基础题,解答本题的关键是熟记互为余角的两角之和为90︒.13.(3分)如图是一把剪刀,若60AOB COD ∠+∠=︒,则BOD ∠= 150 ︒.【分析】先根据对顶角相等得出30AOB ∠=︒,再由邻补角性质可得答案. 【解答】解:AOB COD ∠=∠,且60AOB COD ∠+∠=︒, 30AOB ∴∠=︒,则180150BOD AOB ∠=︒-∠=︒,故答案为:150.【点评】本题主要考查对顶角、邻补角,解题的关键是掌握对顶角和邻补角的定义和性质.14.(3分)如图所示,将图沿虚线折起来,得到一个正方体,那么“3”的对面是6(填编号).【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“3”相对的面上的数字是“6”.故答案为:6.【点评】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.15.(3分)已知关于x的方程359k x-=的解是非负数,则k的取值范围为3k.【分析】把k看作已知数表示出方程的解,根据解为非负数,确定出k的范围即可.【解答】解:方程359k x-=,解得:395kx-=,由题意得:395k-,解得:3k.故答案为:3k.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.(3分)已知有理数a、b表示的点在数轴上的位置如图所示,化简:|||1|b a a--+= 1b+.【分析】根据图示,可知有理数a,b的取值范围b a>,1a<-,然后根据它们的取值范围去绝对值并求|||1|b a a--+的值.【解答】解:根据图示知:b a>,1a<-,|||1|b a a ∴--+(1)b a a =----1b a a =-++1b =+.故答案为:1b +.【点评】本题主要考查了关于数轴的知识以及有理数大小的比较.17.(3分)如图是一个数值转换机.若输出的结果为10,则输入a 的值为 4± .【分析】首先用输出的结果除以0.5,求出商是多少;然后用所得的商减去4,求出差是多少,再求出所得的差的平方根即可.【解答】解:输出的结果为10, ∴输入a 的值为:100.54±÷-16=4=±故答案为:4±.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.(3分)在数轴上,点A (表示整数)a 在原点O 的左侧,点B (表示整数)b 在原点O 的右侧,若||2019a b -=,且2AO BO =,则a b +的值为 673- .【分析】根据已知条件可以得到0a b <<.然后通过取绝对值,根据两点间的距离定义知2019b a -=,2a b =-,则易求a 、b 的值,即可确定出a b +的值.【解答】解:如图,0a b <<.||2019a b -=,且2AO BO =,2019b a ∴-=①,2a b =-②,由①②,解得673b=,2673a b b b b∴+=-+=-=-.故答案为:673-.【点评】此题考查了数轴,绝对值以及两点间的距离,根据已知条件得到0a b<<是解题的关键.三、解答题(64分)19.(6分)计算:(1)12(8)(7)15--+--(2)42112(3)522-+⨯--÷⨯【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【解答】解:(1)12(8)(7)15--+--128(7)(15)=++-+-2=-;(2)42112(3)522-+⨯--÷⨯129522=-+⨯-⨯⨯11820=-+-3=-.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.(6分)解方程或不等式(1)123123 x x +--=(2)2(3)4(3)x x x+>--【分析】(1)先去分母,再去括号,移项、合并同类项,把x的系数化为1即可(2)去括号,移项、合并同类项,把x的系数化为1即可.【解答】解:(1)去分母得,3(1)62(23)x x+-=-,去括号得,33646x x+-=-,移项得,36463x x+=+-,合并同类项得,97x =,把x 的系数化为1得,79x =;(2)去括号得,2643x x x +>-+,移项得,2436x x x -+>-,合并同类项得,3x ->-,把x 的系数化为1得,3x <.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.21.(5分)求不等式组2151132513(1)x x x x -+⎧-⎪⎨⎪-<+⎩的整数解. 【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:()21511325131x x x x -+⎧-⎪⎨⎪-<+⎩①②, 由①得:1x -,由②得:2x <,∴不等式组的解集为:12x -<,∴不等式组的整数解是1-、0、1.【点评】本题考查了不等式的性质、解一元一次不等式(组)、一元一次不等式组的整数解,关键是能根据不等式的解集找出不等式组的解集.22.(5分)先化简,再求值:22222(32)3(3)a b ab ab a b ---+,其中2|1|(2)0a b -++=.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入原式计算即可求出值.【解答】解:原式22222264393a b ab ab a b ab a b =-+-=--,由题意得:1a =,2b =-,则原式462=-+=.【点评】此题考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.23.(6分)在如图所示的55⨯的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使//CD AB,并画出直线CD;②标出格点E,使CE AB⊥,并画出直线CE.(2)计算ABC∆的面积.【分析】(1)直接利用网格得出AB的平行线CD;直接利用网格结合垂线的作法得出答案;(2)根据三角形的面积公式解答即可.【解答】解:(1)如图所示:(2)111333122314222ABCS∆=⨯-⨯⨯-⨯⨯-⨯⨯=.【点评】此题主要考查了垂线段的性质以及平行线的性质等知识,正确得出对应点位置是解题关键.24.(5分)用5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是5立方单位,表面积是平方单位(包括底面积);(2)请在方格纸中用实线画出它的三个视图.【分析】(1)根据立方体的体积和表面积公式进行计算即可;(2)主视图有3列,从左往右每一列小正方形的数量为2,1,1;左视图有2列,从左往右每一列小正方形的数量为2,1;俯视图有3列,从左往右小正方形的个数为1,2,1.【解答】解:(1)几何体的体积:11155⨯⨯⨯=(立方单位),表面积:11(4432)22⨯⨯⨯+⨯=(平方单位).故该几何体的体积是5立方单位,表面积是22平方单位;(2)如图所示:故答案为:5,22.【点评】此题主要考查了画几何体的三视图,关键是掌握三视图所看位置.25.(6分)定义一种新运算“⊕”: 2a b a ab =-⊕,比如1(3)211(3)5-=⨯-⨯-=⊕(1)求(2)3-⊕的值;(2)若(3)(1)5x x -=+⊕⊕,求x 的值;(3)若12(1)x y =⊕⊕,求代数式241x y ++的值.【分析】(1)原式利用题中的新定义计算即可求出值;(2)已知等式利用题中的新定义化简,计算即可求出x 的值;(3)已知等式利用题中的新定义化简,计算求出2x y +的值,代入原式计算即可求出值.【解答】解:(1)根据题中的新定义得:原式462=-+=;(2)已知等式利用题中的新定义化简得:632255x x x -+=+--,移项合并得:63x =, 解得:12x =; (3)已知等式利用题中的新定义化简得:242x x y -=-,即24x y +=,则原式2(2)1819x y =++=+=.【点评】此题考查了解一元一次方程,有理数的混合运算,以及代数式求值,弄清题中的新定义是解本题的关键.26.(7分)请用一元一次方程解决下面的问题:一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售,将亏本30元;如果按标价的8折出售,将盈利60元.(1)每件服装的标价是多少元?(2)为保证不亏本,最多能打几折?【分析】通过理解题意可知本题的等量关系:(1)无论亏本或盈利,其成本价相同;(2)成本价=服装标价⨯折扣.【解答】解:(1)设每件服装标价为x 元.0.5300.860x x +=-,0.390x =,解得:300x =.故每件服装标价为300元;(2)设能打x 折.由(1)可知成本为:0.530030180⨯+, 由题意知:30018010x ⨯, 解得:6x .故最多能打6折.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.27.(9分)如图,直线AB 与CD 相交于点O ,OE 是COB ∠的平分线,OE OF ⊥.(1)图中BOE ∠的补角是 AOE ∠或DOE ∠ ;(2)若2COF COE ∠=∠,求BOE ∠的度数;(3)试判断OF 是否平分AOC ∠,并说明理由;请说明理由.【分析】(1)根据平角的意义,依据图形可直接得出答案;(2)根据互余和2COF COE ∠=∠,可求出COF ∠、COE ∠,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明FOA COF ∠=∠即可.【解答】解:(1)180AOE BOE AOB ∠+∠=∠=︒,180COE DOE COD ∠+∠=∠=︒,COE BOE ∠=∠ BOE ∴∠的补角是AOE ∠,DOE ∠故答案为:AOE ∠或DOE ∠;(2)OE OF ⊥.2COF COE ∠=∠,290603COF ∴∠=⨯︒=︒,190303COE ∠=⨯︒=︒, OE 是COB ∠的平分线,30BOE COE ∴∠=∠=︒;(3)OF 平分AOC ∠,OE 是COB ∠的平分线,OE OF ⊥.BOE COE ∴∠=∠,90COE COF ∠+∠=︒,180BOE EOC COF FOA ∠+∠+∠+∠=︒,90COE FOA ∴∠+∠=︒,FOA COF ∴∠=∠,即,OF平分AOC∠.【点评】考查互为余角、互为补角、角平分线的意义,通过图形直观,得到各个角之间的关系式解决问题的关键.28.(9分)如图,在数轴上,点A表示10-,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN PC-的值.【分析】(1)根据题意,由P、Q两点的路程和为28列出方程求解即可;(2)由题意得,t的值大于0且小于7.分点P在点O的左边,点P在点O的右边两种情况讨论即可求解;(3)根据中点的定义得到12AN PN AP t===,可得28CN AC AN t=-=-,28282PC AP t=-=-,再代入计算即可求解.【解答】解:(1)根据题意得228t t+=,解得283t=,56103AM ∴=>, M ∴在O 的右侧,且56261033OM =-=, ∴当283t =时,P 、Q 两点相遇,相遇点M 所对应的数是263; (2)由题意得,t 的值大于0且小于7.若点P 在点O 的左边,则1027t t -=-,解得3t =.若点P 在点O 的右边,则2107t t -=-,解得173t =. 综上所述,t 的值为3或173时,点P 到点O 的距离与点Q 到点B 的距离相等; (3)N 是AP 的中点,12AN PN AP t ∴===, 28CN AC AN t ∴=-=-,28282PC AP t =-=-,22(28)(282)28CN PC t t -=---=.【点评】本题考查了一元一次方程的应用,数轴.解题时,一定要“数形结合”,这样使抽象的问题变得直观化,降低了题的难度.。
江苏省苏州市工业园区七年级(上)期末数学试卷一、选择题:本大题共10小题,每小题2分,共20分.每小题只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上.1.﹣2的倒数是()A.﹣B.C.﹣2 D.22.我国钓鱼岛周围海域面积约为170 000m2,该数据用科学记数法可以表示为()A.0.17×106B.1.7×105 C.17×104D.170×1033.下列各数中的无理数是()A.0.101 001 000 1 B.C.D.π得到右图的是()4.下列基本图形中,经过平移、旋转或翻折后,不能..A.B.C.D.5.下面的四个图形都是由大小相同的正方形组成的,其中能围成正方体的是()A.B.C.D.6.已知点在线段上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.7.某校七年级405名师生外出旅游,租用45座和40座的两种客车,如果45座的客车租用了2辆,那么需租用40座的客车()A.最少8辆B.最多8辆C.最少7辆D.最多7辆8.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为()A.26元B.27元C.28元D.29元9.在同一平面内,∠AOB=70°,∠BOC=40°,则∠AOC的度数为()A.110°B.30°C.110°或150°D.30°或110°10.若关于的不等式3﹣a≤0的正整数解是1、2、3,则a应满足的条件是()A.a=9 B.a≤9 C.9<a≤12 D.9≤a<12二、填空题:本大题共8小题,每小题2分,共16分.请将答案填在答题卡相应位置上.11.比较大小:﹣0.4 ﹣.12.计算:﹣t﹣t﹣t= .13.若∠α=23°36′,则∠α的补角为°.14.若方程a﹣1=+3的解是=2,则a= .15.10点30分时,钟面上时针与分针所成的角等于度.16.如图,是一个数值转换机的示意图.若输出的结果是6,则输入的数等于.17.若代数式5a﹣3b的值是﹣2,则代数式2(a﹣b)+4(2a﹣b)+3的值等于.18.点A、B、C在同一条数轴上,且点A表示的数为﹣17,点B表示的数为﹣2.若BC=AB,则点C表示的数为.三、解答题:本大题共11小题,共64分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.计算:8﹣23÷(﹣4)×(﹣3+1).20.解方程:+(+2)=2.21.解不等式组:.22.已知a=﹣1,b=2,求代数式5(2a2b﹣ab2)﹣4(ab2+3a2b)的值.23.如图,方格纸中每个小正方形的边长都是1,点A、B是方格纸中的两个格点(即小正方形的顶点).(1)请在方格纸中以AB为边作正方形ABCD;(提醒:请用黑色笔再加涂一下所作的线段)(2)正方形ABCD的面积为.24.如图,l是一条笔直的公路,A、B是两个新建小区.为方便居民出行,有关部门准备在公路边增设公交站点,为此需要修建站点到小区的道路.为节约资金,要求修建的道路最短.(1)若增设1个站点C,请在图①中画出站点及所修建的道路;(2)若增设2个站点D、E,请在图②中画出站点D、E及所修建的道路.25.如图是用10块完全相同的小正方体搭成的几何体.(1)请在空白的方格中画出它的三个视图;(2)若保持主视图和俯视图不变,最多还可以再搭块小正方体.26.某小组计划做一批“中华结”.如果每人做6个,那么比计划多了8个;如果每人做4个,那么比计划少了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.27.已知OA⊥OB,OC为一条射线,OD、OE分别是∠AOC、∠BOC的平分线.(1)如图①,当OC在∠AOB的内部时,∠DOE= °.(2)如图②,当OC在∠AOB的外部时,求∠DOE的度数.28.将若干枚棋子平均分成三堆(每堆至少2枚),分别放在左边、中间、右边,并按如下顺序进行操作:第1次:从右边一堆中拿出2枚棋子放入中间一堆;第2次:从左边一堆中拿出1枚棋子放入中间一堆;第3次:从中间一堆中拿出几枚棋子放入右边一堆,并使右边一堆的棋子数为最初的2倍.(1)操作结束后,若右边一堆比左边一堆多15枚棋子,问共有多少枚棋子?(2)小明认为:无论最初的棋子数为多少,按上述方法完成操作后,中间一堆总是剩下1枚棋子,你同意他的看法吗?请说明理由.29.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB= ;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC BD;(填“=”或“≠”)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.江苏省苏州市工业园区七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题2分,共20分.每小题只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上.1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【考点】倒数.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.2.我国钓鱼岛周围海域面积约为170 000m2,该数据用科学记数法可以表示为()A.0.17×106B.1.7×105 C.17×104D.170×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:170 000m2,该数据用科学记数法可以表示为1.7×105,故选:B.3.下列各数中的无理数是()A.0.101 001 000 1 B.C.D.π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0.1010010001,,0.是有理数,π是无理数,故选:D.得到右图的是()4.下列基本图形中,经过平移、旋转或翻折后,不能..A.B.C.D.【考点】利用旋转设计图案;利用轴对称设计图案;利用平移设计图案.【分析】利用平移和旋转对A进行判断;利用旋转对B进行判断;利用翻折对D进行判断.【解答】解:A、把平移得到,然后把旋转可得到右图;B、把旋转可得到右图;C、把经过平移、旋转或翻折后,都不能得到右图;D、把翻折后可得到右图.故选C.5.下面的四个图形都是由大小相同的正方形组成的,其中能围成正方体的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A,C,D折叠后都有一行两个面无法折起,而且缺少一个面,所以不能折成正方体.故选:B.6.已知点在线段上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.【考点】两点间的距离.【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【解答】解:解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=AB,则点C是线段AB中点.故选C.7.某校七年级405名师生外出旅游,租用45座和40座的两种客车,如果45座的客车租用了2辆,那么需租用40座的客车()A.最少8辆B.最多8辆C.最少7辆D.最多7辆【考点】一元一次方程的应用.【分析】设需租用40座的客车辆,根据题意可得不等关系:45座的客车座的人数+40座的客车座的人数≥405,根据不等关系列出不等式,再解即可.【解答】解:设需租用40座的客车辆,由题意得:45×2+40≥405,解得:≥7,∵为整数,∴最小为8,故选:A.8.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为()A.26元B.27元C.28元D.29元【考点】一元一次方程的应用.【分析】根据题意,实际售价=进价+利润.九折即标价的90%;可得一元一次的关系式,求解可得答案.【解答】解:设标价是元,根据题意则有:0.9=21(1+20%),解可得:=28,故选C.9.在同一平面内,∠AOB=70°,∠BOC=40°,则∠AOC的度数为()A.110°B.30°C.110°或150°D.30°或110°【考点】角的计算.【分析】分OC在∠AOB内和OC在∠AOB外两种情况考虑,依此画出图形,根据角与角之间结合∠AOB、∠BOC的度数,即可求出∠AOC的度数.【解答】解:当OC在∠AOB内时,如图1所示.∵∠AOB=70°,∠BOC=40°,∴∠AOC=∠AOB﹣∠BOC=30°;当OC在∠AOB外时,如图2所示.∵∠AOB=70°,∠BOC=40°,∴∠AOC=∠AOB+∠BOC=110°.故选D.10.若关于的不等式3﹣a≤0的正整数解是1、2、3,则a应满足的条件是()A.a=9 B.a≤9 C.9<a≤12 D.9≤a<12【考点】一元一次不等式的整数解.【分析】解不等式3﹣a≤0得≤a,其中,最大的正整数为3,故3≤a<4,从而求解.【解答】解:解不等式3﹣a≤0,得≤a,∵不等式的正整数解是1,2,3,∴3≤a<4,解得9≤a<12.故选D.二、填空题:本大题共8小题,每小题2分,共16分.请将答案填在答题卡相应位置上.11.比较大小:﹣0.4 >﹣.【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣0.4>﹣.故答案为:>.12.计算:﹣t﹣t﹣t= ﹣3t .【考点】合并同类项.【分析】直接利用合并同类项法则化简求出即可.【解答】解:﹣t﹣t﹣t=﹣3t.故答案为:﹣3t.13.若∠α=23°36′,则∠α的补角为156.4°°.【考点】余角和补角;度分秒的换算.【分析】由补角的定义列出算式,然后进行计算即可.【解答】解:∠α的补角=180°﹣∠a=180°﹣23°36′=179°60′﹣23°36′=156°24′.156°24′=156.4°故答案为:156.4°14.若方程a﹣1=+3的解是=2,则a= 3 .【考点】一元一次方程的解.【分析】把=2代入方程即可得到一个关于a的方程,从而求得a的值.【解答】解:把=2代入方程,得2a﹣1=2+3,解得a=3.故答案是:3.15.10点30分时,钟面上时针与分针所成的角等于135 度.【考点】钟面角.【分析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.【解答】解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+×30°=135°.故答案为135.16.如图,是一个数值转换机的示意图.若输出的结果是6,则输入的数等于5或﹣7 .【考点】有理数的混合运算.【分析】根据输出的结果是6,可得:输入的数与1的和的绝对值是6或﹣6,据此求出输入的数为多少即可.【解答】解:∵输出的结果是6,∴输入的数与1的和的绝对值是6或﹣6,∵6﹣1=5,﹣6﹣1=﹣7,∴输入的数等于5或﹣7.故答案为:5或﹣7.17.若代数式5a﹣3b的值是﹣2,则代数式2(a﹣b)+4(2a﹣b)+3的值等于﹣4 .【考点】整式的加减—化简求值.【分析】原式去括号整理后,将已知代数式的值代入计算即可求出值.【解答】解:根据题意得:5a﹣3b=﹣2,则原式=2a﹣2b+8a﹣4b=10a﹣6b=2(5a﹣3b)=﹣4,故答案为:﹣418.点A、B、C在同一条数轴上,且点A表示的数为﹣17,点B表示的数为﹣2.若BC=AB,则点C表示的数为﹣7或3 .【考点】数轴.【分析】设点C表示的数为.由BC=AB列出方程|+2|=×(﹣2+17),解方程即可求解.【解答】解:设点C表示的数为.∵点A表示的数为﹣17,点B表示的数为﹣2,且BC=AB,∴|+2|=×(﹣2+17),解得=﹣7或3.故答案为:﹣7或3.三、解答题:本大题共11小题,共64分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.计算:8﹣23÷(﹣4)×(﹣3+1).【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:8﹣23÷(﹣4)×(﹣3+1)=8﹣8÷(﹣4)×(﹣2)=8+2×(﹣2)=8﹣4=420.解方程:+(+2)=2.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把系数化为1,即可求出解.【解答】解:去分母得:3+2(+2)=24,去括号得:3+2+4=24,移项合并得:5=20,解得:=4.21.解不等式组:.【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵由①得:<2,由②得:≥﹣1,∴不等式组的解集为﹣1≤<2.22.已知a=﹣1,b=2,求代数式5(2a2b﹣ab2)﹣4(ab2+3a2b)的值.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=10a2b﹣5ab2﹣4ab2﹣12a2b=﹣2a2b﹣9ab2,当a=﹣1,b=2时,原式=﹣4+36=32.23.如图,方格纸中每个小正方形的边长都是1,点A、B是方格纸中的两个格点(即小正方形的顶点).(1)请在方格纸中以AB为边作正方形ABCD;(提醒:请用黑色笔再加涂一下所作的线段)(2)正方形ABCD的面积为29 .【考点】作图—应用与设计作图.【分析】(1)根据题意画出图形即可;(2)先根据勾股定理求出正方形的边长,再求出其面积即可.【解答】解:(1)如图所示;(2)∵AB==,=×=29.∴S故答案为:29.24.如图,l是一条笔直的公路,A、B是两个新建小区.为方便居民出行,有关部门准备在公路边增设公交站点,为此需要修建站点到小区的道路.为节约资金,要求修建的道路最短.(1)若增设1个站点C,请在图①中画出站点及所修建的道路;(2)若增设2个站点D、E,请在图②中画出站点D、E及所修建的道路.【考点】作图—应用与设计作图.【分析】(1)根据两点之间线段最短,连接AB与直线l相交即可得解;(2)根据垂线段最短,分别过A、B作直线l的垂线即可得解.【解答】解:(1)如图①,连接AB交直线l与C,则点C就是修建站点的位置;(2)如图②,分别过点A和点B作直线l的垂线,垂足分别为D、E,则D、E就是修建两个站点的位置;.25.如图是用10块完全相同的小正方体搭成的几何体.(1)请在空白的方格中画出它的三个视图;(2)若保持主视图和俯视图不变,最多还可以再搭 3 块小正方体.【考点】作图﹣三视图.【分析】(1)根据物体形状即可画出左视图有三列与以及主视图、俯视图都有三列,进而画出图形;(2)可在最左侧前端放两个后面再放一个即可得出答案.【解答】解:(1)如图所示:;(2)保持主视图和俯视图不变,最多还可以再搭3块小正方体.故答案为:3.26.某小组计划做一批“中华结”.如果每人做6个,那么比计划多了8个;如果每人做4个,那么比计划少了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.【考点】一元一次方程的应用.【分析】首先提出问题:这批“中华结”的个数是多少?设该批“中华结”的个数为个,根据加工总个数=单人加工个数×人数结合该小组人数不变找出关于的一元一次方程,解之即可得出结论.【解答】解:这批“中华结”的个数是多少?设该批“中华结”的个数为个,根据题意得:=,解得:=142.答:这批“中华结”的个数为142个.27.已知OA⊥OB,OC为一条射线,OD、OE分别是∠AOC、∠BOC的平分线.(1)如图①,当OC在∠AOB的内部时,∠DOE= 45 °.(2)如图②,当OC在∠AOB的外部时,求∠DOE的度数.【考点】角平分线的定义.【分析】(1)根据题意画出图形,根据角平行线的定义可知∠COD=∠AOC,∠EOC=∠BOC,然后根据∠EOD=∠COD+∠EOC求解即可;(2)根据题意画出图形,根据角平行线的定义可知∠COD=∠AOC,∠EOC=∠BOC,然后根据∠DOE=∠COD﹣∠COE求解即可.【解答】解:(1)如图①所示:∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠COD=∠AOC,∠EOC=∠BOC.∴∠EOD=∠COD+∠EOC=∠AOC+∠BOC=∠BOA==45°;故答案为:45.(2)如图②所示:∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠COD=∠AOC,∠EOC=∠BOC.∠DOE=∠COD﹣∠COE=∠AOC﹣∠BOC=(∠AOC﹣∠BOC)=∠AOB==45°.28.将若干枚棋子平均分成三堆(每堆至少2枚),分别放在左边、中间、右边,并按如下顺序进行操作:第1次:从右边一堆中拿出2枚棋子放入中间一堆;第2次:从左边一堆中拿出1枚棋子放入中间一堆;第3次:从中间一堆中拿出几枚棋子放入右边一堆,并使右边一堆的棋子数为最初的2倍.(1)操作结束后,若右边一堆比左边一堆多15枚棋子,问共有多少枚棋子?(2)小明认为:无论最初的棋子数为多少,按上述方法完成操作后,中间一堆总是剩下1枚棋子,你同意他的看法吗?请说明理由.【考点】一元一次方程的应用.【分析】(1)根据题意,设最初每堆有枚棋子,根据右边一堆比左边一堆多15枚棋子列方程求解即可.(2)设原平均每份a枚棋子,则最后右边2a枚棋子,左边(a﹣1)枚棋子,总棋子数还是3a,3a﹣2a﹣(a﹣1)=1,继而即可得出结论.【解答】解:(1)设最初每堆有枚棋子,依题意列等式:2﹣(﹣1)=15,解得:=14,3=42.故共有42枚棋子;(2)无论最初的棋子数为多少,最后中间只剩1枚棋子.理由:设原平均每堆a枚棋子,则最后左边2a枚棋子,右边(a﹣1)枚棋子,总枚棋子数还是3a.3a﹣2a﹣(a﹣1)=1,所以最后中间只剩1枚棋子.29.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB= 3π+3 ;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC = BD;(填“=”或“≠”)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.【考点】数轴.【分析】(1)根据线段之间的关系代入解答即可;(2)根据线段的大小比较即可;(3)由题意可知,C点表示的数是π+1,设M点离O点近,且OM=,根据长度的等量关系列出方程求得,进一步得到线段MN的长度;(4)根据圆周率伴侣线段的定义可求D点所表示的数.【解答】解:(1)∵AC=3,BC=πAC,∴BC=3π,∴AB=AC+BC=3π+3.故答案为:3π+3;(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=πAC,AD=πBD,∴设AC=,BD=y,则BC=π,AD=πy,∵AB=AC+BC=AD+BD,∴+π=y+πy,∴=y∴AC=BD故答案为:=.(3)由题意可知,C点表示的数是π+1,M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=,+π=π+1,解得=1,∴MN=π+1﹣1﹣1=π﹣1;(4)D点所表示的数是1、π、π++2、π2+2π+1.。
江苏省苏州市工业园区七年级(上)期末数学试卷一、选择题:本大题共10小题,每小题2分,共20分.每小题只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上.1.﹣2的倒数是()A.﹣ B.C.﹣2 D.22.我国钓鱼岛周围海域面积约为170 000km2,该数据用科学记数法可以表示为()A.0.17×106B.1.7×105C.17×104D.170×1033.下列各数中的无理数是()A.0.101 001 000 1 B.C.D.π4.下列基本图形中,经过平移、旋转或翻折后,不能..得到右图的是()A.B.C.D.5.下面的四个图形都是由大小相同的正方形组成的,其中能围成正方体的是()A.B.C.D.6.已知点在线段上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.7.某校七年级405名师生外出旅游,租用45座和40座的两种客车,如果45座的客车租用了2辆,那么需租用40座的客车()A.最少8辆B.最多8辆C.最少7辆D.最多7辆8.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为()A.26元B.27元C.28元D.29元9.在同一平面内,∠AOB=70°,∠BOC=40°,则∠AOC的度数为()A.110°B.30°C.110°或150°D.30°或110°10.若关于x的不等式3x﹣a≤0的正整数解是1、2、3,则a应满足的条件是()A.a=9 B.a≤9 C.9<a≤12 D.9≤a<12二、填空题:本大题共8小题,每小题2分,共16分.请将答案填在答题卡相应位置上. 11.比较大小:﹣0.4﹣.12.计算:﹣t﹣t﹣t=.13.若∠α=23°36′,则∠α的补角为°.14.若方程ax﹣1=x+3的解是x=2,则a=.15.10点30分时,钟面上时针与分针所成的角等于度.16.如图,是一个数值转换机的示意图.若输出的结果是6,则输入的数等于.17.若代数式5a﹣3b的值是﹣2,则代数式2(a﹣b)+4(2a﹣b)+3的值等于.18.点A、B、C在同一条数轴上,且点A表示的数为﹣17,点B表示的数为﹣2.若BC=AB,则点C表示的数为.三、解答题:本大题共11小题,共64分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.计算:8﹣23÷(﹣4)×(﹣3+1).20.解方程:x+(x+2)=2.21.解不等式组:.22.已知a=﹣1,b=2,求代数式5(2a2b﹣ab2)﹣4(ab2+3a2b)的值.23.如图,方格纸中每个小正方形的边长都是1,点A、B是方格纸中的两个格点(即小正方形的顶点).(1)请在方格纸中以AB为边作正方形ABCD;(提醒:请用黑色笔再加涂一下所作的线段)(2)正方形ABCD的面积为.24.如图,l是一条笔直的公路,A、B是两个新建小区.为方便居民出行,有关部门准备在公路边增设公交站点,为此需要修建站点到小区的道路.为节约资金,要求修建的道路最短.(1)若增设1个站点C,请在图①中画出站点及所修建的道路;(2)若增设2个站点D、E,请在图②中画出站点D、E及所修建的道路.25.如图是用10块完全相同的小正方体搭成的几何体.(1)请在空白的方格中画出它的三个视图;(2)若保持主视图和俯视图不变,最多还可以再搭块小正方体.26.某小组计划做一批“中华结”.如果每人做6个,那么比计划多了8个;如果每人做4个,那么比计划少了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.27.已知OA⊥OB,OC为一条射线,OD、OE分别是∠AOC、∠BOC的平分线.(1)如图①,当OC在∠AOB的内部时,∠DOE=°.(2)如图②,当OC在∠AOB的外部时,求∠DOE的度数.28.将若干枚棋子平均分成三堆(每堆至少2枚),分别放在左边、中间、右边,并按如下顺序进行操作:第1次:从右边一堆中拿出2枚棋子放入中间一堆;第2次:从左边一堆中拿出1枚棋子放入中间一堆;第3次:从中间一堆中拿出几枚棋子放入右边一堆,并使右边一堆的棋子数为最初的2倍.(1)操作结束后,若右边一堆比左边一堆多15枚棋子,问共有多少枚棋子?(2)小明认为:无论最初的棋子数为多少,按上述方法完成操作后,中间一堆总是剩下1枚棋子,你同意他的看法吗?请说明理由.29.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC BD;(填“=”或“≠”)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.2019-2020学年江苏省苏州市工业园区七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题2分,共20分.每小题只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上.1.﹣2的倒数是()A.﹣ B.C.﹣2 D.2【考点】倒数.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.2.我国钓鱼岛周围海域面积约为170 000km2,该数据用科学记数法可以表示为()A.0.17×106B.1.7×105C.17×104D.170×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:170 000km2,该数据用科学记数法可以表示为1.7×105,故选:B.3.下列各数中的无理数是()A.0.101 001 000 1 B.C.D.π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0.1010010001,,0.是有理数,π是无理数,故选:D.4.下列基本图形中,经过平移、旋转或翻折后,不能..得到右图的是()A.B.C.D.【考点】利用旋转设计图案;利用轴对称设计图案;利用平移设计图案.【分析】利用平移和旋转对A进行判断;利用旋转对B进行判断;利用翻折对D进行判断.【解答】解:A、把平移得到,然后把旋转可得到右图;B、把旋转可得到右图;C、把经过平移、旋转或翻折后,都不能得到右图;D、把翻折后可得到右图.故选C.5.下面的四个图形都是由大小相同的正方形组成的,其中能围成正方体的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A,C,D折叠后都有一行两个面无法折起来,而且缺少一个面,所以不能折成正方体.故选:B.6.已知点在线段上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.【考点】两点间的距离.【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C 是线段AB中点【解答】解:解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=AB,则点C是线段AB中点.故选C.7.某校七年级405名师生外出旅游,租用45座和40座的两种客车,如果45座的客车租用了2辆,那么需租用40座的客车()A.最少8辆B.最多8辆C.最少7辆D.最多7辆【考点】一元一次方程的应用.【分析】设需租用40座的客车x辆,根据题意可得不等关系:45座的客车座的人数+40座的客车座的人数≥405,根据不等关系列出不等式,再解即可.【解答】解:设需租用40座的客车x辆,由题意得:45×2+40x≥405,解得:x≥7,∵x为整数,∴x最小为8,故选:A.8.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为()A.26元B.27元C.28元D.29元【考点】一元一次方程的应用.【分析】根据题意,实际售价=进价+利润.九折即标价的90%;可得一元一次的关系式,求解可得答案.【解答】解:设标价是x元,根据题意则有:0.9x=21(1+20%),解可得:x=28,故选C.9.在同一平面内,∠AOB=70°,∠BOC=40°,则∠AOC的度数为()A.110°B.30°C.110°或150°D.30°或110°【考点】角的计算.【分析】分OC在∠AOB内和OC在∠AOB外两种情况考虑,依此画出图形,根据角与角之间结合∠AOB、∠BOC的度数,即可求出∠AOC的度数.【解答】解:当OC在∠AOB内时,如图1所示.∵∠AOB=70°,∠BOC=40°,∴∠AOC=∠AOB﹣∠BOC=30°;当OC在∠AOB外时,如图2所示.∵∠AOB=70°,∠BOC=40°,∴∠AOC=∠AOB+∠BOC=110°.故选D.10.若关于x的不等式3x﹣a≤0的正整数解是1、2、3,则a应满足的条件是()A.a=9 B.a≤9 C.9<a≤12 D.9≤a<12【考点】一元一次不等式的整数解.【分析】解不等式3x﹣a≤0得x≤a,其中,最大的正整数为3,故3≤a<4,从而求解.【解答】解:解不等式3x﹣a≤0,得x≤a,∵不等式的正整数解是1,2,3,∴3≤a<4,解得9≤a<12.故选D.二、填空题:本大题共8小题,每小题2分,共16分.请将答案填在答题卡相应位置上. 11.比较大小:﹣0.4>﹣.【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣0.4>﹣.故答案为:>.12.计算:﹣t﹣t﹣t=﹣3t.【考点】合并同类项.【分析】直接利用合并同类项法则化简求出即可.【解答】解:﹣t﹣t﹣t=﹣3t.故答案为:﹣3t.13.若∠α=23°36′,则∠α的补角为156.4°°.【考点】余角和补角;度分秒的换算.【分析】由补角的定义列出算式,然后进行计算即可.【解答】解:∠α的补角=180°﹣∠a=180°﹣23°36′=179°60′﹣23°36′=156°24′.156°24′=156.4°故答案为:156.4°14.若方程ax﹣1=x+3的解是x=2,则a=3.【考点】一元一次方程的解.【分析】把x=2代入方程即可得到一个关于a的方程,从而求得a的值.【解答】解:把x=2代入方程,得2a﹣1=2+3,解得a=3.故答案是:3.15.10点30分时,钟面上时针与分针所成的角等于135度.【考点】钟面角.【分析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.【解答】解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+×30°=135°.故答案为135.16.如图,是一个数值转换机的示意图.若输出的结果是6,则输入的数等于5或﹣7.【考点】有理数的混合运算.【分析】根据输出的结果是6,可得:输入的数与1的和的绝对值是6或﹣6,据此求出输入的数为多少即可.【解答】解:∵输出的结果是6,∴输入的数与1的和的绝对值是6或﹣6,∵6﹣1=5,﹣6﹣1=﹣7,∴输入的数等于5或﹣7.故答案为:5或﹣7.17.若代数式5a﹣3b的值是﹣2,则代数式2(a﹣b)+4(2a﹣b)+3的值等于﹣4.【考点】整式的加减—化简求值.【分析】原式去括号整理后,将已知代数式的值代入计算即可求出值.【解答】解:根据题意得:5a﹣3b=﹣2,则原式=2a﹣2b+8a﹣4b=10a﹣6b=2(5a﹣3b)=﹣4,故答案为:﹣418.点A、B、C在同一条数轴上,且点A表示的数为﹣17,点B表示的数为﹣2.若BC=AB,则点C表示的数为﹣7或3.【考点】数轴.【分析】设点C表示的数为x.由BC=AB列出方程|x+2|=×(﹣2+17),解方程即可求解.【解答】解:设点C表示的数为x.∵点A表示的数为﹣17,点B表示的数为﹣2,且BC=AB,∴|x+2|=×(﹣2+17),解得x=﹣7或3.故答案为:﹣7或3.三、解答题:本大题共11小题,共64分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.计算:8﹣23÷(﹣4)×(﹣3+1).【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:8﹣23÷(﹣4)×(﹣3+1)=8﹣8÷(﹣4)×(﹣2)=8+2×(﹣2)=8﹣4=420.解方程:x+(x+2)=2.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:3x+2(x+2)=24,去括号得:3x+2x+4=24,移项合并得:5x=20,解得:x=4.21.解不等式组:.【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵由①得:x<2,由②得:x≥﹣1,∴不等式组的解集为﹣1≤x<2.22.已知a=﹣1,b=2,求代数式5(2a2b﹣ab2)﹣4(ab2+3a2b)的值.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=10a2b﹣5ab2﹣4ab2﹣12a2b=﹣2a2b﹣9ab2,当a=﹣1,b=2时,原式=﹣4+36=32.23.如图,方格纸中每个小正方形的边长都是1,点A、B是方格纸中的两个格点(即小正方形的顶点).(1)请在方格纸中以AB为边作正方形ABCD;(提醒:请用黑色笔再加涂一下所作的线段)(2)正方形ABCD的面积为29.【考点】作图—应用与设计作图.【分析】(1)根据题意画出图形即可;(2)先根据勾股定理求出正方形的边长,再求出其面积即可.【解答】解:(1)如图所示;(2)∵AB==,=×=29.∴S正方形ABCD故答案为:29.24.如图,l是一条笔直的公路,A、B是两个新建小区.为方便居民出行,有关部门准备在公路边增设公交站点,为此需要修建站点到小区的道路.为节约资金,要求修建的道路最短.(1)若增设1个站点C,请在图①中画出站点及所修建的道路;(2)若增设2个站点D、E,请在图②中画出站点D、E及所修建的道路.【考点】作图—应用与设计作图.【分析】(1)根据两点之间线段最短,连接AB与直线l相交即可得解;(2)根据垂线段最短,分别过A、B作直线l的垂线即可得解.【解答】解:(1)如图①,连接AB交直线l与C,则点C就是修建站点的位置;(2)如图②,分别过点A和点B作直线l的垂线,垂足分别为D、E,则D、E就是修建两个站点的位置;.25.如图是用10块完全相同的小正方体搭成的几何体.(1)请在空白的方格中画出它的三个视图;(2)若保持主视图和俯视图不变,最多还可以再搭3块小正方体.【考点】作图﹣三视图.【分析】(1)根据物体形状即可画出左视图有三列与以及主视图、俯视图都有三列,进而画出图形;(2)可在最左侧前端放两个后面再放一个即可得出答案.【解答】解:(1)如图所示:;(2)保持主视图和俯视图不变,最多还可以再搭3块小正方体.故答案为:3.26.某小组计划做一批“中华结”.如果每人做6个,那么比计划多了8个;如果每人做4个,那么比计划少了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.【考点】一元一次方程的应用.【分析】首先提出问题:这批“中华结”的个数是多少?设该批“中华结”的个数为x个,根据加工总个数=单人加工个数×人数结合该小组人数不变找出关于x的一元一次方程,解之即可得出结论.【解答】解:这批“中华结”的个数是多少?设该批“中华结”的个数为x个,根据题意得:=,解得:x=142.答:这批“中华结”的个数为142个.27.已知OA⊥OB,OC为一条射线,OD、OE分别是∠AOC、∠BOC的平分线.(1)如图①,当OC在∠AOB的内部时,∠DOE=45°.(2)如图②,当OC在∠AOB的外部时,求∠DOE的度数.【考点】角平分线的定义.【分析】(1)根据题意画出图形,根据角平行线的定义可知∠COD=∠AOC,∠EOC=∠BOC,然后根据∠EOD=∠COD+∠EOC求解即可;(2)根据题意画出图形,根据角平行线的定义可知∠COD=∠AOC,∠EOC=∠BOC,然后根据∠DOE=∠COD﹣∠COE求解即可.【解答】解:(1)如图①所示:∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠COD=∠AOC,∠EOC=∠BOC.∴∠EOD=∠COD+∠EOC=∠AOC+∠BOC=∠BOA==45°;故答案为:45.(2)如图②所示:∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠COD=∠AOC,∠EOC=∠BOC.∠DOE=∠COD﹣∠COE=∠AOC﹣∠BOC=(∠AOC﹣∠BOC)=∠AOB==45°.28.将若干枚棋子平均分成三堆(每堆至少2枚),分别放在左边、中间、右边,并按如下顺序进行操作:第1次:从右边一堆中拿出2枚棋子放入中间一堆;第2次:从左边一堆中拿出1枚棋子放入中间一堆;第3次:从中间一堆中拿出几枚棋子放入右边一堆,并使右边一堆的棋子数为最初的2倍.(1)操作结束后,若右边一堆比左边一堆多15枚棋子,问共有多少枚棋子?(2)小明认为:无论最初的棋子数为多少,按上述方法完成操作后,中间一堆总是剩下1枚棋子,你同意他的看法吗?请说明理由.【考点】一元一次方程的应用.【分析】(1)根据题意,设最初每堆有x枚棋子,根据右边一堆比左边一堆多15枚棋子列方程求解即可.(2)设原来平均每份a枚棋子,则最后右边2a枚棋子,左边(a﹣1)枚棋子,总棋子数还是3a,3a﹣2a﹣(a﹣1)=1,继而即可得出结论.【解答】解:(1)设最初每堆有x枚棋子,依题意列等式:2x﹣(x﹣1)=15,解得:x=14,3x=42.故共有42枚棋子;(2)无论最初的棋子数为多少,最后中间只剩1枚棋子.理由:设原来平均每堆a枚棋子,则最后左边2a枚棋子,右边(a﹣1)枚棋子,总枚棋子数还是3a.3a﹣2a﹣(a﹣1)=1,所以最后中间只剩1枚棋子.29.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=3π+3;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC=BD;(填“=”或“≠”)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.【考点】数轴.【分析】(1)根据线段之间的关系代入解答即可;(2)根据线段的大小比较即可;(3)由题意可知,C点表示的数是π+1,设M点离O点近,且OM=x,根据长度的等量关系列出方程求得x,进一步得到线段MN的长度;(4)根据圆周率伴侣线段的定义可求D点所表示的数.【解答】解:(1)∵AC=3,BC=πAC,∴BC=3π,∴AB=AC+BC=3π+3.故答案为:3π+3;(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=πAC,AD=πBD,∴设AC=x,BD=y,则BC=πx,AD=πy,∵AB=AC+BC=AD+BD,∴x+πx=y+πy,∴x=y∴AC=BD故答案为:=.(3)由题意可知,C点表示的数是π+1,M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=x,x+πx=π+1,解得x=1,∴MN=π+1﹣1﹣1=π﹣1;(4)D点所表示的数是1、π、π++2、π2+2π+1.。
苏州市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( )A .0.1289×1011B .1.289×1010C .1.289×109D .1289×1072.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b3.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( )A .B .C .D . 4.下列判断正确的是( )A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.5.下列每对数中,相等的一对是( )A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)36.一个角是这个角的余角的2倍,则这个角的度数是( )A .30B .45︒C .60︒D .75︒ 7.-2的倒数是( )A .-2B .12-C .12D .2 8.在223,2,7-四个数中,属于无理数的是( ) A .0.23 B 3 C .2- D .2279.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( )A .23(30)72x x +-=B .32(30)72x x +-=C .23(72)30x x +-=D .32(72)30x x +-= 10.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7 B .﹣1 C .9 D .711.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm12.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离二、填空题13.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 .14.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.15.=38A ∠︒,则A ∠的补角的度数为______.16.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.17.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;18.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.19.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)20.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________.21.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.22.﹣225ab π是_____次单项式,系数是_____. 23.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.24.已知7635a ∠=︒',则a ∠的补角为______°______′.三、压轴题25.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC .①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).26.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.27.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.28.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?29.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.30.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.31.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.32.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.D解析:D【解析】【分析】根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.【详解】解:∵由图可知a<0<b,∴ab<0,即-ab>0又∵|a|>|b|,∴a<﹣b.故选:D.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.3.A解析:A【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A.点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.4.C解析:C【解析】试题解析:A∵0的绝对值是0,故本选项错误.B∵互为相反数的两个数的绝对值相等,故本选项正确.C如果一个数是正数,那么这个数的绝对值是它本身.D∵0的绝对值是0,故本选项错误.故选C.5.A解析:A【解析】【分析】根据乘方和绝对值的性质对各个选项进行判断即可.【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.6.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C.【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).7.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握8.B解析:B【解析】【分析】根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可.【详解】0.23是有限小数,是有理数,不符合题意,是开方开不尽的数,是无理数,符合题意,-2是整数,是有理数,不符合题意,227是分数,是有理数,不符合题意,故选:B.【点睛】本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.9.A解析:A【解析】【分析】设女生x人,男生就有(30-x)人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.【详解】设女生x人,∵共有学生30名,∴男生有(30-x)名,∵女生每人种2棵,男生每人种3棵,∴女生种树2x棵,男生植树3(30-x)棵,∵共种树72棵,∴2x+3(30-x)=72,故选:A.【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.10.D解析:D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.11.B解析:B【解析】【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.12.A解析:A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.二、填空题13.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.14.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.15.【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:,的补角的度数为:,故答案为:.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.解析:142︒【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:∠=,38A∴A∠的补角的度数为:18038142-=,故答案为:142︒.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.16.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.17.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.18.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.19.270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程解析:270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.【详解】设∠DOE=x,根据OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,∴∠BOD=4x,∠AOC=∠COD=α-x,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.20.1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可. 【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.21.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.22.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 23.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 24.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、压轴题25.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 26.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°. 【点睛】 本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.27.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.28.(1)-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B 点表示的数为10-30;点P 表示的数为10-5t ;(2)分类讨论:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差易求出MN .(3) 分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A 表示的数为10,B 在A 点左边,AB=30,∴数轴上点B 表示的数为10-30=-20;∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数为10-5t ;故答案为-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.理由如下:①当点P 在点A 、B 两点之间运动时,∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP+NP=AP+BP=(AP+BP )=AB=15;②当点P 运动到点B 的左侧时:∵M 为线段AP 的中点,N 为线段BP 的中点, ∴MN=MP-NP=AP-BP=(AP-BP )=AB=15,∴综上所述,线段MN 的长度不发生变化,其值为15.(3)若点P 、Q 同时出发,设点P 运动t 秒时与点Q 距离为4个单位长度.①点P 、Q 相遇之前,由题意得4+5t=30+3t ,解得t=13;②点P 、Q 相遇之后,由题意得5t-4=30+3t ,解得t=17.答:若点P 、Q 同时出发,13或17秒时P 、Q 之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.29.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n 项的钢管数.【详解】(1)3456;45678S S =+++=++++(2)方法不唯一,例如:12S =+ 1233S =+++ 123444S =+++++ 12345555S =+++++++ (3)方法不唯一,例如:()()12.....2S n n n n =++++++()()()()=.....12.. (1112)n n n n n n n n +++++++=+++()312n n =+ 【点睛】此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.30.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点 ∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.31.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=45°;(3)∠DOE的大小发生变化情况为:如图③,则∠DOE为45°;如图④,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD﹣∠COE=12(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12×270°=135°.【点睛】此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.32.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=12(AC+BC )=12AB=2a cm ,即可推出结论, (3)分两种情况,OC 在∠AOB 内部和外部结果都是∠DOE=12∠AOB 试题解析:(1))∵AB=12cm ,∴AC=4cm ,∴BC=8cm ,∵点D 、E 分别是AC 和BC 的中点,∴CD=2cm ,CE=4cm ,∴DE=6cm;(2) 设AC=acm ,∵点D 、E 分别是AC 和BC 的中点,∴DE=CD+CE=12(AC+BC )=12AB=6cm , ∴不论AC 取何值(不超过12cm ),DE 的长不变;(3)①当OC 在∠AOB 内部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠NOC=12∠BOC,∠COM=12∠COA.∵∠CON+∠COM=∠MON,∴∠MON=12(∠BOC+∠AOC)=12α;②当OC在∠AOB外部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12(∠AOB+∠BOC),∠CON=12∠BOC.∵∠MON+∠CON=∠MOC,∴∠MON=∠MOC-∠CON=12(AOB+∠BOC)-12∠BOC=12∠AOB=12α.【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。
苏州市初一上学期数学期末试卷带答案一、选择题1.若 3x = 4),(y#0),则()2.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬分温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为()A. 0.1289x1011B. 1.289x1010C. 1.289xl09D. 1289x1073.下列判断正确的是()A.有理数的绝对值一定是正数.B.如果两个数的绝对值相等,那么这两个数相等.C.如果一个数是正数,那么这个数的绝对值是它本身.D.如果一个数的绝对值是它本身,那么这个数是正数.4.一周时间有604800秒,604800用科学记数法表示为()A. 6048xlO2B. 6.048xlO5C. 6.048xlO6D. 0.6048xlO65.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a把绳子剪断时,绳子被剪为5段:当用剪刀像图③那样沿虚线b(bll a)把绳子再剪一次时,绳子就被剪为 9段.若用剪刀在虚线a、b之间把绳子再剪(n-2)次(剪刀的方向与a平行),这样一A. 3x+4y = 0B. 8x-6y=0 c. 3x+y = 4y + x D.共剪n次时绳子的段数是()A a图①圉②A. 4n+lB. 4n+26.如图,ZAOD=84° , ZA0B=18°图③C. 4n+3D. 4n+5 ,。
8平分N40C,则NC。
的度数是(C. 36°D. 33°C. 2D.-(-1)11 .赣州是中国脐橙之乡,据估计2013年全市・脐橙总产量将达到150万吨,用科学计数 法表示为()吨.A. 150xl04B. 15x10,c. 0.15X107 D. 1.5xl06 12 .下列计算正确的是()A. 3a+2b=5abB, 4m 2 n-2mn 2=2mn C. -12x+7x=-5x D. 5/-3/=2 二.填空题13.若|x|=3, |y|=2,则|x+y|=14 .根据下列图示的对话,则代数式2a+2b-3c+2m 的值是15 .方的算术平方根是16 .某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个〃斤重的西瓜卖A 元,一个 。
苏州市第一学期初一数学期末综合试卷含答案考试名称:苏州市初一数学期末综合试卷考试时间:2019年1月班级:初一年级注意事项:1. 考试时间为90分钟。
2. 本试卷共四大题,满分为100分。
3. 请将所有答案写在答题纸上。
4. 答案部分请写清题号和答案,计算过程必须写在答题纸上。
第一部分:选择题(共40分,每题2分)1. 下列哪个不是自然数?A. 0B. 1C. 2D. 32. 将3的平方根化为最简根式是:A. √3B.2√3C. √6D. 33. 若a:b = 2:3,b:c = 5:6,则a:c = ?A. 10:12B. 3:2C. 5:4D. 4:54. 若正方体的体积为8m³,则它的边长为:A. 2mB. 4mC. 6mD. 8m.....第二部分:填空题(共30分,每题2分)1. 若平行线l₁和l₂交与F点,若l₃与l₁平行,则l₃和l₂的交点为________。
答:F2. 计算: 6 × ( 4 - 2 ) - 5 ÷ 5 = ________。
答:113. 一个有n个顶点的多边形的内角和为__________度。
答:(n-2) × 180.....第三部分:解答题(共20分)1. 已知三角形ABC,BC=12cm,∠B=30°,∠C=60°,求AB的长度。
答:由正弦定理可得 AB = 2 × BC × sin∠C = 12 × sin60° = 12√3 cm。
2. 张三用10m的绳子围成了一个正方形花坛,李四用同样长度的绳子围成了一个圆形花坛,两人谁围成的花坛的面积更大?并说明理由。
答:李四围成的圆形花坛的面积更大。
因为在给定周长的情况下,圆形花坛的面积最大。
第四部分:应用题(共10分)某市开展了一项环保活动,计划种植苗木来改善环境。
甲地可以种植树木,乙地可以种植花卉,丙地则适合种植蔬菜。
苏州市初一上学期数学期末试卷带答案一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是( )A .30°B .40°C .50°D .90°2.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( )A .22B .70C .182D .2063.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( )A .0.1289×1011B .1.289×1010C .1.289×109D .1289×107 4.下列判断正确的是( )A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.5.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( )A .23(30)72x x +-=B .32(30)72x x +-=C .23(72)30x x +-=D .32(72)30x x +-= 6.下列说法中正确的有( )A .连接两点的线段叫做两点间的距离B .过一点有且只有一条直线与已知直线垂直C .对顶角相等D .线段AB 的延长线与射线BA 是同一条射线 7.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( )A .1B .﹣1C .3D .﹣38.不等式x ﹣2>0在数轴上表示正确的是( )A .B .C .D .9.若a<b,则下列式子一定成立的是( ) A .a+c>b+c B .a-c<b-c C .ac<bc D .a b c c < 10.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠2 11.已知∠A =60°,则∠A 的补角是( ) A .30°B .60°C .120°D .180° 12.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( )A .﹣4B .﹣2C .4D .2 二、填空题13.已知方程22x a ax +=+的解为3x =,则a 的值为__________.14.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.15.15030'的补角是______.16.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______.17.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.18.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.19.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.20.当x= 时,多项式3(2-x )和2(3+x )的值相等.21.已知代数式235x -与233x -互为相反数,则x 的值是_______. 22.当12点20分时,钟表上时针和分针所成的角度是___________.23.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .24.已知7635a ∠=︒',则a ∠的补角为______°______′.三、解答题 25.计算:(1)()7.532-⨯-(2)()383+3233⨯-+-26.请根据图中提供的暖瓶和水杯的售价信息,回答下列问题:(1)一个暖瓶与一个水杯的售价分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,在新年期间,两家商场都在搞促销活动.甲商场规定:这两种商品都打8.5折;乙商场规定:两种商品都不打折,但买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和16个水杯,请问这个单位选择哪家商场购买更合算,并说明理由.27.如图,已知数轴上点A 表示的数为﹣1,点B 表示的数为3,点P 为数轴上一动点. (1)点A 到原点O 的距离为 个单位长度;点B 到原点O 的距离为 个单位长度;线段AB 的长度为 个单位长度;(2)若点P 到点A 、点B 的距离相等,则点P 表示的数为 ;(3)数轴上是否存在点P ,使得PA +PB 的和为6个单位长度?若存在,请求出PA 的长;若不存在,请说明理由?(4)点P 从点A 出发,以每分钟1个单位长度的速度向左运动,同时点Q 从点B 出发,以每分钟2个单位长度的速度向左运动,请直接回答:几分钟后点P 与点Q 重合?28.已知A =3x 2+x+2,B =﹣3x 2+9x+6.(1)求2A ﹣13B ; (2)若2A ﹣13B 与32C -互为相反数,求C 的表达式; (3)在(2)的条件下,若x =2是C =2x+7a 的解,求a 的值.29.如图所示,OC 是AOD ∠的平分线,OE 是BOD ∠的平分线,65 25EOC DOC ∠=︒∠=,,求AOB ∠的度数.30.如图所示,∠AOB=∠AOC=90°,∠DOE=90°,OF 平分∠AOD ,∠AOE=36°.(1)求∠COD 的度数;(2)求∠BOF 的度数.四、压轴题31.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?(2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.32.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒.①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数33.已知:如图,点A 、B 分别是∠MON 的边OM 、ON 上两点,OC 平分∠MON ,在∠CON 的内部取一点P (点A 、P 、B 三点不在同一直线上),连接PA 、PB .(1)探索∠APB 与∠MON 、∠PAO 、∠PBO 之间的数量关系,并证明你的结论; (2)设∠OAP=x°,∠OBP=y°,若∠APB 的平分线PQ 交OC 于点Q ,求∠OQP 的度数(用含有x 、y 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.【详解】解:∵一个角的补角是130︒,∴这个角为:50︒,∴这个角的余角的度数是:40︒.故选:B .【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.2.D解析:D【解析】【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +,根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案.【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D.【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.3.C解析:C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.C解析:C【解析】试题解析:A ∵0的绝对值是0,故本选项错误.B ∵互为相反数的两个数的绝对值相等,故本选项正确.C 如果一个数是正数,那么这个数的绝对值是它本身.D ∵0的绝对值是0,故本选项错误.故选C .5.A解析:A【解析】【分析】设女生x 人,男生就有(30-x )人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.【详解】设女生x 人,∵共有学生30名,∴男生有(30-x )名,∵女生每人种2棵,男生每人种3棵,∴女生种树2x 棵,男生植树3(30-x )棵,∵共种树72棵,∴2x+3(30-x)=72,故选:A.【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.6.C解析:C【解析】【分析】分别利用直线的性质以及射线的定义和垂线定义分析得出即可.【详解】A .连接两点的线段的长度叫做两点间的距离,错误;B .在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;C .对顶角相等,正确;D .线段AB 的延长线与射线BA 不是同一条射线,错误.故选C .【点睛】本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题的关键.7.B解析:B【解析】【分析】将1x =-代入2ax x -=,即可求a 的值.【详解】解:将1x =-代入2ax x -=,可得21a --=-,解得1a =-,故选:B .【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.8.C解析:C【解析】【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【详解】移项得,x>2,在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.9.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.10.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.11.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.12.C解析:C【解析】【分析】由题意可知3b-3a-(a-b)3=3(b-a)-(a-b)3,因此可以将a-b=-1整体代入即可.【详解】3b-3a-(a-b)3=3(b-a)-(a-b)3=-3(a-b)-(a-b)3=3-(-1)=4;故选C.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.二、填空题13.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB =5,BC =3,∴AC =5+3=8;∵点D 是AC 的中点,∴AD =8÷2=4;∵点E 是AB 的中点,∴AE =5÷2=2.5,∴ED =AD ﹣AE =4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.15.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:18015030'2930'-=.故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.16.【解析】【分析】设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.17.-5【解析】【分析】根据题意确定出a 的最大值,b 的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a 的最大值,b 的最小值,即可求出所求.【详解】解:459<<,23∴<<,a 2∴=,b 3=,则原式495=-=-,故答案为5-【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA 表示北偏东61°方向的一条射线,OB 表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA 表示北偏东61°方向的一条射线,OB 表示南偏东38°方向的一条射线, ∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.19.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.20.【解析】试题解析:根据题意列出方程3(2-x )=2(3+x )去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x )=2(3+x )去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.21.【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵与互为相反数∴解得:【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键 解析:278【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵235x-与233x-互为相反数∴23230 53-⎛⎫+-=⎪⎝⎭xx解得:278 x=【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.22.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.23.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=50×40×h ,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm ),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm 3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键. 24.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、解答题25.(1)13.5;(2)9.【分析】(1)根据有理数的四则混合运算解答;(2)根号二次根式的四则运算进行解答.【详解】解:(1) ()7.532-⨯-=7.56+=13.5;(3--=(23⨯-=3+=9.【点睛】本题考查的是有理数以及二次根式的计算问题,解题关键按照四则运算去计算即可.26.(1)一个暖瓶的售价是30元,一个水杯的售价是8元;(2)这个单位在甲商场购买更算.【解析】【分析】(1)根据“暖瓶+水杯=38元”和“2个暖瓶的价格+3个水杯的价格=84元”这两个关系式,设暖瓶为x 元,用x 将水杯的售价表示出来,然后列出一元一次方程求解即可.(2)根据售价×折扣=实际售价,分别计算两个方案各自的售价,然后对比判断即可解决.【详解】(1)设一个暖瓶售价x 元,则一个水杯售价是(38)x -元.依题意得:23(38)84x x +-=,解得:30x =.38-30=8(元).因此,一个暖瓶的售价是30元,一个水杯的售价是8元.(2)这个单位在甲商场购买更算.理由:在甲商场购买所需费用为:43016885%210.8⨯+⨯⨯=()(元);在乙商场购买所需费用为:43016-48216⨯+⨯=()(元);因为210.8<216,所以这个单位在甲商场购买更算.【点睛】本题考查了一元一次方程解决问题和方案选择问题,解决本题的关键是正确理解题意,找到等量关系,能够根据各自的方案计算其所需的费用.27.(1)1,3,4;(2)1;(3)存在,PA=1;(4)经过4分钟后点P 与点Q 重合.【解析】(1)根据数轴上两点间的距离公式进行计算即可;(2)设点P 表示的数为x ,根据题意列出方程可求解;(3)设点P 表示的数为y ,分1y <-,13y -≤≤和3y >三种情况讨论,即可求解; (4)设经过t 分钟后点P 与点Q 重合,由点Q 的路程﹣点P 的路程=4,列出方程可求解.【详解】解:(1)∵点A 表示的数为﹣1,点B 表示的数为3,∴()OA=011--=,OB=303-=,()AB=314--=故答案为:1,3,4;(2)设点P 表示的数为x ,∵点P 到点A 、点B 的距离相等,∴3(1)-=--x x∴x =1,∴点P 表示的数为1,故答案为1;(3)存在,设点P 表示的数为y ,当1y <-时,∵PA +PB =136--+-=y y ,∴y =﹣2,∴PA =1(2)1---=,当13y -≤≤时,∵PA +PB =(1)36--+-=y y ,∴无解,当y >3时,∵PA +PB =(1)36--+-=y y ,∴y =4,∴PA =5;综上所述:PA =1或5.(4)设经过t 分钟后点P 与点Q 重合,2t ﹣t =4,∴t =4答:经过4分钟后点P 与点Q 重合.【点睛】本题考查数轴上两点间的距离,以及数轴上的动点问题,熟练掌握数轴上两点间的距离公式,并运用方程思想是解题的关键.28.(1)7x2﹣x+2;(2)﹣14x2+2x﹣1;(3)﹣57 7【解析】【分析】(1)根据题意列出算式2(3x2+x+2)﹣13(﹣3x2+9x+6),再去括号、合并即可求解;(2)由已知等式知2A﹣13B+32C-=0,将多项式代入,依此即可求解;(3)由题意得出x=2是方程C=2x+7a的解,从而得出关于a的方程,解之可得.【详解】解:(1)2A﹣1 3 B=2(3x2+x+2)﹣13(﹣3x2+9x+6)=6x2+2x+4+x2﹣3x﹣2=7x2﹣x+2;(2)依题意有:7x2﹣x+2+32C-=0,14x2﹣2x+4+C﹣3=0,C=﹣14x2+2x﹣1;(3)∵x=2是C=2x+7a的解,∴﹣56+4﹣1=4+7a,解得:a=﹣577.故a的值是﹣577.【点睛】本题考查了整式的加减、相反数和一元一次方程的解法,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.29.130︒【解析】【分析】根据题意直接利用角平分线的性质得出∠AOD和∠BOD,进而求出AOB∠的度数.【详解】解:∠EOD=∠EOC-∠DOC=65°-25°=40°,∵OC是∠AOD的平分线,OE是∠BOD的平分线,∴∠AOD=2∠DOC=2⨯25°=50°,∠BOD=2∠EOD=2⨯40°=80°,∴∠AOB=∠AOD+∠BOD =50°+80°=130°.【点睛】本题主要考查角的运算,熟练运用角平分线的定义以及正确掌握角平分线的性质是解题关键.30.(1)144°;(2)63°【解析】【分析】(1)先根据互余的关系求出∠COE=54°,然后利用∠COD=∠DOE+∠COE 计算即可;(2)先根据互余的关系求出∠AOD=54°,再求出∠BOD 和∠DOF ,利用角的和差关系即可求出∠BOF .【详解】(1)∵∠AOC=90°,∴∠COE=90°﹣AOE=90°﹣36°=54°,∴∠COD=∠DOE+∠COE=90°+54°=144°;(2)∵∠DOE=90°,∠AOE=36°,∴∠AOD=90°﹣36°=54°,∵∠AOB=90°,∴∠BOD=90°﹣54°=36°,∵OF 平分∠AOD ,∴∠DOF=12∠AOD=27°, ∴∠BOF=36°+27°=63°.考点:1.余角和补角;2.角平分线的定义.四、压轴题31.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.32.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣4834 【解析】【分析】(1)根据A 点对应的数为60,B 点在A 点的左侧,AB =30求出B 点对应的数;根据AC =4AB 求出AC 的距离;(2)①当P 点在AB 之间运动时,根据路程=速度×时间求出AP =3t ,根据BP =AB ﹣AP 求解;②分P 点是A 、B 两个点的中点;B 点是A 、P 两个点的中点两种情况讨论即可;③根据P 、Q 两点的运动速度与方向可知Q 点在往返过程中与P 点相遇2次.设Q 点在往返过程中经过x 秒与P 点相遇.第一次相遇是点Q 从A 点出发,向C 点运动的途中.根据AQ ﹣BP =AB 列出方程;第二次相遇是点Q 到达C 点后返回到A 点的途中.根据CQ+BP =BC 列出方程,进而求出P 点在数轴上对应的数.【详解】(1)∵A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,∴B 点对应的数为60﹣30=30;∵C 点到A 点距离是B 点到A 点距离的4倍,∴AC=4AB =4×30=120;(2)①当P 点在AB 之间运动时,∵AP=3t ,∴BP=AB ﹣AP =30﹣3t .故答案为30﹣3t ;②当P 点是A 、B 两个点的中点时,AP =12AB =15, ∴3t=15,解得t =5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.33.(1)见解析;(2)∠OQP=180°+12x°﹣12y°或∠OQP=12x°﹣12y°.【解析】【试题分析】(1)分下面两种情况进行说明;①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,(2)分两种情况讨论,如图3和图4.【试题解析】(1)分两种情况:①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,证明:∵四边形AOBP的内角和为(4﹣2)×180°=360°,∴∠APB=360°﹣∠MON﹣∠PAO﹣∠PBO;②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,证明:延长AP交ON于点D,∵∠ADB是△AOD的外角,∴∠ADB=∠PAO+∠AOD,∵∠AP B是△PDB的外角,∴∠APB=∠PDB+∠PBO,∴∠APB=∠MON+∠PAO+∠PBO;(2)设∠MON=2m°,∠APB=2n°,∵OC平分∠MON,∴∠AOC=∠MON=m°,∵PQ平分∠APB,∴∠APQ=∠APB=n°,分两种情况:第一种情况:如图3,∵∠OQP=∠MOC+∠PAO+∠APQ,即∠OQP=m°+x°+n°①∵∠OQP+∠CON+∠OBP+∠BPQ=360°,∴∠OQP=360°﹣∠CON﹣∠OBP﹣∠BPQ,即∠OQP=360°﹣m°﹣y°﹣n°②,①+②得2∠OQP=360°+x°﹣y°,∴∠OQP=180°+x°﹣y°;第二种情况:如图4,∵∠OQP+∠APQ=∠MOC+∠PAO,即∠OQP+n°=m°+x°,∴2∠OQP+2n°=2m°+2x°①,∵∠APB=∠MON+∠PAO+∠PBO,∴2n°=2m°+x°+y°②,①﹣②得2∠OQP=x°﹣y°,∴∠OQP=x°﹣y°,综上所述,∠OQP=180°+x°﹣y°或∠OQP=x°﹣y°.。
2019-2020学年江苏省苏州市工业园区七年级(上)期末数学试卷一、选择题:本大题共10小题,每小题2分,共20分.每小题只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上.1.﹣2的倒数是()A.﹣B.C.﹣2 D.22.我国钓鱼岛周围海域面积约为170 000km2,该数据用科学记数法可以表示为()A.0.17×106B.1.7×105C.17×104 D.170×1033.下列各数中的无理数是()A.0.101 001 000 1 B.C.D.π4.下列基本图形中,经过平移、旋转或翻折后,不能..得到右图的是()A.B.C.D.5.下面的四个图形都是由大小相同的正方形组成的,其中能围成正方体的是()A.B.C.D.6.已知点在线段上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.7.某校七年级405名师生外出旅游,租用45座和40座的两种客车,如果45座的客车租用了2辆,那么需租用40座的客车()A.最少8辆B.最多8辆C.最少7辆D.最多7辆8.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为()A.26元B.27元C.28元D.29元9.在同一平面内,∠AOB=70°,∠BOC=40°,则∠AOC的度数为()A.110°B.30°C.110°或150°D.30°或110°10.若关于x的不等式3x﹣a≤0的正整数解是1、2、3,则a应满足的条件是()A.a=9 B.a≤9 C.9<a≤12 D.9≤a<12二、填空题:本大题共8小题,每小题2分,共16分.请将答案填在答题卡相应位置上. 11.比较大小:﹣0.4 ﹣.12.计算:﹣t﹣t﹣t= .13.若∠α=23°36′,则∠α的补角为°.14.若方程ax﹣1=x+3的解是x=2,则a= .15.10点30分时,钟面上时针与分针所成的角等于度.16.如图,是一个数值转换机的示意图.若输出的结果是6,则输入的数等于.17.若代数式5a﹣3b的值是﹣2,则代数式2(a﹣b)+4(2a﹣b)+3的值等于.18.点A、B、C在同一条数轴上,且点A表示的数为﹣17,点B表示的数为﹣2.若BC=AB,则点C表示的数为.三、解答题:本大题共11小题,共64分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.计算:8﹣23÷(﹣4)×(﹣3+1).20.解方程: x+(x+2)=2.21.解不等式组:.22.已知a=﹣1,b=2,求代数式5(2a2b﹣ab2)﹣4(ab2+3a2b)的值.23.如图,方格纸中每个小正方形的边长都是1,点A、B是方格纸中的两个格点(即小正方形的顶点).(1)请在方格纸中以AB为边作正方形ABCD;(提醒:请用黑色笔再加涂一下所作的线段)(2)正方形ABCD的面积为.24.如图,l是一条笔直的公路,A、B是两个新建小区.为方便居民出行,有关部门准备在公路边增设公交站点,为此需要修建站点到小区的道路.为节约资金,要求修建的道路最短.(1)若增设1个站点C,请在图①中画出站点及所修建的道路;(2)若增设2个站点D、E,请在图②中画出站点D、E及所修建的道路.25.如图是用10块完全相同的小正方体搭成的几何体.(1)请在空白的方格中画出它的三个视图;(2)若保持主视图和俯视图不变,最多还可以再搭块小正方体.26.某小组计划做一批“中华结”.如果每人做6个,那么比计划多了8个;如果每人做4个,那么比计划少了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.27.已知OA⊥OB,OC为一条射线,OD、OE分别是∠AOC、∠BOC的平分线.(1)如图①,当OC在∠AOB的内部时,∠DOE= °.(2)如图②,当OC在∠AOB的外部时,求∠DOE的度数.28.将若干枚棋子平均分成三堆(每堆至少2枚),分别放在左边、中间、右边,并按如下顺序进行操作:第1次:从右边一堆中拿出2枚棋子放入中间一堆;第2次:从左边一堆中拿出1枚棋子放入中间一堆;第3次:从中间一堆中拿出几枚棋子放入右边一堆,并使右边一堆的棋子数为最初的2倍.(1)操作结束后,若右边一堆比左边一堆多15枚棋子,问共有多少枚棋子?(2)小明认为:无论最初的棋子数为多少,按上述方法完成操作后,中间一堆总是剩下1枚棋子,你同意他的看法吗?请说明理由.29.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC 称作互为圆周率伴侣线段.(1)若AC=3,则AB= ;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC BD;(填“=”或“≠”)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.2019-2020学年江苏省苏州市工业园区七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题2分,共20分.每小题只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上.1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【考点】倒数.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.2.我国钓鱼岛周围海域面积约为170 000km2,该数据用科学记数法可以表示为()A.0.17×106B.1.7×105C.17×104 D.170×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:170 000km2,该数据用科学记数法可以表示为1.7×105,故选:B.3.下列各数中的无理数是()A.0.101 001 000 1 B.C.D.π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0.1010010001,,0. 是有理数,π是无理数,故选:D.4.下列基本图形中,经过平移、旋转或翻折后,不能..得到右图的是()A.B.C.D.【考点】利用旋转设计图案;利用轴对称设计图案;利用平移设计图案.【分析】利用平移和旋转对A进行判断;利用旋转对B进行判断;利用翻折对D进行判断.【解答】解:A、把平移得到,然后把旋转可得到右图;B、把旋转可得到右图;C、把经过平移、旋转或翻折后,都不能得到右图;D、把翻折后可得到右图.故选C.5.下面的四个图形都是由大小相同的正方形组成的,其中能围成正方体的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A,C,D折叠后都有一行两个面无法折起来,而且缺少一个面,所以不能折成正方体.故选:B.6.已知点在线段上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.【考点】两点间的距离.【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【解答】解:解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=AB,则点C是线段AB中点.故选C.7.某校七年级405名师生外出旅游,租用45座和40座的两种客车,如果45座的客车租用了2辆,那么需租用40座的客车()A.最少8辆B.最多8辆C.最少7辆D.最多7辆【考点】一元一次方程的应用.【分析】设需租用40座的客车x辆,根据题意可得不等关系:45座的客车座的人数+40座的客车座的人数≥405,根据不等关系列出不等式,再解即可.【解答】解:设需租用40座的客车x辆,由题意得:45×2+40x≥405,解得:x≥7,∵x为整数,∴x最小为8,故选:A.8.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为()A.26元B.27元C.28元D.29元【考点】一元一次方程的应用.【分析】根据题意,实际售价=进价+利润.九折即标价的90%;可得一元一次的关系式,求解可得答案.【解答】解:设标价是x元,根据题意则有:0.9x=21(1+20%),解可得:x=28,故选C.9.在同一平面内,∠AOB=70°,∠BOC=40°,则∠AOC的度数为()A.110°B.30°C.110°或150°D.30°或110°【考点】角的计算.【分析】分OC在∠AOB内和OC在∠AOB外两种情况考虑,依此画出图形,根据角与角之间结合∠AOB、∠BOC的度数,即可求出∠AOC的度数.【解答】解:当OC在∠AOB内时,如图1所示.∵∠AOB=70°,∠BOC=40°,∴∠AOC=∠AOB﹣∠BOC=30°;当OC在∠AOB外时,如图2所示.∵∠AOB=70°,∠BOC=40°,∴∠AOC=∠AOB+∠BOC=110°.故选D.10.若关于x的不等式3x﹣a≤0的正整数解是1、2、3,则a应满足的条件是()A.a=9 B.a≤9 C.9<a≤12 D.9≤a<12【考点】一元一次不等式的整数解.【分析】解不等式3x﹣a≤0得x≤a,其中,最大的正整数为3,故3≤a<4,从而求解.【解答】解:解不等式3x﹣a≤0,得x≤a,∵不等式的正整数解是1,2,3,∴3≤a<4,解得9≤a<12.故选D.二、填空题:本大题共8小题,每小题2分,共16分.请将答案填在答题卡相应位置上. 11.比较大小:﹣0.4 >﹣.【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣0.4>﹣.故答案为:>.12.计算:﹣t﹣t﹣t= ﹣3t .【考点】合并同类项.【分析】直接利用合并同类项法则化简求出即可.【解答】解:﹣t﹣t﹣t=﹣3t.故答案为:﹣3t.13.若∠α=23°36′,则∠α的补角为156.4°°.【考点】余角和补角;度分秒的换算.【分析】由补角的定义列出算式,然后进行计算即可.【解答】解:∠α的补角=180°﹣∠a=180°﹣23°36′=179°60′﹣23°36′=156°24′.156°24′=156.4°故答案为:156.4°14.若方程ax﹣1=x+3的解是x=2,则a= 3 .【考点】一元一次方程的解.【分析】把x=2代入方程即可得到一个关于a的方程,从而求得a的值.【解答】解:把x=2代入方程,得2a﹣1=2+3,解得a=3.故答案是:3.15.10点30分时,钟面上时针与分针所成的角等于135 度.【考点】钟面角.【分析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.【解答】解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+×30°=135°.故答案为135.16.如图,是一个数值转换机的示意图.若输出的结果是6,则输入的数等于5或﹣7 .【考点】有理数的混合运算.【分析】根据输出的结果是6,可得:输入的数与1的和的绝对值是6或﹣6,据此求出输入的数为多少即可.【解答】解:∵输出的结果是6,∴输入的数与1的和的绝对值是6或﹣6,∵6﹣1=5,﹣6﹣1=﹣7,∴输入的数等于5或﹣7.故答案为:5或﹣7.17.若代数式5a﹣3b的值是﹣2,则代数式2(a﹣b)+4(2a﹣b)+3的值等于﹣4 .【考点】整式的加减—化简求值.【分析】原式去括号整理后,将已知代数式的值代入计算即可求出值.【解答】解:根据题意得:5a﹣3b=﹣2,则原式=2a﹣2b+8a﹣4b=10a﹣6b=2(5a﹣3b)=﹣4,故答案为:﹣418.点A、B、C在同一条数轴上,且点A表示的数为﹣17,点B表示的数为﹣2.若BC=AB,则点C表示的数为﹣7或3 .【考点】数轴.【分析】设点C表示的数为x.由BC=AB列出方程|x+2|=×(﹣2+17),解方程即可求解.【解答】解:设点C表示的数为x.∵点A表示的数为﹣17,点B表示的数为﹣2,且BC=AB,∴|x+2|=×(﹣2+17),解得x=﹣7或3.故答案为:﹣7或3.三、解答题:本大题共11小题,共64分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.计算:8﹣23÷(﹣4)×(﹣3+1).【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:8﹣23÷(﹣4)×(﹣3+1)=8﹣8÷(﹣4)×(﹣2)=8+2×(﹣2)=8﹣4=420.解方程: x+(x+2)=2.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:3x+2(x+2)=24,去括号得:3x+2x+4=24,移项合并得:5x=20,解得:x=4.21.解不等式组:.【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵由①得:x<2,由②得:x≥﹣1,∴不等式组的解集为﹣1≤x<2.22.已知a=﹣1,b=2,求代数式5(2a2b﹣ab2)﹣4(ab2+3a2b)的值.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=10a2b﹣5ab2﹣4ab2﹣12a2b=﹣2a2b﹣9ab2,当a=﹣1,b=2时,原式=﹣4+36=32.23.如图,方格纸中每个小正方形的边长都是1,点A、B是方格纸中的两个格点(即小正方形的顶点).(1)请在方格纸中以AB为边作正方形ABCD;(提醒:请用黑色笔再加涂一下所作的线段)(2)正方形ABCD的面积为29 .【考点】作图—应用与设计作图.【分析】(1)根据题意画出图形即可;(2)先根据勾股定理求出正方形的边长,再求出其面积即可.【解答】解:(1)如图所示;(2)∵AB==,=×=29.∴S正方形ABCD故答案为:29.24.如图,l是一条笔直的公路,A、B是两个新建小区.为方便居民出行,有关部门准备在公路边增设公交站点,为此需要修建站点到小区的道路.为节约资金,要求修建的道路最短.(1)若增设1个站点C,请在图①中画出站点及所修建的道路;(2)若增设2个站点D、E,请在图②中画出站点D、E及所修建的道路.【考点】作图—应用与设计作图.【分析】(1)根据两点之间线段最短,连接AB与直线l相交即可得解;(2)根据垂线段最短,分别过A、B作直线l的垂线即可得解.【解答】解:(1)如图①,连接AB交直线l与C,则点C就是修建站点的位置;(2)如图②,分别过点A和点B作直线l的垂线,垂足分别为D、E,则D、E就是修建两个站点的位置;.25.如图是用10块完全相同的小正方体搭成的几何体.(1)请在空白的方格中画出它的三个视图;(2)若保持主视图和俯视图不变,最多还可以再搭 3 块小正方体.【考点】作图﹣三视图.【分析】(1)根据物体形状即可画出左视图有三列与以及主视图、俯视图都有三列,进而画出图形;(2)可在最左侧前端放两个后面再放一个即可得出答案.【解答】解:(1)如图所示:;(2)保持主视图和俯视图不变,最多还可以再搭3块小正方体.故答案为:3.26.某小组计划做一批“中华结”.如果每人做6个,那么比计划多了8个;如果每人做4个,那么比计划少了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.【考点】一元一次方程的应用.【分析】首先提出问题:这批“中华结”的个数是多少?设该批“中华结”的个数为x 个,根据加工总个数=单人加工个数×人数结合该小组人数不变找出关于x的一元一次方程,解之即可得出结论.【解答】解:这批“中华结”的个数是多少?设该批“中华结”的个数为x个,根据题意得: =,解得:x=142.答:这批“中华结”的个数为142个.27.已知OA⊥OB,OC为一条射线,OD、OE分别是∠AOC、∠BOC的平分线.(1)如图①,当OC在∠AOB的内部时,∠DOE= 45 °.(2)如图②,当OC在∠AOB的外部时,求∠DOE的度数.【考点】角平分线的定义.【分析】(1)根据题意画出图形,根据角平行线的定义可知∠COD=∠AOC,∠EOC=∠BOC,然后根据∠EOD=∠COD+∠EOC求解即可;(2)根据题意画出图形,根据角平行线的定义可知∠COD=∠AOC,∠EOC=∠BOC,然后根据∠DOE=∠COD﹣∠COE求解即可.【解答】解:(1)如图①所示:∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠COD=∠AOC,∠EOC=∠BOC.∴∠EOD=∠COD+∠EOC=∠AOC+∠BOC=∠BOA==45°;故答案为:45.(2)如图②所示:∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠COD=∠AOC,∠EOC=∠BOC.∠DOE=∠COD﹣∠COE=∠AOC﹣∠BOC=(∠AOC﹣∠BOC)=∠AOB==45°.28.将若干枚棋子平均分成三堆(每堆至少2枚),分别放在左边、中间、右边,并按如下顺序进行操作:第1次:从右边一堆中拿出2枚棋子放入中间一堆;第2次:从左边一堆中拿出1枚棋子放入中间一堆;第3次:从中间一堆中拿出几枚棋子放入右边一堆,并使右边一堆的棋子数为最初的2倍.(1)操作结束后,若右边一堆比左边一堆多15枚棋子,问共有多少枚棋子?(2)小明认为:无论最初的棋子数为多少,按上述方法完成操作后,中间一堆总是剩下1枚棋子,你同意他的看法吗?请说明理由.【考点】一元一次方程的应用.【分析】(1)根据题意,设最初每堆有x枚棋子,根据右边一堆比左边一堆多15枚棋子列方程求解即可.(2)设原来平均每份a枚棋子,则最后右边2a枚棋子,左边(a﹣1)枚棋子,总棋子数还是3a,3a﹣2a﹣(a﹣1)=1,继而即可得出结论.【解答】解:(1)设最初每堆有x枚棋子,依题意列等式:2x﹣(x﹣1)=15,解得:x=14,3x=42.故共有42枚棋子;(2)无论最初的棋子数为多少,最后中间只剩1枚棋子.理由:设原来平均每堆a枚棋子,则最后左边2a枚棋子,右边(a﹣1)枚棋子,总枚棋子数还是3a.3a﹣2a﹣(a﹣1)=1,所以最后中间只剩1枚棋子.29.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC 称作互为圆周率伴侣线段.(1)若AC=3,则AB= 3π+3 ;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC = BD;(填“=”或“≠”)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.【考点】数轴.【分析】(1)根据线段之间的关系代入解答即可;(2)根据线段的大小比较即可;(3)由题意可知,C点表示的数是π+1,设M点离O点近,且OM=x,根据长度的等量关系列出方程求得x,进一步得到线段MN的长度;(4)根据圆周率伴侣线段的定义可求D点所表示的数.【解答】解:(1)∵AC=3,BC=πAC,∴BC=3π,∴AB=AC+BC=3π+3.故答案为:3π+3;(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=πAC,AD=πBD,∴设AC=x,BD=y,则BC=πx,AD=πy,∵AB=AC+BC=AD+BD,∴x+πx=y+πy,∴x=y∴AC=BD故答案为:=.(3)由题意可知,C点表示的数是π+1,M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=x,x+πx=π+1,解得x=1,∴MN=π+1﹣1﹣1=π﹣1;(4)D点所表示的数是1、π、π++2、π2+2π+1.。
2019学年江苏省七年级上学期期末考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 的相反数是().A. B. C. D.2. 下列计算正确的是().A.B.C.D.3. 已知是关于的方程的解,则的值是().A. B. C. D.4. 有长为、、、的四根木棒,选其中的根作为三角形的边,可以围成的三角形的个数是().A.1个 B.2个 C.3个 D.4个5. 下列说法中:①因为对顶角相等,所以相等的两个角是对顶角;②在平面内,不相交的两条直线叫做平行线;③过一点有且只有一条直线与已知直线垂直;正确的有().A.个 B.个 C.个 D.个6. 如图,点是的边的延长线上一点,∥,若,,则的度数等于().A. B. C. D.7. 我区对城区主干道进行绿化,计划把某一段公路的一侧全部栽上树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔米栽棵,则树苗缺棵;如果每隔米栽棵,则树苗正好用完.设原有树苗棵,则根据题意列出方程正确的是().A.B.C.D.8. (15届江苏初一1试)如图是长方形纸带,,将纸带沿折叠成图,再沿折叠成图,则图中的的度数是().A. B. C. D.二、填空题9. 在“百度”上用“初中数学”作关键词搜索相关网页,可以找到的结果约为个,则用科学记数法可表示为.10. 若单项式与是同类项,则的值是.11. 如果,那么的余角为.12. 如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是.13. 若代数式的值为,则代数式的值为.14. 一商品原价为元,在此基础上提价标价,后又打八折销售,则销售一件这样的商品可获得利润元.(用含的代数式表示)15. 如图所示的图形中,若去掉一个的角得到一个五边形,则°.16. 数学实验:钟面上在点时,时针与分针所构成的角度等于,经过分钟时针与分针所构成的角度再次等于.17. 在同一平面内,已知,,、分别是和的平分线,则的度数是.18. 设一列数、、、…、中任意三个相邻数之和都是,已知,,,那么= .三、计算题19. (本题满分8分)计算:(1)(2)四、解答题20. (本题满分8分)解下列方程(1);(2)21. (本题满分8分)化简后再求值:,其中22. (本题满分8分)如图,利用方格纸上的格点画图,并标上相应的字母.(1)过点画∥;(2)过点画线段的垂线,垂足为;(3)将线段先向右平移格,再向上平移格,画出平移后的线段(4)点到直线的距离就是线段的长度;23. (本题满分10分)在做解方程练习时,学习卷中有一个方程“■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当时代数式的值相同.”聪明的小聪很快补上了这个常数.同学们,请你们也来补一补这个常数.24. (本题满分10分)(1)由大小相同的小立方块搭成的几何体如左图,请在右图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.25. (本题满分10分)如图,在中,,垂足为,点在上,,垂足为.(1)与平行吗?为什么?(2)如果,且,求的度数.26. (本题满分10分)如果两个角的差的绝对值等于,就称这两个角互为反余角,其中一个角叫做另一个角的反余角.例如:,,,则和互为反余角,其中是的反余角,也是的反余角.(1)如图,为直线上一点,于点,于点,的反余角是,则的反余角是.(2)若一个角的反余角是它的补角的,求这个角.27. (本题满分12分)为实现区域教育均衡发展,我区计划对,两类薄弱学校全部进行改造.已知改造一所类学校和两所类学校共需资金万元;改造两所类学校和一所类学校共需资金万元.问改造一所类学校和一所类学校分别需要多少万元的资金?(1)老师让两位同学上黑板板演,其中甲同学设了一个未知数,请你帮他写出完整的解答过程.(2)另一位乙同学设了两个未知数,却没法做下去,老师说也可以做,但需要列两个不同的方程,爱动脑的你能帮助她列出方程吗?解:设改造一所类学校需要万元资金;改造一所类学校需要万元资金,根据题意可得方程①:方程②:(3)丙同学说我一个未知数也没有设,也可以求出答案来.请聪明的你写出丙同学的方法.28. (本题满分12分)【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上点、点表示的数为、,则,两点之间的距离,若,则可简化为;线段的中点表示的数为.【问题情境】已知数轴上有、两点,分别表示的数为,,点以每秒个单位的速度沿数轴向右匀速运动,点以每秒个单位向左匀速运动.设运动时间为秒().【综合运用】(1)运动开始前,、两点的距离为;线段的中点所表示的数.(2)点运动秒后所在位置的点表示的数为;点运动秒后所在位置的点表示的数为;(用含的代数式表示)(3)它们按上述方式运动,、两点经过多少秒会相遇,相遇点所表示的数是什么?(4)若,按上述方式继续运动下去,线段的中点能否与原点重合,若能,求出运动时间,并直接写出中点的运动方向和运动速度;若不能,请说明理由.(当,两点重合,则中点也与,两点重合)参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】。
苏州工业园区初一基础学科调研测试数 学 2019.1本试卷由选择题、填空题和解答题三部分组成,共28题,满分100分,考试时间100分钟. 注意事项:1.答题前,考生务必将学校、班级、姓名、考试号等信息填写在答题卡相应的位置上;2.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效.一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填涂在答题卡相应的位置上) 1. 下列各数中,最小的数是( ▲ )A .2B .-3C .-27D .02. 多项式1+2xy -3xy 2的次数及最高次项的系数分别是( ▲ )A .3,-3B .2,-3C .5,-3D .2,33. 如图所示的图案分别是一些汽车的车标,其中,可以看作由 “基本图案”经过平移得到的是( ▲ )A .B .C .D .4. 下列方程中,一元一次方程的是( ▲ )A .0.3x =6B .x 2-4x =3C .1x-1=x -3D .x =3y -55. 下面四个几何体中,左视图是四边形的几何体共有( ▲ )A .1个B .2个C .3个D .4个6. 若a >b ,则下列不等式变形错误..的是( ▲ ) A .a +1>b +1 B . a 2 >b2 C . 3a -4>3b -4 D .4-3a >4-3b7. 已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ的值是( ▲ ) A .45º B .60º C .90º D .180º8. 已知x 2-3x -1=0,则4-12x 2+32x 的值为( ▲ )A .1B .32C .52D .729. 把一根长100cm 的木棍锯成两段,使其中一段的长比另一段的2倍少5cm ,则锯出的木棍的长不可能为( ▲ )A .70cmB .65cmC .35cmD .35cm 或65cm10.将正方形ABCD 的各边按如图所示延长,从射线AB 开始,分别在各射线上标记点A 1,A 2,A 3,A 4,…,按此规律,则点A 2019所在的射线是( ▲ )A .射线AB B .射线BC C .射线CD D .射线DA圆柱 圆锥 球 正方体二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上) 11.地球上陆地的面积约为149 000 000平方千米,若把数据149 000 000用科学记数法表示为1.49×10n .则n 的值为 ▲ .12.今年五月份,由于H 7N 9禽流感的影响,我市鸡肉的价格下降了10%,设鸡肉原来的价格为a 元/千克,则五月份的价格为 ▲ 元/千克.13.如果单项式-x a +1y 3与12y b x 2是同类项,那么a +b 的值为 ▲ .14.不等式2x +9≥3(x +2)的正整数解是 ▲ .15.定义一种新的运算:a ◎b =a b ,如2◎3=23=8,则计算(3◎2)◎2 = ▲ . 16.如图是正方体的展开图,则原正方体相对两个面上的数字和最小的是 ▲ .17.如图,直线AB 、CD 相交于点O ,若∠COE =71°20′,OA 平分∠COE ,则∠DOB = ▲ .18.α、β、γ 中有两个锐角和一个钝角,其数值已经给出,在计算119(α+β+γ)的值时,有三位同学分别算出了18°、19°、20°这三个不同的结果,其中确有一个是正确的答案,则α+β+γ= ▲ .三、解答题(本大题共56分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.(本题满分6分) 计算:(1)(-2)×3+8÷(-13); (2)|13-12|÷(-16)+(-2)3×(-3)2.20.(本题满分4分) 先化简,再求值:4(3a 2b -ab 2)-5(-ab 2+3a 2b ),其中a =2,b =-3.A B C D A 1 A 3 A 10 A 12 A 5 A 7 A 14 A 2A 4 A 9 A 11 A 6A 8A 13O C A E D B(第16题)(第17题)(第10题)1-4 -2 53 -621.(本题满分4分) 解方程:5(x -5)+2x =-4.22.(本题满分5分) 解不等式:2x -13-9x +26≤1,并把解集表示在数轴上.23.(本题满分5分) 当x 为何值时,代数式x +13的值与2-x2的值的和等于2?24.(本题满分5分) 利用网格画图: (1)过点C 画AB 的平行线...CD ;(2)过点C 画AB 的垂线..,垂足为E ; (3)线段CE 的长度是点C 到直线_______的距离; (4)连接CA 、CB ,在线段CA 、CB 、CE 中, 线段______ _最短,理由:______ _.25.(本题满分5分) 为庆祝“六•一”儿童节,某幼儿园举行用火柴棒按下图所示的规律摆“金鱼”的比赛.(1条金鱼) (2条金鱼) (3条金鱼)(1)小明只搭了4条金鱼,则他用了 根火柴棒;(2)小颖把老师分给她的50根火柴棒全部用完,则她搭了多少条金鱼?26.(本题满分7分) (1)已知x =-3是关于x 的方程2k -x -k (x +4)=5的解,求k 的值.(2)在(1)的条件下,已知线段AB =12cm ,点C 是直线AB 上一点,且BC =k ·AC ,若点D 是AC 的中点,求线段CD 的长.27.(本题满分7分) O 是直线AB 上一点,∠COD 是直角,OE 平分∠BOC .(1)如图1,图中共有小于平角的角 个; (2)如图1,若∠AOC =40°,求∠DOE 的度数;(3)将图1中的∠COD 按顺时针方向旋转至图2位置.探究∠AOC 与∠DOE 度数之间的关系,写出你的结论并说明理由.ABABCAOBE C图2O ABDEC图128.(本题满分8分)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出75m3的部分 2.5超出75m3不超出125m3的部分 a超出125m3的部分a+0.25(1)若甲用户3月份的用气125m3,缴费325元,求a的值;(2)在(1)的条件下,若乙用户2、3月份共用气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?。
江苏省苏州市工业园区七年级(上)期末数学试卷一、选择题:本大题共10小题,每小题2分,共20分.每小题只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上.1.﹣2的倒数是()A.﹣B.C.﹣2 D.22.我国钓鱼岛周围海域面积约为170 000m2,该数据用科学记数法可以表示为()A.0.17×106B.1.7×105 C.17×104D.170×1033.下列各数中的无理数是()A.0.101 001 000 1 B.C.D.π得到右图的是()4.下列基本图形中,经过平移、旋转或翻折后,不能..A.B.C.D.5.下面的四个图形都是由大小相同的正方形组成的,其中能围成正方体的是()A.B.C.D.6.已知点在线段上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.7.某校七年级405名师生外出旅游,租用45座和40座的两种客车,如果45座的客车租用了2辆,那么需租用40座的客车()A.最少8辆B.最多8辆C.最少7辆D.最多7辆8.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为()A.26元B.27元C.28元D.29元9.在同一平面内,∠AOB=70°,∠BOC=40°,则∠AOC的度数为()A.110°B.30°C.110°或150°D.30°或110°10.若关于的不等式3﹣a≤0的正整数解是1、2、3,则a应满足的条件是()A.a=9 B.a≤9 C.9<a≤12 D.9≤a<12二、填空题:本大题共8小题,每小题2分,共16分.请将答案填在答题卡相应位置上.11.比较大小:﹣0.4 ﹣.12.计算:﹣t﹣t﹣t= .13.若∠α=23°36′,则∠α的补角为°.14.若方程a﹣1=+3的解是=2,则a= .15.10点30分时,钟面上时针与分针所成的角等于度.16.如图,是一个数值转换机的示意图.若输出的结果是6,则输入的数等于.17.若代数式5a﹣3b的值是﹣2,则代数式2(a﹣b)+4(2a﹣b)+3的值等于.18.点A、B、C在同一条数轴上,且点A表示的数为﹣17,点B表示的数为﹣2.若BC=AB,则点C表示的数为.三、解答题:本大题共11小题,共64分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.计算:8﹣23÷(﹣4)×(﹣3+1).20.解方程:+(+2)=2.21.解不等式组:.22.已知a=﹣1,b=2,求代数式5(2a2b﹣ab2)﹣4(ab2+3a2b)的值.23.如图,方格纸中每个小正方形的边长都是1,点A、B是方格纸中的两个格点(即小正方形的顶点).(1)请在方格纸中以AB为边作正方形ABCD;(提醒:请用黑色笔再加涂一下所作的线段)(2)正方形ABCD的面积为.24.如图,l是一条笔直的公路,A、B是两个新建小区.为方便居民出行,有关部门准备在公路边增设公交站点,为此需要修建站点到小区的道路.为节约资金,要求修建的道路最短.(1)若增设1个站点C,请在图①中画出站点及所修建的道路;(2)若增设2个站点D、E,请在图②中画出站点D、E及所修建的道路.25.如图是用10块完全相同的小正方体搭成的几何体.(1)请在空白的方格中画出它的三个视图;(2)若保持主视图和俯视图不变,最多还可以再搭块小正方体.26.某小组计划做一批“中华结”.如果每人做6个,那么比计划多了8个;如果每人做4个,那么比计划少了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.27.已知OA⊥OB,OC为一条射线,OD、OE分别是∠AOC、∠BOC的平分线.(1)如图①,当OC在∠AOB的内部时,∠DOE= °.(2)如图②,当OC在∠AOB的外部时,求∠DOE的度数.28.将若干枚棋子平均分成三堆(每堆至少2枚),分别放在左边、中间、右边,并按如下顺序进行操作:第1次:从右边一堆中拿出2枚棋子放入中间一堆;第2次:从左边一堆中拿出1枚棋子放入中间一堆;第3次:从中间一堆中拿出几枚棋子放入右边一堆,并使右边一堆的棋子数为最初的2倍.(1)操作结束后,若右边一堆比左边一堆多15枚棋子,问共有多少枚棋子?(2)小明认为:无论最初的棋子数为多少,按上述方法完成操作后,中间一堆总是剩下1枚棋子,你同意他的看法吗?请说明理由.29.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB= ;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC BD;(填“=”或“≠”)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.江苏省苏州市工业园区七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题2分,共20分.每小题只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上.1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【考点】倒数.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.2.我国钓鱼岛周围海域面积约为170 000m2,该数据用科学记数法可以表示为()A.0.17×106B.1.7×105 C.17×104D.170×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:170 000m2,该数据用科学记数法可以表示为1.7×105,故选:B.3.下列各数中的无理数是()A.0.101 001 000 1 B.C.D.π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0.1010010001,,0.是有理数,π是无理数,故选:D.得到右图的是()4.下列基本图形中,经过平移、旋转或翻折后,不能..A.B.C.D.【考点】利用旋转设计图案;利用轴对称设计图案;利用平移设计图案.【分析】利用平移和旋转对A进行判断;利用旋转对B进行判断;利用翻折对D进行判断.【解答】解:A、把平移得到,然后把旋转可得到右图;B、把旋转可得到右图;C、把经过平移、旋转或翻折后,都不能得到右图;D、把翻折后可得到右图.故选C.5.下面的四个图形都是由大小相同的正方形组成的,其中能围成正方体的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A,C,D折叠后都有一行两个面无法折起,而且缺少一个面,所以不能折成正方体.故选:B.6.已知点在线段上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.【考点】两点间的距离.【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【解答】解:解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=AB,则点C是线段AB中点.故选C.7.某校七年级405名师生外出旅游,租用45座和40座的两种客车,如果45座的客车租用了2辆,那么需租用40座的客车()A.最少8辆B.最多8辆C.最少7辆D.最多7辆【考点】一元一次方程的应用.【分析】设需租用40座的客车辆,根据题意可得不等关系:45座的客车座的人数+40座的客车座的人数≥405,根据不等关系列出不等式,再解即可.【解答】解:设需租用40座的客车辆,由题意得:45×2+40≥405,解得:≥7,∵为整数,∴最小为8,故选:A.8.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为()A.26元B.27元C.28元D.29元【考点】一元一次方程的应用.【分析】根据题意,实际售价=进价+利润.九折即标价的90%;可得一元一次的关系式,求解可得答案.【解答】解:设标价是元,根据题意则有:0.9=21(1+20%),解可得:=28,故选C.9.在同一平面内,∠AOB=70°,∠BOC=40°,则∠AOC的度数为()A.110°B.30°C.110°或150°D.30°或110°【考点】角的计算.【分析】分OC在∠AOB内和OC在∠AOB外两种情况考虑,依此画出图形,根据角与角之间结合∠AOB、∠BOC的度数,即可求出∠AOC的度数.【解答】解:当OC在∠AOB内时,如图1所示.∵∠AOB=70°,∠BOC=40°,∴∠AOC=∠AOB﹣∠BOC=30°;当OC在∠AOB外时,如图2所示.∵∠AOB=70°,∠BOC=40°,∴∠AOC=∠AOB+∠BOC=110°.故选D.10.若关于的不等式3﹣a≤0的正整数解是1、2、3,则a应满足的条件是()A.a=9 B.a≤9 C.9<a≤12 D.9≤a<12【考点】一元一次不等式的整数解.【分析】解不等式3﹣a≤0得≤a,其中,最大的正整数为3,故3≤a<4,从而求解.【解答】解:解不等式3﹣a≤0,得≤a,∵不等式的正整数解是1,2,3,∴3≤a<4,解得9≤a<12.故选D.二、填空题:本大题共8小题,每小题2分,共16分.请将答案填在答题卡相应位置上.11.比较大小:﹣0.4 >﹣.【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣0.4>﹣.故答案为:>.12.计算:﹣t﹣t﹣t= ﹣3t .【考点】合并同类项.【分析】直接利用合并同类项法则化简求出即可.【解答】解:﹣t﹣t﹣t=﹣3t.故答案为:﹣3t.13.若∠α=23°36′,则∠α的补角为156.4°°.【考点】余角和补角;度分秒的换算.【分析】由补角的定义列出算式,然后进行计算即可.【解答】解:∠α的补角=180°﹣∠a=180°﹣23°36′=179°60′﹣23°36′=156°24′.156°24′=156.4°故答案为:156.4°14.若方程a﹣1=+3的解是=2,则a= 3 .【考点】一元一次方程的解.【分析】把=2代入方程即可得到一个关于a的方程,从而求得a的值.【解答】解:把=2代入方程,得2a﹣1=2+3,解得a=3.故答案是:3.15.10点30分时,钟面上时针与分针所成的角等于135 度.【考点】钟面角.【分析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.【解答】解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+×30°=135°.故答案为135.16.如图,是一个数值转换机的示意图.若输出的结果是6,则输入的数等于5或﹣7 .【考点】有理数的混合运算.【分析】根据输出的结果是6,可得:输入的数与1的和的绝对值是6或﹣6,据此求出输入的数为多少即可.【解答】解:∵输出的结果是6,∴输入的数与1的和的绝对值是6或﹣6,∵6﹣1=5,﹣6﹣1=﹣7,∴输入的数等于5或﹣7.故答案为:5或﹣7.17.若代数式5a﹣3b的值是﹣2,则代数式2(a﹣b)+4(2a﹣b)+3的值等于﹣4 .【考点】整式的加减—化简求值.【分析】原式去括号整理后,将已知代数式的值代入计算即可求出值.【解答】解:根据题意得:5a﹣3b=﹣2,则原式=2a﹣2b+8a﹣4b=10a﹣6b=2(5a﹣3b)=﹣4,故答案为:﹣418.点A、B、C在同一条数轴上,且点A表示的数为﹣17,点B表示的数为﹣2.若BC=AB,则点C表示的数为﹣7或3 .【考点】数轴.【分析】设点C表示的数为.由BC=AB列出方程|+2|=×(﹣2+17),解方程即可求解.【解答】解:设点C表示的数为.∵点A表示的数为﹣17,点B表示的数为﹣2,且BC=AB,∴|+2|=×(﹣2+17),解得=﹣7或3.故答案为:﹣7或3.三、解答题:本大题共11小题,共64分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.计算:8﹣23÷(﹣4)×(﹣3+1).【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:8﹣23÷(﹣4)×(﹣3+1)=8﹣8÷(﹣4)×(﹣2)=8+2×(﹣2)=8﹣4=420.解方程:+(+2)=2.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把系数化为1,即可求出解.【解答】解:去分母得:3+2(+2)=24,去括号得:3+2+4=24,移项合并得:5=20,解得:=4.21.解不等式组:.【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵由①得:<2,由②得:≥﹣1,∴不等式组的解集为﹣1≤<2.22.已知a=﹣1,b=2,求代数式5(2a2b﹣ab2)﹣4(ab2+3a2b)的值.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=10a2b﹣5ab2﹣4ab2﹣12a2b=﹣2a2b﹣9ab2,当a=﹣1,b=2时,原式=﹣4+36=32.23.如图,方格纸中每个小正方形的边长都是1,点A、B是方格纸中的两个格点(即小正方形的顶点).(1)请在方格纸中以AB为边作正方形ABCD;(提醒:请用黑色笔再加涂一下所作的线段)(2)正方形ABCD的面积为29 .【考点】作图—应用与设计作图.【分析】(1)根据题意画出图形即可;(2)先根据勾股定理求出正方形的边长,再求出其面积即可.【解答】解:(1)如图所示;(2)∵AB==,=×=29.∴S故答案为:29.24.如图,l是一条笔直的公路,A、B是两个新建小区.为方便居民出行,有关部门准备在公路边增设公交站点,为此需要修建站点到小区的道路.为节约资金,要求修建的道路最短.(1)若增设1个站点C,请在图①中画出站点及所修建的道路;(2)若增设2个站点D、E,请在图②中画出站点D、E及所修建的道路.【考点】作图—应用与设计作图.【分析】(1)根据两点之间线段最短,连接AB与直线l相交即可得解;(2)根据垂线段最短,分别过A、B作直线l的垂线即可得解.【解答】解:(1)如图①,连接AB交直线l与C,则点C就是修建站点的位置;(2)如图②,分别过点A和点B作直线l的垂线,垂足分别为D、E,则D、E就是修建两个站点的位置;.25.如图是用10块完全相同的小正方体搭成的几何体.(1)请在空白的方格中画出它的三个视图;(2)若保持主视图和俯视图不变,最多还可以再搭 3 块小正方体.【考点】作图﹣三视图.【分析】(1)根据物体形状即可画出左视图有三列与以及主视图、俯视图都有三列,进而画出图形;(2)可在最左侧前端放两个后面再放一个即可得出答案.【解答】解:(1)如图所示:;(2)保持主视图和俯视图不变,最多还可以再搭3块小正方体.故答案为:3.26.某小组计划做一批“中华结”.如果每人做6个,那么比计划多了8个;如果每人做4个,那么比计划少了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.【考点】一元一次方程的应用.【分析】首先提出问题:这批“中华结”的个数是多少?设该批“中华结”的个数为个,根据加工总个数=单人加工个数×人数结合该小组人数不变找出关于的一元一次方程,解之即可得出结论.【解答】解:这批“中华结”的个数是多少?设该批“中华结”的个数为个,根据题意得:=,解得:=142.答:这批“中华结”的个数为142个.27.已知OA⊥OB,OC为一条射线,OD、OE分别是∠AOC、∠BOC的平分线.(1)如图①,当OC在∠AOB的内部时,∠DOE= 45 °.(2)如图②,当OC在∠AOB的外部时,求∠DOE的度数.【考点】角平分线的定义.【分析】(1)根据题意画出图形,根据角平行线的定义可知∠COD=∠AOC,∠EOC=∠BOC,然后根据∠EOD=∠COD+∠EOC求解即可;(2)根据题意画出图形,根据角平行线的定义可知∠COD=∠AOC,∠EOC=∠BOC,然后根据∠DOE=∠COD﹣∠COE求解即可.【解答】解:(1)如图①所示:∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠COD=∠AOC,∠EOC=∠BOC.∴∠EOD=∠COD+∠EOC=∠AOC+∠BOC=∠BOA==45°;故答案为:45.(2)如图②所示:∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠COD=∠AOC,∠EOC=∠BOC.∠DOE=∠COD﹣∠COE=∠AOC﹣∠BOC=(∠AOC﹣∠BOC)=∠AOB==45°.28.将若干枚棋子平均分成三堆(每堆至少2枚),分别放在左边、中间、右边,并按如下顺序进行操作:第1次:从右边一堆中拿出2枚棋子放入中间一堆;第2次:从左边一堆中拿出1枚棋子放入中间一堆;第3次:从中间一堆中拿出几枚棋子放入右边一堆,并使右边一堆的棋子数为最初的2倍.(1)操作结束后,若右边一堆比左边一堆多15枚棋子,问共有多少枚棋子?(2)小明认为:无论最初的棋子数为多少,按上述方法完成操作后,中间一堆总是剩下1枚棋子,你同意他的看法吗?请说明理由.【考点】一元一次方程的应用.【分析】(1)根据题意,设最初每堆有枚棋子,根据右边一堆比左边一堆多15枚棋子列方程求解即可.(2)设原平均每份a枚棋子,则最后右边2a枚棋子,左边(a﹣1)枚棋子,总棋子数还是3a,3a﹣2a﹣(a﹣1)=1,继而即可得出结论.【解答】解:(1)设最初每堆有枚棋子,依题意列等式:2﹣(﹣1)=15,解得:=14,3=42.故共有42枚棋子;(2)无论最初的棋子数为多少,最后中间只剩1枚棋子.理由:设原平均每堆a枚棋子,则最后左边2a枚棋子,右边(a﹣1)枚棋子,总枚棋子数还是3a.3a﹣2a﹣(a﹣1)=1,所以最后中间只剩1枚棋子.29.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB= 3π+3 ;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC = BD;(填“=”或“≠”)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.【考点】数轴.【分析】(1)根据线段之间的关系代入解答即可;(2)根据线段的大小比较即可;(3)由题意可知,C点表示的数是π+1,设M点离O点近,且OM=,根据长度的等量关系列出方程求得,进一步得到线段MN的长度;(4)根据圆周率伴侣线段的定义可求D点所表示的数.【解答】解:(1)∵AC=3,BC=πAC,∴BC=3π,∴AB=AC+BC=3π+3.故答案为:3π+3;(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=πAC,AD=πBD,∴设AC=,BD=y,则BC=π,AD=πy,∵AB=AC+BC=AD+BD,∴+π=y+πy,∴=y∴AC=BD故答案为:=.(3)由题意可知,C点表示的数是π+1,M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=,+π=π+1,解得=1,∴MN=π+1﹣1﹣1=π﹣1;(4)D点所表示的数是1、π、π++2、π2+2π+1.。