解:f (x) ax2 2x 1, x 1,2, a 0,
当2
2 时,即0 a 1,此时f a
(x)max
f
(0)
1;
当a 1时,f (x)max f 2 4a 3
所以f
(
x)max
1,0 4a
a 3,
a
1
1
变式5:f (x) x2 2ax 1, x 1,2,a ,1的最大值
第三章 函数概念与基本初等函数Ⅰ
高中数学复习课 §3.4 二次函数的最值问题探究
引题: 一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c
在同一坐标系中的图象大致是
(
)
√
思考:参数a,b,c对二次函数图象的影响?
例:f (x) x2 2x 1, x 1,2的最大值与最小值
轴动区间定
1 3
1 3
(-∞,-1)∪23,23
4.若(a+1) <(3-2a) ,则实数a的取值范围是__________________.
自主演练
3.幂函数f(x)=x a 2-10 a+23(a∈Z)为偶函数,且f(x)在区间(0,+∞)上是减函数,
则a等于
A.3
√ B.4 C.5 D.6
解析 因为a2-10a+23=(a-5)2-2,
f(x)=x(a-5)2-2 (a∈Z)为偶函数,
且在区间(0,+∞)上是减函数, 所以(a-5)2-2<0,从而a=4,5,6, 又(a-5)2-2为偶数,所以只能是a=5,故选C.
§3.4 幂函数
特殊探究:当 0时?
基础知识 自主学习 题型分类 深度剖析
y=xα 的图象特征:
(1)第一象限 (2)第二、三象限