微分中值定理的证明题
- 格式:pdf
- 大小:1.38 MB
- 文档页数:7
理工大学微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理()()1.()0,(0)0,f x f f f ϕξξξξζξξξ'' <=>><≤[][]''''''[]<<≤1212121212121221112111211221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζϕ''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。
12n 12n 12n 11221122n 0011000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n nni i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >∀⋯⋯∈<<1++⋯+=++⋯+≤⋯=<=>α.'''=+-+∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 0011110000111()()()()().x 2!()()()()()(()()().)nn ni i i i i i i nni nniiiiiii i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======⎛⎫''-'-≥+-<<'≥+-===- ⎪⎝⎭∑∑∑∑∑∑∑注:x()3.)tan.2F ,F 2(0)0,(0)0,((cos02F f xf F F f ππξξπξξππππππξ [0]0'∈=[0]0=∴===[0]∈设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续,在(,)内可导,且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cossin F cos sin 0222222cos0)tan22x x x f f f πξξξξξξξξξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。
与微分中值定理有关的证明题一.利用罗尔定理1.()f x 在[0 ,1]上有二阶导数,且(1)0f = ,又2()()F x x f x = ,求证:在(0 ,1)内至少存在一点x ,使()0F x ⅱ= 2.()f x 在[0 ,1]上连续,在(0 ,1)内可导 ,且(1)0f = ,求证:在(0 ,1)内 至少存在一点x ,使()()0f f x x x ¢+=3.()f x 在[a ,b]上连续,在(a , b )内可导,且()()0f a f b == ,l 为某个常数,求证:在(a , b )内至少存在一点x ,使()()0f f l x x ¢+= 4.()f x 在[a ,b]上连续,在(a , b )内可导,且()()0f a f b == ,l 为某个常数, 求证:在(a , b )内至少存在一点x ,使()()0f f x x x ¢+=5.()f x ,()g x 在[a ,b]上连续,在(a , b )内可导,且()()0f a f b ==求证:在(a , b )内至少存在一点x ,使()()()()0f g f g x x x x ⅱ+= 6.()f x ,()g x 在[a ,b]上连续,在(a , b )内可导,且()()0f a f b == , 对于任一点x Î[a , b] ,()0g x ¹ ,求证:在(a , b )内至少存在一点x ,使()()()()0f g f g x x x x ⅱ-= 7.()f x ,()g x 在[a ,b]上连续,在(a , b )内可导,且()()0f a f b ==求证:在(a , b )内至少存在一点x ,使()()()0f f g x x x ⅱ+= 8.()f x 在[a ,b]上连续,在(a , b )内可导,且()()f a f b = , 求证:在(a , b )内至少存在一点x ,使()()()f a f f x x x ¢-= 9.()f x 在[1 ,2]上连续,在(1 ,2)内可导,且1(1)2f = ,(2)2f =,求证:在(1 , 2)内至少存在一点x ,使2()()f f x x x¢=二.利用拉格朗日中值定理1.当1||2x £,证明:23arccos arccos(34)x x x p --=2.02p a b <<<时,证明:22tan tan cos cos b a b a b a ab--<-<3.0x >时,求证:2arctan 1x x x x<<+4.0a b <<,求证:b ab ab ab e ea--<<5.()f x 在[a ,b]上连续,在(a , b )内可导,()()f a f b =,且()f x 在[a , b]上 不为常数,求证:在(a , b )内至少存在一点x ,使()0f x ¢>6.()f x 在[a ,b]上连续,在(a , b )内二阶可导,()()f a f b ==0,()0f c >(a c b <<),求证:在(a , b )内至少存在一点x ,使()0f x ⅱ<7.0x >,11()42x q <<,并求0lim ()x x q +®与lim ()x x q ?三.利用柯西中值定理1.0a b <<,求证:在(a ,b )内至少存在一点x ,使(1)()baae be e b a xx -=-- 2.0a b <<,()f x 在[a ,b]上连续,在(a , b )内可导,求证:在(a ,b )内至少 存在一点x ,()()()ln b f b f a f ax x ¢-=四.综合题1.()f x 在[0 ,1]上连续,在(0 ,1)内可导 ,且(0)(1)0f f ==,12()1f =, 求证:在(0 ,1)内至少存在一点x ,使()1f x ¢=2.()f x 在[a ,b]上连续,在(a , b )内有二阶导数,连接点(a , ()f a ) 与点(b ,()f b )的直线段交曲线()y f x =于点(c ,()f c ),a c b <<,求证:在(a ,b )内至少存在一点x ,使()0f x ⅱ= 3.()f x ¢在[0 , c]上单调减少,且(0)0f =,证明:对于满足0a b a b c <<<+<中 的a 与b ,恒有()()()f a f b f a b +<+4.()f x 在[0 ,1]上连续,在(0 ,1)内可导 ,且(0)0,(1)1f f ==, 求证:任给正数a 与b ,在(0,1)内必存在1x 与2x ,使12()()a b a b f x f x +=+ⅱ5.0a b <<,()f x 在[a ,b]上连续,在(a , b )内可导,证明:在(a ,b )内分别存在x 和h ,使222()()()3f f a ab b h x h¢¢=++提示:一 . 1. ()F x 在[0 1]上应用罗尔定理,得()0F η'= ,()F x '在[0 η]上应用罗尔定理2.()()x x f x ϕ= 3. ()()x x f x e λϕ= 4. 22()()xx e f x ϕ= 5. ()()()x f x g x ϕ=6. ()()()f x xg x ϕ=7. ()()()g x x f x e ϕ= 8. ()[()()]x x f x f a ϕ=- 9. 2()()f x x xϕ=二. 4. 取对数ln ln b a b ab a ba--<-<令()ln f x x = 5. 至少有一点c (a<c<b) , ()()f c f a ≠ 若()()f c f a >, ()f x 在[a c] 应用拉格朗日中值定理 , 若()()f c f a <, ()f x 在[c b] 应用拉格朗日中值定理 6.()f x 在[]a c 与[]c b 分别应用拉朗日中值定理,得1a c η<<与2c b η<< 且1()0f η'>与2()0f η'<,()f x '在12[]ηη上应用拉格朗日中值定理7. ()f t =在[x 1x +]上用拉格朗日中值定理得,得11()]42x θ=+由1022x x<=<=1111l i m ()l i m ()4422x x x x x θθ+→+∞→+∞→==+=三. 1. ()xef x x =1()g x x = 2 .()()ln ln f b f a b a--四. 1. ()()F x f x x =-在[121]上应用零点定理 , ()0F η=, ()F x 在[0 η]用罗尔定理 2. ()f x 在[a c]和[c d]上应用拉格朗日中值定理 , 得12()()f x f x ''=()f x '在[1x 2x ]应用罗尔定理3. ()()()()()[()(0)]f a b f a f b f a b f b f a f +--=+--- 应用拉格朗日中值定理2112()()0f a f aa b a b ξξξξ''=-<<<<<+21[()()]0a f f ξξ''=-<4. 由于01a a b<<+ 介值定理得()a f a bξ=+ 01ξ<<在[0 ξ] 和[ξ 1]上用拉格朗日中值定理 得11()0()a ab x f x ξξ=+<<' ①22(1)()1()b a bx f x ξξ=-+<<' ② ①+②相加得证5. 拉格朗日中值定理 ()()()f b f a f b a ξ-'=- ① 柯西定理332()()()3f b f a f b aηη'-=- ②②乘22a ab b ++得222()()()()3f b f a f a ab b b aηη'-=++- ③ 比较①③得证。
理工大学微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理()()1.()0,(0)0,f x f f f ϕξξξξζξξξ'' <=>><≤[][]''''''[]<<≤1212121212121221112111211221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζϕ''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。
12n 12n 12n 11221122n 0011000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n nni i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >∀⋯⋯∈<<1++⋯+=++⋯+≤⋯=<=>α.'''=+-+∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 0011110000111()()()()().x 2!()()()()()(()()().)nn ni i i i i i i nni nniiiiiii i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======⎛⎫''-'-≥+-<<'≥+-===- ⎪⎝⎭∑∑∑∑∑∑∑注:x()3.)tan.2F ,F 2(0)0,(0)0,((cos02F f xf F F f ππξξπξξππππππξ [0]0'∈=[0]0=∴===[0]∈设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续,在(,)内可导,且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cossin F cos sin 0222222cos0)tan22x x x f f f πξξξξξξξξξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。
M 12丿」I 2丿第三章 微分中值定理与导数的应用习题3-11.解:(1)虽然 f(x)在[—1,1]上连续,f(—1) = f(1),且 f(x)在(—1,1)内可导。
可见,f(x)在[_1,1]上满足罗尔中值定理的条件,因此,必存在一点 匕€(-1,1),使得f 牡)=0,即:f(X)=cosx, F(X)=1 — sin X 且对任一 x 乏0,—】,F'(X)H 0, ”■. f (x),F (x)满足柯西 I 2丿中值定理条件。
—12©宀2=0,满足、; (2)虽然f(x)在[—1,1]上连续,f(_1)= f (1),但 f (x)在(—1,1)内 x = 0点不可导。
可 见,f (x)在[ —1,1]上不满足罗尔中值定理的条件,因此未必存在一点 £ £ (_1,1),使得 f 徉)=0. 2.因为函数是一初等函数,易验证满足条件 3 3 .解:令 y = 3arccos x - arccos(3x - 4x 3), y ‘ = 一 23 —12x 2厂工®®3)2,化简得 y'=0,「. y =c ( C 为常数),又 y(0.5)=兀,故当-0.5<x<0.5,有 y(x)=兀。
「兀f f 兀、 4 .证明:显然f(x), F(x)都满足在'|0,二I 上连续,在10,二 内可导L 2」 I 2丿 c oxsn ——x、、2丿F Q-F(O)12丿兀--1 2F( x) -1 sixn_c O 弓-x厂(X )_F(x) ZL"2 /兀 X ,,即 tan I - -- U--1,此时l 4 2丿 2f JI「兀X = 2 I — -arctan l — -1L 4l 2显然萨〔0,-〕,即丿」 I 2丿5.解:因为f(0) = f (1)= f (2) = f (3) =0,又因为f(x)在任一区间内都连续而且可导, 所以f (X)在任一区间 0,1 ], 1,2], [2,3]内满足罗尔中值定理的条件, 所以由罗尔定理,得:3" -(0,1), "^(1,2), ©-(2,3),使得:f 徉1 )= 0 r =) &:◎(=), 30 因为6.证明:设f(x) =0的n+1个相异实根为X o V X 1 <X 2 <H( <X n则由罗尔中值定理知:存在J (i =1,2,川n):X0 <:勺1cj ■<X2 vill <-1^Xn ,使得再由罗尔中值定理至少存在So =1,2,川n-1):上11 C 巴21 V ©2 吒 W ©3 V i 11 < J n d W G n ,使得7.解:反证法,倘若 p(X)=0有两个实根,设为X^X 2,由于多项式函数 p(x)在[X 1,X 2]上连续且可导,故由罗尔中值定理存在一点E€(X I ,X 2),使得P 徉)=0,而这与所设p'(x)=0没有实根相矛盾,命题得证。
例1设()x f '在[]b a ,上存在,且()()b f a f '<',而r 为()a f '与()b f '之间的任一值,则在()b a ,内存在一点ξ,使得()r f ='ξ[7].例2设()x f 在()+∞,a 内可导,且()()A x f x f x a x ==+∞→→+lim lim ,试证:至少存在一点 ()+∞∈,a ξ,使得()0='ξf [7].例3设函数()x f 在[]b a ,上可导,且()()0_<'⋅'+b f a f ,则在()b a ,内至少存在一个ξ,使得()0='ξf [7].例4()x f 在[]b a ,上连续,在()b a ,内二阶可导,且()()()b f c f a f ==,()b c a <<, 试证:至少存在一个()b a ,∈ξ,使得()0=''ξf [2].例5设()x f 在[]1,0上有三阶导数,()()010==f f ,设()()x f x x F 3=,证明:存在 ()1,0∈ξ使得()0='''ξF .例6设()x f 在[]b a ,上可微,且()x f 在a 点的右导数()0<'+a f ,在b 点的左导数 ()0<'-b f ,()()c b f a f ==,证明:()x f '在()b a ,内至少有两个零点.例7设()x f 在R 上二次可导,()0>''x f ,又存在一点0x ,使()00<x f ,且 ()0lim <='-∞→a x f x ,()0lim >='+∞→b x f x ,证明:()x f 在R 上有且仅有两个零点. 例8()[]1,0在x f 上二次可导,()()010==f f ,试证明:存在()1,0∈ξ,使得()()()ξξξf f '-=''211[4].例9设()[]1,0在x f 上连续,在()1,0上可导, ()()010==f f ,121=⎪⎭⎫ ⎝⎛f .证明: 至少存在一点()1,0∈ξ使得()1='ξf .例10设函数()x f 在闭区间[]b a ,上连续,在开区间()b a ,上二次可微,连结()()a f a ,与()()b f b ,的直线段与曲线()x f y =相交于()()c f c ,,其中b c a <<.证明在()b a ,上至少存在一点ξ,使得()0=''ξf [1].例11设()x f 在[]b a ,上连续,在()b a ,内可导,且()()1==b f a f 试证:存在ξ, ()b a ,∈η使得 ()()[]1='+-ηηξηf f e [1].例12 设函数()x f 在[]b a ,上连续,在()b a ,上二阶可微,并且()()b f a f =,证明:若存在点()b a c ,∈,使得()()a f c f >,则必存在点()b a ,,,∈ζηξ,使得()0>'ξf ,()0<'ηf ,()0<''ζf [6].例13设()x f 定义在[]1,0上,()x f '存在且()x f '单调递减,()00=f ,证明: 对于 10≤+≤≤≤b a b a ,恒有()()()b f a f b a f +≤+.例14 设()x f 在[]b a ,上连续,在()b a ,可导,b a <≤0,()()b f a f ≠.证明:存在η,()b a ,∈ξ,使得()()ηηξf b a f '+='2 [6]. 例15 设()x f 在[]b a ,上连续,在()b a ,可导,且()0≠'x f ,试证:存在η,()b a ,∈ξ,使得()()ηηξ---=''e ab e e f f ab [1]. 例16设函数()x f 在[]b a ,上连续,在()b a ,可导,证明:存在()b a ,∈ξ,使得()()()()ξξξf f ab a af b bf '+=--[1]. 例17设()[]b a x f ,在上连续()0>a ,在()b a ,可导,证明:在()b a ,内存在ξ,η,使()()ab f f ηηξ'='2[1].例18 设()[]b a x f ,在上连续,在()b a ,内可微,0>>a b ,证明:在()b a ,内存在321,,x x x ,使得()()()()33223222211ln42x f x a b a b x x f a b x x f '-='+='. (3) 例19设()x f 在()b a ,内二次可微,试用柯西中值定理证明:任意x ,()b a x ,0∈,存在ξ在x 与0x 之间,使()()()()()()2000021x x f x x x f x f x f -''+-'+=ξ成立[6]. (8)。
壹第五章微分中值定理及其应用第一节微分中值定理331231.(1)30()[0,1];(2)0(,,),;(1)[0,1]30[0,1]()3nx x c c x px q n p q n n x x c x x f x x x c证明:方程为常数在区间内不可能有两个不同的实根方程为正整数为实数当为偶数时至多有两个实根当为奇数时,至多有三个实根。
证明:设在区间内方程有两个实根,即有使得函数值为零012023(,)[0,1],'()0.'()33(0,1)(3,0)30()[0,1] (2)2220nx x x f x f x x x x c c n n k x px q x 。
那么由罗尔定理可知存在使得 但是在内的值域为是不可能有零点的,矛盾。
因此有:方程为常数在区间内不可能有两个不同的实根。
当时,方程至多只可能有两个实根,满足所证。
当时,设方程有三个实根,即存在实数1230112022301021010110202()0(,),(,),'()'()0,'()0(*'()0n n n x x f x x px q x x x x x x f x f x f x nx p f x nx p使得函数成立。
那么由罗尔定理可知存在使得即0010220000102),(,),''(0)0,''()(1)0,0,0,0.2(*).212n nx x x f f x n n x x x x n k p n n k x px q 再次利用罗尔定理可以知道,存在使得即显然必有那么就有 那么由于为偶数,可以知道此时不存在满足式的实数因此当为偶数时方程至多有两个实根。
当时,设方程1234111212231334111213111110()0(,),(,),(,)'()0,'()0,'()0,'()0'(nn x x x x f x x px q x x x x x x x x x f x f x f x f x nx p f x 有三个实根,即存在实数使得函数成立。
微分中值定理的证明题1.若在上连续,在上可导,,证明:,使得:。
证:构造函数,则在上连续,在内可导,且,由罗尔中值定理知:,使即:,而,故。
2.设,证明:,使得。
证:将上等式变形得:作辅助函数,则在上连续,在内可导,由拉格朗日定理得:,即,即:。
3.设在内有二阶导数,且,有证明:在内至少存在一点,使得:。
证:显然在上连续,在内可导,又,故由罗尔定理知:,使得又,故,于是在上满足罗尔定理条件,故存在,使得:,而,即证4.设函数在[0,1]上连续,在(0,1)上可导,,.证明:(1)在(0,1)内存在,使得.(2)在(0,1)内存在两个不同的点,【分析】第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【证明】(I)令,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在存在使得,即.(II)在和上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点,使得,于是5.设在[0,2a]上连续,,证明在[0,a]上存在使得.【分析】在[0,2a]上连续,条件中没有涉及导数或微分,用介值定理或根的存在性定理证明。
辅助函数可如下得到【证明】令,.在[0,a]上连续,且当时,取,即有;当时,,由根的存在性定理知存在使得,,即.6.若在上可导,且当时有,且,证明:在内有且仅有一个点使得证明:存在性构造辅助函数则在上连续,且有,,由零点定理可知:在内至少存在一点,使得,即:唯一性:(反证法)假设有两个点,且,使得在上连续且可导,且在上满足Rolle定理条件必存在一点,使得:即:,这与已知中矛盾假设不成立,即:在内仅有一个根,综上所述:在内有且仅有一个点,使得7.设在[0,1]上连续,在(0,1)内可导,且==0,=1。
试证至少存在一个(0,1),使=1。
分析:=1=1=x=0令()=证明:令F()=()在[0,1]上连续,在(0,1)内可导,(1)=()=由介值定理可知,一个(,1),使()=0又(0)=0=0对()在[0,1]上用Rolle定理,一个(0,)(0,1)使=0即=18.设在上连续,在内可导,且试证存在和.满足,使。
微分中值定理的证明题
1.若在上连续,在上可导,,证明:,
使得:。
证:构造函数,则在上连续,在内可导,且,由罗尔中值定理知:,使
即:,而,故。
2.设,证明:,使得。
证:将上等式变形得:
作辅助函数,则在上连续,在内可导,由拉格朗日定理得:
,
即,
即:。
3.设在内有二阶导数,且,有证明:在
内至少存在一点,使得:。
证:显然在上连续,在内可导,又,故由罗尔定理知:,使得
又,故,于是在上满足罗尔定理条件,故存在,使得:,而,即证4.设函数在[0,1]上连续,在(0,1)上可导,,.证明:
(1)在(0,1)内存在,使得.
(2)在(0,1)内存在两个不同的点,
【分析】第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.
【证明】(I)令,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在存在使得,即.
(I I)在和上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点,使得,
于是
5.设在[0,2a]上连续,,证明在[0,a]上存在使得
.
【分析】在[0,2a]上连续,条件中没有涉及导数或微分,用介值定理或根的存在性定理证明。
辅助函数可如下得到
【证明】令,.在[0,a]上连续,且
当时,取,即有;
当时,,由根的存在性定理知存在使得,,即.
6.若在上可导,且当时有,且,证明:
在内有且仅有一个点使得
证明:存在性
构造辅助函数
则在上连续,且有,,
由零点定理可知:在内至少存在一点,使得,即:
唯一性:(反证法)
假设有两个点,且,使得
在上连续且可导,且
在上满足R o l l e定理条件
必存在一点,使得:
即:,这与已知中矛盾
假设不成立,即:在内仅有一个根,
综上所述:在内有且仅有一个点,使得
7.设在[0,1]上连续,在(0,1)内可导,且==0,=1。
试
证至少存在一个(0,1),使=1。
分析:=1=1=x=0令()=
证明:令F()=
()在[0,1]上连续,在(0,1)内可导,
(1)=
()=
由介值定理可知,一个(,1),使
()=0又(0)=0=0
对()在[0,1]上用R o l l e定理,一个(0,)(0,1)使
=0即=1
8.设在上连续,在内可导,且试证存在和.满足
,使。
证由拉格朗日中值定理知,
9.设在上连续,内可导
证明: 使得
(1)
证: (用乘于(1)式两端,知)(1)式等价于
(2)
为证此式,只要取取和在上分别应用C a u c h y中值定理,则知
其中.
10.已知函数在[0,1]上连续,在(0,1)内可导,,证明存在,
使
解:利用柯西中值定理
而则
(后面略)
11.设在时连续,,当时,,则在
内有唯一的实根
解:因为,则在上单调增加
(中值定理)
而故在内有唯一的实根
12.试问如下推论过程是否正确。
对函数在上应用拉
格朗日中值定理得:
即:
因,故当时,,由
得:,即
解:我们已经知道,不存在,故以上推理过程错误。
首先应注意:上面应用拉格朗日中值的是个中值点,是由和区间的端点而定的,具体地说,与有关系,是依赖于的,当时,不
一定连续地趋于零,它可以跳跃地取某些值趋于零,从而使成立,而中要求是连续地趋于零。
故由推不出
13.证明:成立。
证明:作辅助函数,则在上连续,在内可导,由拉格朗日定理知:
即:,因在内单调递减,故在
内单调递增,故即:
即:。
注:利用拉格朗日中值定理证明不等式,首先由不等式出发,选择合适的函数及相应的区间,然后验证条件,利用定理得
,再根据在内符号或单调证明不等式。
14.证明:当时,。
证明:作辅助函数
则
故在上单调递减,又因,在上连续,
故=0,即:,即:。
注:利用单调性证明不等式是常用方法之一,欲证当时,常用辅助函数,则将问题转化证,然后在上讨论的单调性,进而完成证明。
15.证明:若二阶可导,且,,则在
内单调递增。
证明:因,要证单调递增,只需证,即证。
设,则,因为,,故是单调递增函数,而,因此,即:,
即:,即当时单调递增。