,并求此时E点的坐标。 (2)过点E作X轴的垂线交BC与点F,交x轴与点N,作CM⊥EF
∵直线BC经过点B(-3,0),C(0,3) ∴yBC=x+3
(m,-m2-2m+3)E
设E点坐标为(m,-m2-2m+3),F点为(m,m+3)
M
3
∴EF=-m2-2m+3-(m+3)=-m2-3m ∴ S △ BCE=S △BEF +S △CEF= EF ·BN+ EF·CM
如图,过△ABC的三个顶点分别作出与水平线垂直的三条 直线,外侧两条直线之间的距离叫△ABC的“水平宽(a)” ,中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂 高(h)”。
我们可以得出一种计算三角形面积的新方法 : 即三角形面积等于水平宽与铅垂高乘积的一半。
A
铅垂高
S △ ABC=S △ ABD+S △ ACD
M
C
= AD ·BN+ AD ·CM
Dh
B
N
水平宽
a= AD(BN+源自M) = ah例、如图,已知抛物线y=ax2+bx+3(a≠0),与x轴交于点A(1,0)和点B(−3,0),与y轴交于
点C;
(1)求抛物线的解析式;y=-x2-2x+3
(2)如图,若点E为第二象限抛物线上一动点,连接BE、CE,求△BCE面积的最大值
F(m,m+3 )
= EF·(BN+CM)= EF·BO
-3
N
= ( -m2-3m ) × 3
= (-3m2-9m)
=- (m+ )2+ ∴当m=- 时,SMAX=
此时,E(- , )