山东省临沂市费县2018-2019年最新最全中考数学二模试卷(含答案)
- 格式:doc
- 大小:485.50 KB
- 文档页数:21
---费县二模初中数学试卷一、选择题(每题3分,共30分)1. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长为:A. 16cmB. 18cmC. 26cmD. 28cm答案:C2. 下列数中,有理数是:A. √-1B. πC. √4D. 2/3答案:C3. 已知函数y=2x-1,若x=3,则y的值为:A. 5B. 6C. 7D. 8答案:A4. 在直角坐标系中,点A(2,3)关于y轴的对称点是:A. (2,-3)B. (-2,3)C. (2,3)D. (-2,-3)答案:B5. 下列图形中,不是轴对称图形的是:A. 正方形B. 等腰三角形C. 长方形D. 梯形答案:D二、填空题(每题5分,共25分)6. 若x+2=0,则x=______。
答案:-27. 若|a|=5,则a的值为______。
答案:±58. 分式x/(x-1)的值为0时,x=______。
答案:09. 在直角坐标系中,点B(-3,4)到原点的距离为______。
答案:510. 若y=3x+2,当x=2时,y的值为______。
答案:8三、解答题(每题10分,共40分)11. 解方程:3x-2=5。
解答:3x=5+2,3x=7,x=7/3。
12. 已知一个数的平方减去这个数等于5,求这个数。
解答:设这个数为x,根据题意得x^2-x=5,即x^2-x-5=0。
因式分解得(x-5)(x+1)=0,所以x=5或x=-1。
13. 计算下列各式的值:(1)(2a+3b)(2a-3b)解答:(2a+3b)(2a-3b)=4a^2-9b^2(2)(3x-4y)^2解答:(3x-4y)^2=9x^2-24xy+16y^214. 一个长方形的长是10cm,宽是6cm,求这个长方形的对角线长。
解答:根据勾股定理,对角线长为√(10^2+6^2)=√(100+36)=√136≈11.66cm。
---请注意,以上答案仅供参考,实际考试答案应以官方发布的为准。
2018-2020年山东中考复习数学各地区模拟试题分类(临沂专版)(4)——二次函数一.选择题1.(2019•费县二模)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴下方且横坐标小于3,则下列结论:①a﹣b+c<0;②2a+b+c>0;③x(αx+b)≤a+b;④a>﹣1.其中正确的有()A.4个B.3个C.2个D.1个2.(2019•兰山区二模)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=﹣2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是﹣4<x<0;其中推断正确的是()A.①②B.①③C.①③④D.②③④3.(2019•蒙阴县二模)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x…﹣2 ﹣1 0 1 2 …y…0 4 6 6 4 …小聪观察上表,得出下面结论:①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是x=;④在对称轴左侧,y随x增大而增大.其中正确有()A.①②B.①③C.①②③D.①③④4.(2019•沂水县二模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0;⑤a+b+c=0,其中,正确结论的个数是()A.1 B.2 C.3 D.45.(2019•郯城县一模)由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0)(2)顶点是(1,﹣2)(3)在x轴上截得的线段的长度是2(4)c=3a正确的个数()A.4个B.3个C.2个D.1个6.(2018•平邑县一模)二次函数y=ax2+bx+c图象上部分点的坐标满足表格:x…﹣3 ﹣2 ﹣1 0 1 …y…﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)7.(2018•郯城县三模)如图,抛物线y=﹣2x2+4x与x轴交于点O、A,把抛物线在x轴及其上方的部分记为C1,将C1以y轴为对称轴作轴对称得到C2,C2与x轴交于点B,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是()A.0<m B.<m<C.0<m<D.m<或m<8.(2018•河东区二模)若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x…﹣1 0 1 2 3 …y……则下列说法错误的是()A.二次函数图象与x轴交点有两个B.x≥2时y随x的增大而增大C.二次函数图象与x轴交点横坐标一个在﹣1~0之间,另一个在2~3之间D.对称轴为直线x=1.59.(2019•郯城县二模)把抛物线y=﹣x2向右平移1个单位,然后向下平移3个单位,则平移后抛物线的解析式为()A.y=﹣(x﹣1)2﹣3 B.y=﹣(x+1)2﹣3C.y=﹣(x﹣1)2+3 D.y=﹣(x+a)2+310.(2019•费县二模)已知抛物线y=x2﹣x﹣3与x轴的一个交点为(m,0),则代数式m2﹣m+2017的值为()A.2017 B.2020 C.2019 D.201811.(2019•蒙阴县二模)如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=+bx+c的顶点,则抛物线y=+bx+c与直线y=1交点的个数是()A.0个或1个B.0个或2个C.1个或2个D.0个、1个或2个12.(2019•沂水县一模)二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)中x与y的部分对应值如表:x﹣1 0 1 3y﹣1 3 5 3①ac<0;②当x>1时,y的值随x值的增大而减小;③x=3是方程ax2+(b﹣1)x+c=0的一个根;④当﹣1<x<3时,ax2+(b﹣1)x+c>0.上述结论中正确的个数是()A.4 B.3 C.2 D.113.(2019•蒙阴县一模)函数y=﹣x2+2(m﹣1)x+m+1的图象如图,它与x轴交于A,B两点,线段OA 与OB的比为1:3,则m的值为()A.或2 B.C.1 D.214.(2019•蒙阴县一模)某商人将单价为8元的商品按每件10元出售,每天可销售100件,已知这种商品每提高2元,其销量就要减少10件,为了使每天所赚利润最多,该商人应将销售价(为偶数)提高()A.8元或10元B.12元C.8元D.10元15.(2019•临沂模拟)已知二次函数y=ax2+bx+1(a<0)的图象过点(1,0)和(x1,0),且﹣2<x1<﹣1,下列5个判断中:①b<0;②b﹣a<0;③a>b﹣1;④a<﹣;⑤2a<b+,正确的是()A.①③B.①②③C.①②③⑤D.①③④⑤16.(2019•费县模拟)苹果熟了,从树上落下所经过的路程s与下落时间t满足S=gt2(g=9.8),则s与t的函数图象大致是()A.B.C.D.17.(2019•兰山区模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b<0;②abc >0;③4a﹣2b+c>0;④a+c>0,其中正确结论的个数为()A.4个B.3个C.2个D.1个二.填空题18.(2019•沂南县一模)对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为y=.已知二次函数y=﹣x2+4x﹣,当点B(m,)在这个函数的相关函数的图象上时,求m的值为.19.(2019•平邑县一模)对于两个实数,规定max{a,b}表示a、b中的较大值,当a≥b时,max{a,b}=a,当a<b时,max{a,b}=b,例如:max{1,3}=3.则函数y=max{x2+2x+2,﹣x2﹣1}的最小值是.20.(2019•费县二模)飞机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数解析式是s=60t﹣1.5t2.则飞机着陆后滑行到停下来滑行的距离为米.三.解答题21.(2020•兰山区模拟)某企业为了增收节支,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元∕件)…30 40 50 60 …每天销售量y(件)…500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,根据所描出的点猜想y是x的什么函数,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?22.(2020•兰山区模拟)如图,设抛物线y=ax2+bx+c与x轴交于两个不同的点A(﹣1,0),B(m,0),与y轴交于点C(0,﹣2),且∠ACB=90度.(1)求m的值和抛物线的解析式;(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E,求点D和点E的坐标;(3)在x轴上是否存在点P,使以点P,B,D为顶点的三角形与三角形AEB相似?若存在,请求出点P的坐标;若不存在,请说明理由.23.(2019•费县一模)如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)当点P从A点出发沿线段AB上方的抛物线向终点B移动时,点P到直线AB的距离为d,求d最大时点P的坐标;(3)点M在抛物线上,点N在x轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.24.(2019•河东区一模)如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C,已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G(1)求出抛物线C1的解析式,并写点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值;(3)在(2)的条件下,如图3,设点M为轴正半轴上一动点(介于0与B之间),过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,是否存在M点,使得以A、Q、M为顶点的三角形与以P、M、B为顶点的三角形相似?若存在,求出点M的坐标:若不存在,请说明理由.25.(2019•兰陵县一模)如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,请问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由;(3)在抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.26.(2019•郯城县一模)如图,直线y=x+a与x轴交于点A(4,0),与y轴交于点B,抛物线y=x2+bx+c经过点A,B.点M(m,0)为x轴上一动点.(1)填空:点B的坐标为,抛物线的解析式为;(2)当点M在线段OA上运动时(不与点O,A重合),过点M且垂直于x轴的直线分别交直线AB及抛物线于点P、N.求m为何值时,2PN=3AM.(3)抛物线上是否存在一点Q,以点A、B、M、Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.27.(2019•蒙阴县一模)如图,抛物线y=ax2﹣2x+c(a≠0)与x轴交于A,C两点,与直线y=x﹣1交于A,B两点,且OC=3OA,直线AB与抛物线的对称轴交于点E.(2)若点P在直线AB上方的抛物线上运动.①点P在什么位置时,△ABP的面积最大,求出此时点P的坐标;②当点P与点C重合时,连结PE,将△PEB补成矩形,使△PEB上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.28.(2019•兰山区一模)如图,已知二次函数y=ax2+的图象与y轴交于点A(0,4),与x轴交于点B,C,点C坐标为(8,0),连接AB、AC.(1)求二次函数的解析式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标.29.(2019•兰山区二模)如图,直线y=﹣x+2交坐标轴于A、B两点,直线AC⊥AB交x轴于点C,抛物线恰好过点A、B、C.(1)求抛物线的表达式;(2)当点M在线段AB上方的曲线上移动时,求四边形AOBM的面积的最大值;(3)点E在抛物线的对称轴上,点F在抛物线上,是否存在点F使得以A、C、E、F为顶点的四边形是平行四边形?若存在求出点F坐标;若不存在,说明理由.30.(2019•平邑县一模)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4)与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F,使四边形ABFC的面积为15?若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.31.(2019•罗庄区一模)如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.32.(2018•兰山区二模)已知点A(﹣1,2)、B(3,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.33.(2018•河东区二模)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣l,且抛物线经过点A(1,0),C(0,3)两点.与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解折式;(2)在抛物线的对称轴x=﹣1上找一点M,使△ACM的周长最小,求出点M的坐标,并求出△ACM 的面积;(3)设点P为线段AB垂直平分线上的一个动点,求使△BPC为直角三角形的点P的坐标.34.(2018•沂水县一模)已知直线y=x+3交x轴于点A,交y轴于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线解析式;(2)点C(m,0)在线段OA上(点C不与A,O点重合),CD⊥OA交AB于点D,交抛物线于点E,若DE=AD,求m的值;(3)点M在抛物线上,点N在抛物线的对称轴上,在(2)的条件下,是否存在以点D,B,M,N为顶点的四边形为平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.35.(2018•沂水县二模)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,4).(1)求此抛物线的解析式;(2)设点P(2,n)在此抛物线上,AP交y轴于点E,连接BE,BP,请判断△BEP的形状,并说明理由;(3)设抛物线的对称轴交x轴于点D,在线段BC上是否存在点Q,使得△DBQ成为等腰直角三角形?若存在,求出点Q的坐标;若不存在,说明理由.36.(2018•平邑县三模)如图,二次函数y=ax2+bx+2(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0),B(1,0).(1)求抛物线的解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m 的函数解析式;(3)若点E为抛物线对称轴上任意一点,当以A、C、E为顶点的三角形是直角三角形时,请求出满足条件的所有点E的坐标.37.(2019•平邑县校级模拟)如图,已知抛物线y=x2+bx与x轴交于O,A(4,0)两点,点B的坐标为(0,﹣3).(1)求抛物线的对称轴;(2)已知点P在抛物线的对称轴上,连接OP,BP.若要使OP+BP的值最小,求出点P的坐标;(3)将抛物线在x轴下方的部分沿x轴翻折,其余部分保持不变,得到一个新的图象,当直线y=x+m (m≠0)与这个新图象有两个公共点时,在反比例函数y=的图象中,y的值随x怎样变化?判断并说明理由.38.(2019•罗庄区二模)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线和直线BC的解析式;(2)E为抛物线上一动点,是否存在一点E,使以A,B,E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由.39.(2019•沂水县一模)如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P,A,B,D为顶点的四边形是平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.40.(2019•平邑县校级模拟)在平面直角坐标系中,抛物线y=﹣x2+(k﹣1)x+k与直线y=kx﹣1交于A,B两点,其中k>0,点A在点B的左侧.(1)当k=1时,①求点A,B的坐标;②M是抛物线上的一点,且在直线AB的上方,试求△ABM的面积的最大值,并求出此时点M的坐标;(2)当k<1时,设抛物线y=﹣x2+(k﹣1)x+k与x轴交于点C,D,点C在点D的左侧,试探究在直线y=kx﹣1上是否存在唯一一点N,使得ON⊥DN?若存在,请求出此时k的值;若不存在,请说明理由.41.(2019•费县模拟)为了扩大内需,让惠于农民,丰富农民的业余生活,国家决定对购买彩电的农民实行政府补贴.规定:每购买一台彩电,政府补贴若干元.经调查,某商场销售彩电的台数y(台)与每台彩电的补贴款额x(元)之间大致满足如图①所示的一次函数关系.随着补贴款额x的不断增大,销售量y也不断增加,但每台彩电的收益z(元)会相应降低且z与x之间满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该商场销售彩电的总收益为多少元?(2)分别求出政府补贴政策实施后,y与x,z与x之间的函数关系式;(3)要使该商场销售彩电的总收益W(元)最大,政府应将每台彩电的补贴款额定为多少元?请求出总收益W的最大值.42.(2019•郯城县二模)如图,抛物线y=x2﹣x﹣4与x轴交于A,B两点,与y轴交于点C,连接BC,AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A,B不重合),过点E作直线l平行BC,交AC 于点D,设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)当E为AB的中点时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).43.(2019•郯城县二模)某工厂生产的一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长x(单位:cm)在5到50之间(含5和50),每张薄板的出场价y(单位:元)由基础价a和浮动价b 两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价b与薄板的边长x成正比例.在营销过程中得到了表格中的数据.薄板的边长x(cm)20 30出厂价y(元/张)50 70(1)求一张薄板的出厂价y与边长x之间满足的函数关系式;(2)每张薄板的成本价w(单位:元)与它的面积x2(单位:cm2)成正比例,已知出厂一张边长为40cm 的薄板,获得利润p是26元(利润=出厂价﹣成本价),①求一张薄板的利润p与边长x之间满足的函数关系式.②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?2018-2020年山东中考复习数学各地区模拟试题分类(临沂专版)(4)——二次函数参考答案与试题解析一.选择题(共17小题)1.(2019•费县二模)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴下方且横坐标小于3,则下列结论:①a﹣b+c<0;②2a+b+c>0;③x(αx+b)≤a+b;④a>﹣1.其中正确的有()A.4个B.3个C.2个D.1个【答案】B【解答】解:①由图象可知:抛物线的对称轴为x=1时,∴点(3,y)关于直线x=1对称的点为(﹣1,y),∵x=3时,y<0,∴x=﹣1,y<0∴a﹣b+c<0,故①正确;②令y=0代入y=﹣x+c,∴x=c,由图象可知:1<c<2,由图象可知:=1,∴2a+b=0,∴2a+b+c=c>0,故②正确;③由图象可知:x=1时,y的最大值为a+b+c,∴当x取全体实数时,ax2+bx+c≤a+b+c,即x(ax+b)≤a+b,故③正确;④联立,化简得:ax2+(b+1)x=0,∴x=0或x=,即D的横坐标为,由于b=﹣2a,a<0,且<3,∴﹣b﹣1>3a,∴a<﹣1,故④错误,故选:B.2.(2019•兰山区二模)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=﹣2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是﹣4<x<0;其中推断正确的是()A.①②B.①③C.①③④D.②③④【答案】B【解答】解:①由图象可知,抛物线开口向下,所以①正确;②若当x=﹣2时,y取最大值,则由于点A和点C到x=﹣2的距离相等,这两点的纵坐标应该相等,但是图中点A和点C纵坐标显然不相等,所以②错误,从而排除掉A和D;剩下的选项中都有③,所以③是正确的;易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<﹣4或x>0,从而④错误.故选:B.3.(2019•蒙阴县二模)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x…﹣2 ﹣1 0 1 2 …y…0 4 6 6 4 …小聪观察上表,得出下面结论:①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是x=;④在对称轴左侧,y随x增大而增大.其中正确有()A.①②B.①③C.①②③D.①③④【答案】D【解答】解:根据图表,当x=﹣2,y=0,根据抛物线的对称形,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);∴抛物线的对称轴是直线x=3﹣=,根据表中数据得到抛物线的开口向下,∴当x=时,函数有最大值,而不是x=0,或1对应的函数值6,并且在直线x=的左侧,y随x增大而增大.所以①③④正确,②错.故选:D.4.(2019•沂水县二模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0;⑤a+b+c=0,其中,正确结论的个数是()A.1 B.2 C.3 D.4【答案】C【解答】解:由抛物线交y轴的正半轴,∴c>0,故①正确;∵对称轴为直线x=﹣1,∴点B(﹣,y1)距离对称轴较近,∵抛物线开口向下,∴y1>y2,故②错误;∵对称轴为直线x=﹣1,∴﹣=﹣1,即2a﹣b=0,故③正确;由函数图象可知抛物线与x轴有2个交点,∴b2﹣4ac>0即4ac﹣b2<0,∵a<0,∴>0,故④错误;由图象过点A(﹣3,0),对称轴为直线x=﹣1可知:抛物线的另一个交点为(1,0),即当x=1时y=0,∴a+b+c=0;故⑤正确;综上,正确的结论是:①③⑤,故选:C.5.(2019•郯城县一模)由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0)(2)顶点是(1,﹣2)(3)在x轴上截得的线段的长度是2(4)c=3a正确的个数()A.4个B.3个C.2个D.1个【答案】B【解答】解:(1)因为图象过点(1,0),且对称轴是直线x=2,另一个对称点为(3,0),正确;(2)顶点的横坐标应为对称轴,本题的顶点坐标与已知对称轴矛盾,错误;(3)抛物线与x轴两交点为(1,0),(3,0),故在x轴上截得的线段长是2,正确;(4)图象过点(1,0),且对称轴是直线x=﹣=2时,则b=﹣4a,即a﹣4a+c=0,即可得出c=3a,正确.正确个数为3.故选:B.6.(2018•平邑县一模)二次函数y=ax2+bx+c图象上部分点的坐标满足表格:x…﹣3 ﹣2 ﹣1 0 1 …y…﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)【答案】B【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选:B.7.(2018•郯城县三模)如图,抛物线y=﹣2x2+4x与x轴交于点O、A,把抛物线在x轴及其上方的部分记为C1,将C1以y轴为对称轴作轴对称得到C2,C2与x轴交于点B,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是()A.0<m B.<m<C.0<m<D.m<或m<【答案】A【解答】解:令y=﹣2x2+4x=0,解得:x=0或x=2,则点A(2,0),B(﹣2,0),∵C1与C2关于y轴对称,C1:y=﹣2x2+4x=﹣2(x﹣1)2+2,∴C2解析式为y=﹣2(x+1)2+2=﹣2x2﹣4x(﹣2≤x≤0),当y=x+m与C2相切时,如图所示:令y=x+m=y=﹣2x2+4x,即2x2﹣3x+m=0,△=﹣8m+9=0,解得:m=,当y=x+m过原点时,m=0,∴当0<m<时直线y=x+m与C1、C2共有3个不同的交点,故选:A.8.(2018•河东区二模)若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x…﹣1 0 1 2 3 …y……则下列说法错误的是()A.二次函数图象与x轴交点有两个B.x≥2时y随x的增大而增大C.二次函数图象与x轴交点横坐标一个在﹣1~0之间,另一个在2~3之间D.对称轴为直线x=1.5【答案】D【解答】解:A、由图表数据可知x=1时,y的值最,所以,抛物线开口向上.所以该抛物线与x轴有两个交点.故本选项正确;B、根据图表知,当x≥2时y随x的增大而增大.故本选项正确;C、抛物线的开方方向向上,抛物线与y轴的交点坐标是(0,﹣),对称轴是x=1,所以二次函数图象与x轴交点横坐标一个在﹣1~0之间,另一个在2~3之间.故本选项正确;D、因为x=0和x=2时的函数值相等,则抛物线的对称轴为直线x=1.故本选项错误;故选:D.9.(2019•郯城县二模)把抛物线y=﹣x2向右平移1个单位,然后向下平移3个单位,则平移后抛物线的解析式为()A.y=﹣(x﹣1)2﹣3 B.y=﹣(x+1)2﹣3C.y=﹣(x﹣1)2+3 D.y=﹣(x+a)2+3【答案】A【解答】解:抛物线形平移不改变解析式的二次项系数,平移后顶点坐标为(1,﹣3),∴平移后抛物线解析式为y=﹣(x﹣1)2﹣3.故选:A.10.(2019•费县二模)已知抛物线y=x2﹣x﹣3与x轴的一个交点为(m,0),则代数式m2﹣m+2017的值为()A.2017 B.2020 C.2019 D.2018【答案】B【解答】解:∵抛物线y=x2﹣x﹣3与x轴的一个交点为(m,0),∴m2﹣m﹣3=0,∴m2﹣m=3,∴m2﹣m+2017=3+2017=2020.故选:B.11.(2019•蒙阴县二模)如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=+bx+c的顶点,则抛物线y=+bx+c与直线y=1交点的个数是()A.0个或1个B.0个或2个C.1个或2个D.0个、1个或2个【答案】D【解答】解:由抛物线y=x2+bx+c的图象可知,该抛物线与x轴没有交点,即:△<0,则:b2﹣2c<0,又点M是直线y=2与x轴之间的一个动点,点M的坐标为:(﹣b,),所以,0<<2,即:﹣4<b2﹣2c<0,∴:﹣2<b2﹣2c+2<2,联立抛物线解析式y=x2+bx+c和直线y=1,则要求方程x2+bx+c=1的解得个数,又因为,△=b2﹣4×(c﹣1)=b2﹣2(c﹣1)=b2﹣2c+2,所以,﹣2<b2﹣2c+2<2,即:①当﹣2<b2﹣2c+2<0时,抛物线y=x2+bx+c与直线y=1没有交点;②b2﹣2c+2=0时,抛物线y=x2+bx+c与直线y=1有一个交点;③0<b2﹣2c+2<2时,抛物线y=x2+bx+c与直线y=1有两个交点.故选:D.12.(2019•沂水县一模)二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)中x与y的部分对应值如表:x﹣1 0 1 3y﹣1 3 5 3①ac<0;②当x>1时,y的值随x值的增大而减小;③x=3是方程ax2+(b﹣1)x+c=0的一个根;④当﹣1<x<3时,ax2+(b﹣1)x+c>0.上述结论中正确的个数是()A.4 B.3 C.2 D.1【答案】B【解答】解:∵x=﹣1时y=﹣1,x=0时,y=3,x=1时,y=5,∴,解得,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<0,故①正确;对称轴为直线x=﹣=,所以,当x>时,y的值随x值的增大而减小,故②错误;方程为﹣x2+2x+3=0,整理得,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,所以,3是方程ax2+(b﹣1)x+c=0的一个根,正确,故③正确;﹣1<x<3时,ax2+(b﹣1)x+c>0正确,故④正确;综上所述,结论正确的是①③④.故选:B.13.(2019•蒙阴县一模)函数y=﹣x2+2(m﹣1)x+m+1的图象如图,它与x轴交于A,B两点,线段OA 与OB的比为1:3,则m的值为()A.或2 B.C.1 D.2【答案】D【解答】解:设点A的坐标为(﹣a,0),点B的坐标为(3a,0),且a>0.由根与系数的关系可知:﹣a+3a=2(m﹣1),﹣a•3a=﹣(m+1),整理得:a=m﹣1,3a2=m+1将a=m﹣1代入得:3(m﹣1)2=m+1.解得:m=2或m=(舍去).故选:D.14.(2019•蒙阴县一模)某商人将单价为8元的商品按每件10元出售,每天可销售100件,已知这种商品每提高2元,其销量就要减少10件,为了使每天所赚利润最多,该商人应将销售价(为偶数)提高()A.8元或10元B.12元C.8元D.10元【答案】A【解答】解:(1)设销售价为x元,利润为y元.依题意,得y=(x﹣8)•(100﹣10×)=﹣5x2+190x﹣1200=﹣5(x﹣19)2+605,﹣5<0,∴抛物线开口向下,函数有最大值,即当x=19时,y的最大值为605,∵售价为偶数,∴x为18或20,当x=18时,y=600,当x=20时,y=600,∴x为18或20时y的值相同,∴商品提高了18﹣10=8(元)或20﹣10=10(元)故选:A.15.(2019•临沂模拟)已知二次函数y=ax2+bx+1(a<0)的图象过点(1,0)和(x1,0),且﹣2<x1<﹣1,下列5个判断中:①b<0;②b﹣a<0;③a>b﹣1;④a<﹣;⑤2a<b+,正确的是()A.①③B.①②③C.①②③⑤D.①③④⑤【答案】D【解答】解:∵抛物线与x轴的交点为(1,0)和(x1,0),﹣2<x1<﹣1,与y轴交于正半轴,∴a<0,∵﹣2<x1<﹣1,∴﹣<﹣<0,∴b<0,b>a,故①正确,②错误;∵当x=﹣1时,y>0,∴a﹣b+1>0,∴a>b﹣1故③正确;∵由一元二次方程根与系数的关系知x1•x2=,∴x1=,∵﹣2<x1<﹣1,∴﹣2<<﹣1,∴﹣1<a<﹣,故④正确;∵当x=﹣2时,y<0,∴4a﹣2b+1<0,∴2a﹣b<﹣<,∴2a<b+,故⑤正确,综上所述,正确的结论有①③④⑤,故选:D.16.(2019•费县模拟)苹果熟了,从树上落下所经过的路程s与下落时间t满足S=gt2(g=9.8),则s与t的函数图象大致是()A.B.C.D.【答案】B【解答】解:∵s=gt2是二次函数的表达式,∴二次函数的图象是一条抛物线.又∵g>0,∴应该开口向上,∵自变量t为非负数,∴s为非负数.图象是抛物线在第一象限的部分.故选:B.17.(2019•兰山区模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b<0;②abc >0;③4a﹣2b+c>0;④a+c>0,其中正确结论的个数为()A.4个B.3个C.2个D.1个【答案】C【解答】解:①∵抛物线开口向下,∴a<0,∵﹣<1,∴2a+b<0,①正确;②抛物线与y轴交于正半轴,∴c>0,∵﹣>0,a<0,∴b>0,∴abc<0,②错误;③当x=﹣2时,y<0,∴4a﹣2b+c<0,③错误;x=±1时,y>0,∴a﹣b+c>0,a+b+c>0,∴a+c>0,④正确,故选:C.二.填空题(共3小题)18.(2019•沂南县一模)对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为y=.已知二次函数y=﹣x2+4x﹣,当点B(m,)在这个函数的相关函数的图象上时,求m的值为2﹣或2±.【答案】见试题解答内容【解答】解:当m<0时,把B(m,)代入y=x2﹣4x+得:m2﹣4m+=,解得:m=2+(舍去)或m=2﹣;当m≥0时,把B(m,)代入y=﹣x2+4x﹣得:﹣m2+4m﹣=,解得:m=2±,综合上述:2﹣或2±;19.(2019•平邑县一模)对于两个实数,规定max{a,b}表示a、b中的较大值,当a≥b时,max{a,b}=a,当a<b时,max{a,b}=b,例如:max{1,3}=3.则函数y=max{x2+2x+2,﹣x2﹣1}的最小值是1.【答案】见试题解答内容【解答】解:∵x2+2x+2=(x+1)2+1≥1,﹣x2﹣1≤﹣1,∴x2+2x+2>﹣x2﹣1,∴y=max{x2+2x+2,﹣x2﹣1}=x2+2x+2≥1,即函数y=max{x2+2x+2,﹣x2﹣1}的最小值是1.故答案为1.20.(2019•费县二模)飞机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数解析式是s=60t﹣1.5t2.则飞机着陆后滑行到停下来滑行的距离为600米.【答案】见试题解答内容【解答】解:s=60t﹣1.5t2=﹣1.5(t﹣20)2+600,则当t=20时,s取得最大值,此时s=600,故飞机着陆后滑行到停下来滑行的距离为:600m.故答案为:600.三.解答题(共23小题)21.(2020•兰山区模拟)某企业为了增收节支,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元∕件)…30 40 50 60 …每天销售量y(件)…500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,根据所描出的点猜想y是x的什么函数,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?【答案】见试题解答内容【解答】解:(1)由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0),∵这个一次函数的图象经过(30,500)、(40,400)这两点,∴,解得:,∴函数关系式是:y=﹣10x+800.(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x﹣20)(﹣10x+800)=﹣10x2+1000x﹣16000=﹣10(x﹣50)2+9000,(20<x<80)当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)函数W=﹣10(x﹣50)2+9000的对称轴为x=50故当x≤45时,W的值随着x值的增大而增大,当x=45时利润最大,最大利润为8750元.∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润为8750元.。
山东省临沂市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·甘孜) 的倒数是()A .B .C .D .2. (2分) (2020九上·松北期末) 如图所示物体的俯视图是()A .B .C .D .3. (2分) (2019七上·融安期中) 自行车环城赛某一赛段约12900m,把12900m用科学记数法可以记为()A . 129×102mB . 12.9×103mC . 1.29×104mD . 0.129×105m4. (2分) (2019九上·龙湾期中) 下列说法正确的是A . 25人中至少有3人的出生月份相同B . 任意抛掷一枚均匀的1元硬币,若上一次正面朝上,则下一次一定反面朝上C . 天气预报说明天降水的概率为,则明天一定是晴天D . 任意抛掷一枚均匀的骰子,掷出的点数小于3的概率是5. (2分) (2017八下·莒县期中) 如果一个四边形的两条对角线互相平分且相等,那么它一定是()A . 矩形B . 菱形C . 正方形D . 梯形6. (2分)关于x的一元二次方程有两个相等的实数根,k的取值为()A .B .C .D .7. (2分)(2018·吉林模拟) 如图,AD是在Rt△ABC斜边BC上的高,将△ADC沿AD所在直线折叠,点C 恰好落在BC的中点E处,则∠B等于()A . 25°B . 30°C . 45°D . 60°8. (2分) (2019七下·梁子湖期中) 将一张宽度相等的长方形纸条按如图所示的方式折叠一下,如果∠1=130°,那么∠2的度数是()A . 105°B . 100°C . 110°D . 115°9. (2分)下列命题中,是真命题的为()A . 三个点确定一个圆B . 同一条弦所对的圆周角相等C . 平分弦的直径垂直于弦D . 以定点为圆心,定长为半径可确定一个圆10. (2分) (2015九上·新泰竞赛) 如图,直线l和双曲线y=(k>0)交于A,B两点,P是线段AB上的点(不与A,B重合),过点A,B,P分别向x轴作垂线,垂足分别是C,D,E,连接OA,OB,OP,设△AOC面积是S1 ,△BOD面积是S2 ,△POE面积是S3 ,则().A . S1<S2<S3B . S1>S2>S3C . S1=S2>S3D . S1=S2<S3二、填空题 (共18题;共62分)11. (1分) (2015九下·郴州期中) 分解因式:2x2﹣2=________.12. (1分) (2019八上·泰兴期中) 如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=105°,则∠ADC=________°.13. (1分) (2016九上·凯里开学考) 如图,菱形ABCD的周长为8 ,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO=________,菱形ABCD的面积S=________.14. (1分) (2016九下·赣县期中) ⊙O中的弦AB长等于半径长,则弦AB所对的圆周角是________.15. (5分) (2017七下·岳池期末) 计算:16. (5分)解方程:.17. (2分)(2017·嘉兴模拟) 小强和小明去养老院参加社会实践活动,随机选择“打扫养老院卫生”和“调查老年人健康情况” 其中一项,那么同时选择“打扫养老院卫生”的概率是________.18. (5分)(2019·海门模拟) 如图,1为水平地面,测角仪高1米,将测角仪放置在点D处,且垂直于地面1,测得仰角∠ACG=45°,将测角仪平移至EF处,测得仰角∠AEG=60°,已知DF=3米,求树AB的高度.19. (2分) (2016八上·扬州期末) 将等腰直角△ABC斜放在平面直角坐标系中,使直角顶点C与点(1,0)重合,点A的坐标为(-2,1).(1)求△ABC的面积S;(2)求直线AB与y轴的交点坐标.20. (2分)(2016·武汉) 在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.21. (1分)用代数式表示“a的平方的6倍与–3的和”为________。
山东省临沂市费县2019届中考数学二模试卷(解析版)一、选择题(本大题共14小题,每小题3分,共42分)1.﹣3的倒数的绝对值是()A.﹣3 B.﹣C.D.3【分析】依据倒数、绝对值的定义求解即可.【解答】解:﹣3的倒数是﹣,﹣的绝对值是.故选:C.【点评】本题主要考查的是倒数、绝对值的定义,掌握相关知识是解题的关键.2.2016年山东省高考报名人数位居全国第三,约有696000人报名,将696000用科学记数法表示为()A.69.6×104 B.6.96×105 C.6.96×106 D.0.696×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将696000用科学记数法表示为6.96×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算中,正确的是()A.(a3)4=a12B.a3•a5=a15C.a2+a2=a4D.a6÷a2=a3【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、(a3)4=a3×4=a12,故A正确;B、a3•a5=a3+5=a8,故B错误;C、a2+a2=2a2,故C错误;D、a6÷a2=a6﹣2=a4,故D错误;故选:A.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.如图,直线a∥b,直线c分别与a、b相交于A、B两点,AC⊥AB于点A,交直线b于点C.已知∠1=44°,则∠2的度数是()A.36°B.44°C.46°D.56°【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠CBA,∵∠1=44°,∴∠CBA=44°,∵AC⊥AB,∴∠2+∠CBA=90°,∴∠2=46°,故选C.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.5.某学校为了了解九年级女生仰卧起坐训练情况,课外活动时间随机抽取10名女生测试,成绩如下表所示,【分析】根据众数与中位数的定义,众数是出现次数最多的一个,中位数应是把10个数据按从小到大的顺序排列后第5个和第6个数据的平均数解答即可.【解答】解:把这些数从小到大排列为47,48,49,49,49,51,51,52,52,53,最中间两个数的平均数是:=50,则中位数是50;数据49出现了3次,出现次数最多,所以这组数据的众数为49.故选D.【点评】本题考查了中位数和众数:在一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.不等式的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每个不等式的解集,再找到其公共部分,然后在数轴上表示出来即可.【解答】解:,由①得,x≥﹣1,由②得,x<3,不等式组的解集为﹣1≤x<3.在数轴上表示为.【点评】本题考查了解一元一次不等式组,明确不等式的解集与不等式组的解集的异同是解题的关键.7.化简﹣等于()A.B.C.﹣D.﹣【分析】原式第二项约分后两项通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+=+==,故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,﹣=,故选C.【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.9.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣3|,则其结果恰为1的概率是()A.B.C.D.【分析】先求出绝对值方程|x﹣4|=2的解,再根据概率公式即可解决问题.【解答】解:∵|x﹣3|=2,∴x=1或5.∴计算结果恰为1的概率==.故选C.【点评】本题考查概率的定义、绝对值方程等知识,解题的关键是掌握:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.如图是某工件的三视图,则此工件的表面积为()A.15πcm2B.51πcm2C.66πcm2D.24πcm2【分析】根据三视图,可得几何体是圆锥,根据勾股定理,可得圆锥的母线长,根据扇形的面积公式,可得圆锥的侧面积,根据圆的面积公式,可得圆锥的底面积,可得答案.【解答】解:由三视图,得:OB=3cm,0A=4cm,由勾股定理,得AB==5cm,圆锥的侧面积×6π×5=15π(cm2),圆锥的底面积π×()2=9π(cm2),圆锥的表面积15π+9π=24π(cm2),故选:D.【点评】本题考查了由三视图判断几何体,利用三视图得出圆锥是解题关键,注意圆锥的侧面积等于圆锥的底面周长与母线长乘积的一半.11.已知抛物线y=x2﹣x﹣3与x轴的一个交点为(m,0),则代数式m2﹣m+2018的值为()A.2018 B.2020 C.2019 D.2018【分析】把(m,0)代入y=x2﹣x﹣3可以求得m2﹣m=3,再将其整体代入所求的代数式进行求值即可.【解答】解:∵抛物线y=x2﹣x﹣3与x轴的一个交点为(m,0),∴m2﹣m﹣3=0,∴m2﹣m=3,∴m2﹣m+2018=3+2018=2020.故选:B.【点评】本题考查了抛物线与x轴的交点.二次函数图象上点的坐标都满足该二次函数的解析式.12.观察下列等式:第一层1+2=3第二层4+5+6=7+8第三层9+10+11+12=13+14+15第四层16+17+18+19+20=21+22+23+24…在上述的数字宝塔中,从上往下数,2018在第()层.A.41 B.45 C.43 D.44【分析】由题意得出每层第1个数为层数的平方,据此得出第44层的第1个数为442=1936,第45层的第1个数为452=2025,即可得答案.【解答】解:∵第1层的第1个数为1=12,第2层的第1个数为4=22,第3层的第1个数为9=32,∴第44层的第1个数为442=1936,第45层的第1个数为452=2025,∴2018在第44层,故选:D.【点评】本题主要考查数字的变化规律,根据数列得出每层第1个数为层数的平方是解题的关键.13.如图,在Rt△ABC中,∠B=90°,AB=5,BC=12,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.5 B.6 C.12 D.13【分析】由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.【解答】解:∵在Rt△ABC中,∠B=90°,∴BC⊥AB.∵四边形ADCE是平行四边形,∴OD=OE,OA=OC.∴当OD取最小值时,DE线段最短,此时OD⊥BC.∴OD是△ABC的中位线,∴OD=AB=2.5,∴ED=2OD=5.故选:A.【点评】本题考查了平行四边形的性质,以及垂线段最短.此题难度适中,注意掌握数形结合思想的应用.14.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A 点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P 点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A .B .C .D .【分析】首先根据正方形的边长与动点P 、Q 的速度可知动点Q 始终在AB 边上,而动点P 可以在BC 边、CD 边、AD 边上,再分三种情况进行讨论:①0≤x ≤1;②1<x ≤2;③2<x ≤3;分别求出y 关于x 的函数解析式,然后根据函数的图象与性质即可求解.【解答】解:由题意可得BQ=x .①0≤x ≤1时,P 点在BC 边上,BP=3x ,则△BPQ 的面积=BP•BQ ,解y=•3x•x=x 2;故A 选项错误;②1<x ≤2时,P 点在CD 边上,则△BPQ 的面积=BQ•BC ,解y=•x•3=x ;故B 选项错误;③2<x ≤3时,P 点在AD 边上,AP=9﹣3x ,则△BPQ 的面积=AP•BQ ,解y=•(9﹣3x )•x=x ﹣x 2;故D 选项错误.故选:C .【点评】本题考查了动点问题的函数图象,正方形的性质,三角形的面积,利用数形结合、分类讨论是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)15.因式分解:3x 2﹣6x +3= 3(x ﹣1)2 .【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x 2﹣6x +3,=3(x 2﹣2x +1),=3(x ﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16.当x 满足x ﹣4=0时,()÷= .【分析】根据分式的加法和除法可以化简题目中的式子,然后根据x ﹣4=0可以求得x 的值,然后代入化简后的式子即可解答本题.【解答】解:()÷==,∵x﹣4=0,∴x=4,当x=4时,原式=,故答案为:.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.已知,在平行四边形ABCD中,点E在直线AD上,AE=AD,连接CE交BD于点F,则EF:FC的值是或.【分析】分两种情况进行讨论:E在线段AD上;E在线段DA的延长线上,分别根据相似三角形的对应边成比例进行计算求解即可.【解答】解:分两种情况:①如图所示,当E在线段AD上时,∵AE=AD,∴DE=AD=BC,即=,∵DE∥BC,∴△DEF∽△BCF,∴==;②如图所示,当E在线段DA的延长线上时,∴DE=AD=BC,即=,∵DE∥BC,∴△DEF∽△BCF,∴==.故答案为:或.【点评】本题主要考查了相似三角形的判定与性质的运用,解决问题的关键是运用分类思想进行求解.18.如图,反比例函数y=的图象经过A、B两点,过点A作AC⊥x轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE的面积为1,则k的值为﹣.【分析】先设点B坐标为(a,b),根据平行线分线段成比例定理,求得梯形BDCE的上下底边长与高,再根据四边形BDCE的面积求得ab的值,最后计算k的值.【解答】解:设点B坐标为(a,b),则DO=﹣a,BD=b∵AC⊥x轴,BD⊥x轴∴BD∥AC∵OC=CD∴CE=BD=b,CD=DO=a,∵四边形BDCE的面积为1,∴(BD+CE)×CD=1,即(b+b)×(﹣a)=1,∴ab=﹣,将B(a,b)代入反比例函数,得k=ab=﹣.故答案为:﹣.【点评】本题主要考查了反比例函数系数k的几何意义,解决问题的关键是运用数形结合的思想方法进行求解.本题也可以根据△OCE与△ODB相似比为1:2求得△BOD的面积,进而得到k的值.19.我们根据指数运算,得出了一种新的运算.下表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子,①log232=5;②log416=4;③log2=﹣1,其中正确的是①③(填式子序号)【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.【解答】解:①因为25=32,所以log232=5正确;②因为42=16,所以log416=2,即log416=4错误.③因为2﹣1=,所以此选项正确;故答案是:①③.【点评】此题考查了指数运算和新定义运算,发现运算规律是解答此题的关键.三、解答题(本大题共7小题,共63分)20.(7分)计算:2cos30°+(π﹣4)0﹣+|1﹣|+()﹣1.【分析】利用负整数指数幂的性质以及零指数幂的性质和特殊角的三角函数值、绝对值的性质和二次根式的性质分别化简得出答案.【解答】解:原式=2×+1﹣2+﹣1+5=5.【点评】此题主要考查了负整数指数幂的性质以及零指数幂的性质和特殊角的三角函数值等知识,正确化简各数是解题关键.21.(7分)某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m ≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为50,扇形统计图中A类所对的圆心角是72度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?【分析】(1)根据统计图可以得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C类学生数和C类与D类所占的百分比,从而可以将统计图补充完整;(3)根据统计图可以估计该校九年级男生“引体向上”项目成绩为C类的有多少名.【解答】解:(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,故答案为:50,72;(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如右图所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.【点评】本题考查条形统计图、扇形统计图、用本估计总体,解题的关键是明确题意,利用数形结合的思想解答.22.(7分)如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走50m到达C点,测得点B在点C的北偏东60°方向,如图2,求出这段河的宽(结果精确到1m,备用数据≈1.41,≈1.73).【分析】作BD⊥CA,由CD==x、AD=BD=x,根据AC+AD=CD可得50+x=x,解之即可得.【解答】解:如图,作BD⊥CA,交CA延长线于点D,设BD=xm,∵∠BCA=30°,∴CD===x,∵∠BAD=45°,∴AD=BD=x,由AC+AD=CD可得50+x=x,解得:x==25+25≈68(m),答:这段河的宽约为68m.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握三角函数的定义表示出各线段的长,根据线段间的关系建立方程.23.(9分)如图所示,MN是⊙O的切线,B为切点,BC是⊙O的弦且∠CBN=45°,过C的直线与⊙O,MN分别交于A,D两点,过C作CE⊥BD于点E.(1)求证:CE是⊙O的切线;(2)若∠D=30°,BD=4,求⊙O的半径r.【分析】(1)证明:连接OC、OB,如图,先利用切线的性质得∠OBE=90°,再根据圆周角定理得到∠BOC=2∠BAC=90°,则可判断四边形OBEC为矩形,所以∠OCE=90°,然后根据切线的判定定理得到CE是⊙O的切线;(2)先证明四边形OBEC为正方形得到BE=CE=OB=r,然后在Rt△CED中利用正切的定义得到=,然后解方程求出r即可.【解答】(1)证明:连接OC、OB,如图,∵MN是⊙O的切线,∴OB⊥MN,∴∠OBE=90°,∵CE⊥MN,∴∠CEB=90°,∵∠BOC=2∠BAC=2×45°=90°,∴四边形OBEC为矩形,∴∠OCE=90°,∴OC⊥CE,∴CE是⊙O的切线;(2)解:∵OB=OC,∴四边形OBEC为正方形,∴BE=CE=OB=r,∴DE=BD﹣BE=4﹣r,在Rt△CED中,∵tanD==tan30°,∴=,∴r=2﹣2.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.24.(9分)某宾馆拥有客房90间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)()求与之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每日空置的客房,宾馆每日需支出60元,当房价为多少元时,宾馆当日利润最大?求出最大值.(宾馆当日利润=当日房费收入﹣当日支出)【分析】(1)待定系数法求解可得;(2)根据“总利润=每间客房的利润×入住客房数量﹣每间空置客房的支出×空置客房数量”列出函数解析式,配方成顶点式即可得出函数的最值.【解答】解:(1)设y=kx+b,将(200,90)、(240,70)代入,得:,解得:,∴y=﹣x+190;(2)设宾馆当日利润为W,则W=(x﹣100)y﹣60(90﹣y)=(x﹣100)(﹣x+190)﹣60[90﹣(﹣x+190)]=﹣x2+210x﹣13000=﹣(x﹣210)2+9050,∴当x=210时,W最大=9050,答:当房价为210元时,宾馆当日利润最大,最大利润为9050元.【点评】本题考查了二次函数的应用、待定系数法求函数解析式以及二次函数的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据数量关系找出w关于x的函数关系式.25.(11分)已知四边形ABCD中,EF分别是AB、AD边上的点,DE与CF交于点G.(1)如图1,若四边形ABCD是正方形,且DE⊥CF,求证:DE=CF;(2)如图2,若四边形ABCD是矩形,且DE⊥CF,求证:=;(3)如图3,若四边形ABCD是平行四边形,当∠B=∠EGF时,第(2)问的结论是否成立?若成立给予证明;若不成立,请说明理由.【分析】(1)由四边形ABCD为正方形,利用正方形的性质得到一对角为直角,相等,且AD=DC,利用同角的余角相等得到一对角相等,利用AAS得到三角形ADE与三角形DCF全等,利用全等三角形对应边相等即可得证;(2)由四边形ABCD为矩形,得到一对直角相等,利用同角的余角相等得到一对角相等,利用两对角相等的三角形相似得到三角形ADE与三角形DCF相似,利用相似三角形对应边成比例即可得证;(3)当∠B=∠EGF时,=成立,理由为:如图3,在AD的延长线上取点M,使CM=CF,利用平行线的性质,以及同角的补角相等得到三角形ADE与三角形DCM相似,利用相似三角形对应边成比例即可得证.【解答】(1)证明:∵四边形ABCD是正方形,∴∠A=∠ADC=90°,AD=DC,∴∠ADE+∠AED=90°,∵DE⊥CF,∴∠ADE+∠CFD=90°,∴∠AED=∠CFD,∴△ADE≌△DCF,∴DE=CF;(2)证明:∵四边形ABCD是矩形,∴∠A=∠ADC=90°,∵DE⊥CF,∴∠ADE+∠CFD=90°,∠DCF+∠CFD=90°,∴∠ADE=∠DCF,∴△ADE∽△DCF,∴=;(3)解:当∠B=∠EGF时,=成立,证明:如图3,在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM,∵AB∥CD,∴∠A=∠CDM,∵AD∥BC,∴∠B+∠A=180°,∵∠B=∠EGF,∴∠EGF+∠A=180°,∴∠AED=∠CFM=∠CMF,∴△ADE∽△DCM,∴=,即=.【点评】此题属于相似形综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,平行四边形的性质,以及平行线的性质,熟练掌握相似三角形的判定与性质是解本题的关键.26.(13分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.【分析】(1)将A、C两点坐标代入抛物线y=﹣x2+bx+c,即可求得抛物线的解析式;(2)①先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;②直接写出满足条件的F点的坐标即可,注意不要漏写.【解答】解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x 2+x +8;(2)①∵OA=8,OC=6,∴AC==10,过点Q 作QE ⊥BC 与E 点,则sin ∠ACB===,∴=,∴QE=(10﹣m ),∴S=•CP•QE=m ×(10﹣m )=﹣m 2+3m ;②∵S=•CP•QE=m ×(10﹣m )=﹣m 2+3m=﹣(m ﹣5)2+,∴当m=5时,S 取最大值;在抛物线对称轴l 上存在点F ,使△FDQ 为直角三角形,∵抛物线的解析式为y=﹣x 2+x +8的对称轴为x=,D 的坐标为(3,8),Q (3,4),当∠FDQ=90°时,F 1(,8),当∠FQD=90°时,则F 2(,4),当∠DFQ=90°时,设F (,n ),则FD 2+FQ 2=DQ 2,即+(8﹣n )2++(n ﹣4)2=16,解得:n=6±,∴F 3(,6+),F 4(,6﹣),满足条件的点F 共有四个,坐标分别为F 1(,8),F 2(,4),F 3(,6+),F 4(,6﹣).【点评】本题是二次函数的综合题,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.。
xx 学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:﹣3的倒数的绝对值是()A.﹣3 B.﹣C.D.3试题2:一天的时间是86400秒,将数字86400用科学记数法表示为()A.8.64×105B.8.64×104C.86.4×103D.864×102试题3:下列运算正确的是()A.3x2÷x=2x B.3=x6,故本选项错误;C、应为x3x4=x7,故本选项错误;D、2x2+3x2=5x2,正确.试题4:化简÷(1+)的结果是()A.B.C.D.试题5:如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠2=25°,则∠1的度数为()A.20° B.25° C.30° D.35°试题6:一个不透明的袋子中有3个白球,4个黄球和5个红球,这些球除颜色不同外,其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率是()A.B.C.D.试题7:某校男子足球队的年龄分布如下面的条形统计图,则这些队员年龄的众数和中位数分别是()A.,15 B.15,C.15,15 D.,试题8:如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+2试题9:.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4B.6C.2D.8试题10:如图,直线y=kx与双曲线y=﹣交于A(x1,y1),B(x2,y2)两点,则2x1y2﹣8x2y1的值为()A.﹣6 B.﹣12 C.6 D.12试题11:如果一个空间几何体的主视图和左视图都是边长为4的正三角形,俯视图是圆且中间有一点,那么这个几何体的表面积是()A.8π B.12π C.4π D.8试题12:某乡镇决定对一段长6 000米的公路进行修建改造.根据需要,该工程在实际施工时增加了施工人员,每天修健的公路比原计划增加了50%,结果提前4天完成任务.设原计划每天修建x米,那么下面所列方程中正确的是()A.+4=B.=﹣4C.﹣4=D.=+4试题13:如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为()A.4 B.4.8 C.5.2 D.6试题14:函数y=的自变量的取值范围是试题15:分解因式:2x2﹣8x+8=试题16:.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,那么k的取值范围是试题17:如图,小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度为米.试题18:如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=(x≠0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P4A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S5的值为.试题19:某学校为了解该校学生的课余活动情况,抽样调查了部分同学,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如下:(1)在这次研究中,一共调查了200 名学生.(2)补全频数分布折线图;(3)该校共有2200名学生,估计该校学生中爱好阅读的人数大约是多少?试题20:某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)试题21:.白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?试题22:如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)求证:△BED∽△BCA;(3)若AE=7,BC=6,求AC的长.试题23:某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)求线段AB所表示的y1与x之间的函数表达式;线段CD所表示的y2与x之间的函数表达式.(2)当该产品产量为多少时,获得的利润最大?最大利润是多少?试题24:(1)问题情境:如图1,在正方形ABCD中,E、F、G、H分别为AB,BC,CD,DA边上的动点,连接EG,HF相交于点O,且∠HOE=∠ADC.试探究:EG与FH的数量关系,并说明理由.(2)拓展延伸:如图2,在菱形ABCD中,E、F、G、H分别为AB,BC,CD,DA边上的动点,连接EG,HF相交于点O,且∠HOE=∠ADC,试探究:(1)中EG与FH的数量关系还成立吗?并说明理由.(3)反思提升:若将(2)中的菱形ABCD改为平行四边形ABCD(如图3),AB=a,AD=b,其他条件不变,则=的猜想正确吗?请说明理由.试题25:如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.试题1答案:C【分析】依据倒数、绝对值的定义求解即可.【解答】解:﹣3的倒数是﹣,﹣的绝对值是.故选:C.【点评】本题主要考查的是倒数、绝对值的定义,掌握相关知识是解题的关键.试题2答案:B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将86400用科学记数法表示为8.64×104.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.试题3答案:D.【点评】本题考查同底数幂的除法,幂的乘方,同底数幂的乘法,合并同类项的法则,熟练掌握运算法则和性质是解题的关键.试题4答案:A【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷==.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.试题5答案:A【分析】先根据对顶角的定义得出∠3的度数,再由三角形内角和定理求出∠4的度数,根据平行线的性质求出∠ACD的度数,进而可得出结论.【解答】解:∵∠2=25°,∴∠3=∠2=25°.∵∠A=45°,∴∠4=180°﹣45°﹣25°=110°.∵直线l∥m,∴∠ACD=110°,∴∠1=110°﹣90°=20°.故选A.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等是解答此题的关键.试题6答案:B【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.【解答】解:根据题意可得:袋子中有有3个白球,4个黄球和5个红球,共12个,从袋子中随机摸出一个球,它是黄色球的概率=.故选B.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.试题7答案:C【分析】根据众数和中位数的概念求解.【解答】解:根据图示可得,15岁的队员人数最多,故众数为15,根据图示可得,共有人数:2+6+8+3+2+1=22(人),故第11和12名队员年龄的平均值为中位数,即中位数为:=15.故选C【点评】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.试题8答案:C【分析】根据角平分线的性质即可求得CD的长,然后在直角△BDE中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=1,又∵直角△BDE中,∠B=30°,∴BD=2DE=2,∴BC=CD+BD=1+2=3.故选C.【点评】本题考查了角的平分线的性质以及直角三角形的性质,30°的锐角所对的直角边等于斜边的一半,理解性质定理是关键.试题9答案:A【分析】首先连接OA,OC,过点O作OD⊥AC于点D,由圆周角定理可求得∠AOC的度数,进而可在构造的直角三角形中,根据勾股定理求得弦AC的一半,由此得解.【解答】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=OC=2,∴AC=2CD=4.故选A.【点评】此题主要考查了三角形的外接圆以及勾股定理的应用,还涉及到圆周角定理、垂径定理以及直角三角形的性质等知识,难度不大.试题10答案:B【分析】将一次函数解析式代入反比例函数解析式中得出关于x的一元二次方程,解方程即可得出A、B点的横坐标,再结合一次函数的解析式即可求出点A、B的坐标,将其代入2x1y2﹣8x2y1中即可得出结论.【解答】解:将y=kx代入到y=﹣中得:kx=﹣,即kx2=﹣2,解得:x1=﹣,x2=,∴y1=kx1=,y2=kx2=﹣,∴2x1y2﹣8x2y1=2×(﹣)×(﹣)﹣8××=﹣12.故选B.【点评】本题考查了反比例函数与一次函数的交点问题以及一元二次方程的解,解题的关键是求出点A、B的坐标.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式求出交点的坐标是关键.试题11答案:B【分析】该几何体的俯视图为一个圆且中间有一点,正视图以及左视图都是三角形,故可判断该几何体为圆锥.由已知三角形的边长为4,易得底面半径以及母线长,可求出这个几何体的表面积.【解答】解:由图片中的三视图可以看出这个几何体应该是圆锥,且其底面圆半径为1,母线长为2,因此它的表面积=π×2×4+π×22=12π.故选B.【点评】本题要先判断出几何体的形状,然后根据该几何体表面积的计算方法进行计算.本题要注意圆锥侧面积的计算方式是圆锥的底面半径乘以圆周率再乘以母线长.试题12答案:C【分析】求的是工作效率,工作总量是6000,则是根据工作时间来列等量关系.关键描述语是提前4天完成,等量关系为:原计划时间﹣实际用时=4,根据等量关系列出方程.【解答】解:设原计划每天修建x米,因为每天修健的公路比原计划增加了50% 所以现在每天修健x(1+50%)m,﹣=4,即:﹣4=,故选:C.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.试题13答案:B【分析】先由矩形的判定定理推知四边形PEAF是矩形;连接PA,则PA=EF,所以要使EF,即PA最短,只需PA⊥CB即可;然后根据三角形的等积转换即可求得PA的值.【解答】解:如图,连接PA.∵在△ABC中,AB=6,AC=8,BC=10,∴BC2=AB2+AC2,∴∠A=90°.又∵PE⊥AB于点E,PF⊥AC于点F.∴∠AEP=∠AFP=90°,∴四边形PEAF是矩形.∴AP=EF.∴当PA最小时,EF也最小,即当AP⊥CB时,PA最小,∵ABAC=BCAP,即AP===4.8,∴线段EF长的最小值为4.8;故选:B.【点评】本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PA⊥BC时,PA取最小值是解答此题的关键.试题14答案:x≥﹣3且x≠﹣1 .【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得x+3≥0且x+1≠0,解得x≥﹣3且x≠﹣1,故答案为:x≥﹣3且x≠﹣1.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数,分母不能为零得出不等式是解题关键.试题15答案:2(x﹣2)2.【分析】先提公因式2,再用完全平方公式进行因式分解即可.【解答】解:原式=2(x2﹣4x+4)=2(x﹣2)2.故答案为2(x﹣2)2.【点评】本题考查了提公因式法与公式法的综合运用,是基础知识要熟练掌握.试题16答案:k>且k≠1 .【分析】根据方程有两个不相等的实数根利用根的判别式结合二次项系数不为0,即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,∴,解得:k>且k≠1.故答案为:k>且k≠1.【点评】本题考查了根的判别式以及解一元一次不等式组,解题的关键是由方程有两个不等实数根结合二次项系数非0,得出关于k的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据方程解的个数结合根的判别式得出不等式(不等式组或方程)是关键.试题17答案:14+2【分析】构造相应的直角三角形,利用勾股定理及影长与实物比求解.【解答】解:如图,延长AD交BC的延长线于点F,过点D作DE⊥BC的延长线于点E.∵∠DCE=30°,CD=8米,∴CE=CDcos∠DCE=8×=4(米),∴DE=4米,设AB=x,EF=y,∵DE⊥BF,AB⊥BF,∴△DEF∽△ABF,∴=,即=…①,∵1米杆的影长为2米,根据同一时间物高与影长成正比可得,=…②,①②联立,解得x=14+2(米).故答案为:14+2.【点评】此题主要考查学生对坡角及坡度问题的掌握情况.试题18答案:【分析】根据反比例函数中k的几何意义再结合图象即可解答.【解答】解:∵过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,S=|k|.∴S1=1,S△OA2P2=1,∵OA1=A1A2,∴S△OA2P2=,同理可得,S2=S1=,S3=S1=,S4=S1=,S5=S1=.【点评】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.试题19答案:【分析】(1)由“其他”的人数和所占百分数,求出全部调查人数;(2)先由“体育”所占百分数和全部调查人数求出体育的人数,进一步求出阅读的人数,补全频数分布折线图;(3)利用样本估计总体的方法计算即可解答.【解答】解:(1)40÷20%=200(人)答:一共调查了200名学生;(2)200×30%=60(人)200﹣(60+30+20+40)=200﹣150=50(人)补全频数分布折线图如下:;(3)2200×=550(人).答:估计该校学生中爱好阅读的人数大约是55人.【点评】本题考查统计知识的应用,试题以图表为载体,要求学生能从中提取信息来解题,与实际生活息息相关,符合新课标的理念.试题20答案:【分析】通过构造直角三角形来解答,过A作AD⊥MN于D,就有了∠ABN、∠ACN的度数,又已知AE的长,可在直角三角形ABE、ACE中分别求出BE、CE的长,BC就能求出.【解答】解:如图,过A作AD⊥MN于点D,在Rt△ACD中,tan∠ACD==,CD=5.6(m),在Rt△ABD中,tan∠ABD==,BD=7(m),则BC=7﹣5.6=1.4(m).答:该车大灯照亮地面的宽度BC是1.4m.【点评】此题考查解直角三角形的应用,将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决.试题21答案:【分析】(1)设每绿地面积的年平均增长率为x,就可以表示出2014年的绿地面积,根据2014年的绿地面积达到82.8公顷建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.【解答】解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.【点评】本题考查了增长率问题的数量关系的运用,运用增长率的数量关系建立一元二次方程的运用,一元二次方程的解法的运用,解答时求出平均增长率是关键.试题22答案:【分析】(1)连接OD,利用AB=AC,OD=OC,证得OD∥AD,易证DF⊥OD,故DF为⊙O的切线;(2)根据圆内接四边形的性质得到∠BED=∠C,然后根据相似三角形的判定定理即可得到结论;(3)证得△BED∽△BCA,求得BE,利用AC=AB=AE+BE求得答案即可.【解答】(1)证明:如图,连接OD.∵AB=AC,∴∠B=∠C,∵OD=OC,∴∠ODC=∠C,∴∠ODC=∠B,∴OD∥AB,∵DF⊥AB,∴OD⊥DF,∵点D在⊙O上,∴直线DF与⊙O相切;(2)证明:∵∠BED=∠C,∠B=∠B,∴△BED∽△BCA;(3)解:∵四边形ACDE是⊙O的内接四边形,∴∠AED+∠ACD=180°,∵∠AED+∠BED=180°,∴∠BED=∠ACD,∵∠B=∠B,∴△BED∽△BCA,∴,∵OD∥AB,AO=CO,∴BD=CD=BC=3,又∵AE=7,∴,∴BE=2,∴AC=AB=AE+BE=7+2=9.【点评】此题考查了切线的判定,三角形相似的判定与性质,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.试题23答案:【分析】(1)根据线段AB、线段CD经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设线段AB所表示的y1与x之间的函数关系式为y1=k1x+b1,∵y1=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴段AB所表示的一次函数的表达式为;y1=﹣0.2x+60(0≤x≤90);设y2与x之间的函数关系式为y2=k2x+b2,∵经过点(0,120)与(130,42),∴,解得:,∴线段CD所表示的一次函数的表达式为y2=﹣0.6x+120(0≤x≤130);(2)设产量为xkg时,获得的利润为W元,①当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;②当90≤x≤130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,∴当x=90时,W=﹣0.6(90﹣65)2+2535=2160,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.【点评】本题考查了待定系数法求函数解析式及二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型.试题24答案:【分析】(1)过G作GM⊥AB于M,过H作HN⊥BC于N,由正方形的性质和矩形的性质易得GM=HN,再利用四边形的内角和为360°,可得∠DHO+∠DGE=360°﹣90°﹣90°=180°,易得∠HFN=∠GEM,由AAS定理可证得△GME≌△HNF,利用全等三角形的性质可得结论;(2)过G作GM⊥AB于M,过H作HN⊥BC于N,由菱形的性质可得DC=AB=BC,AD∥BC,DC∥AB,利用菱形的面积公式易得GM=HN,由AAS定理,易证得△GME≌△HNF,又全等三角形的性质可得结论;(3)过G作GM⊥AB于M,过H作HN⊥BC于N,利用平行四边形的性质和面积公式可得,易得△GME∽△HNF,利用相似三角形的性质可得猜想正确.【解答】(1)解:EG=FH理由是:如图1,过G作GM⊥AB于M,过H作HN⊥BC于N,∵四边形ABCD是正方形,∴∠D=∠A=∠B=∠C=90°,又∵GM⊥AB,HN⊥BC∴四边形ADGM、四边形AHNB是矩形,∴HN=AB,AD=GM,∴HN=GM,∵∠ADC=∠HOE=90°,∴∠DHO+∠DGE=360°﹣90°﹣90°=180°,∵AD∥BC,DC∥AB,∴∠NFH=∠DHF,∠DGE+∠GEM=180°,∴∠HFN=∠GEM,∵HN⊥BC,GM⊥AB,∴∠GME=∠HNF=90°,在△GME和△HNF中,∴△GME≌△HNF(AAS),∴EG=FH;(2)EG=FH,理由是:如图2,过G作GM⊥AB于M,过H作HN⊥BC于N,∵四边形ABCD是菱形,∴DC=AB=BC,AD∥BC,DC∥AB,∵菱形ABCD的面积S=AB×GM=BC×HN,∴GM=HN,∵GM⊥AB,HN⊥BC,∴∠GME=∠HNF=90°,∵∠ADC=∠HOE,∴∠ADC+∠HOG=∠EOH+∠HOG=180°∴∠DHO+∠DGE=360°﹣180°=180°,∵AD∥BC,DC∥AB,∴∠NFH=∠DHF,∠DGE+∠GEM=180°,∴∠HFN=∠GEM,在△GME和△HNF中,∴△GME≌△HNF(AAS),∴EG=FH;(3)正确.理由是:如图3,过G作GM⊥AB于M,过H作HN⊥BC于N,∵四边形ABCD是平行四边形,∴AD∥BC,DC∥AB,∵平行四边形ABCD的面积S=AB×GM=BC×HN∵AB=a,AD=b,∴,∵GM⊥AB,HN⊥BC,∴∠GME=∠HNF=90°,∵∠ADC=∠HOE,∴∠ADC+∠HOG=∠EOH+∠HOG=180°,∴∠DHO+∠DGE=360°﹣180°=180°,∵AD∥BC,DC∥AB,∴∠NFH=∠DHF,∠DGE+∠GEM=180°,∴∠HFN=∠GEM,∴△GME∽△HNF,∴.【点评】本题主要考查了正方形,菱形,平行四边形的性质,构建全等三角形和相似三角形是解答此题的关键.试题25答案:【分析】(1)由OA的长度确定出A的坐标,再利用对称性得到顶点坐标,设出抛物线的顶点形式y=a(x﹣2)2+3,将A 的坐标代入求出a的值,即可确定出抛物线解析式;(2)设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,确定出直线AC解析式,与抛物线解析式联立即可求出D的坐标;(3)存在,分两种情况考虑:如图所示,当四边形ADMN为平行四边形时,DM∥AN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,根据OA+AN求出ON的长,即可确定出N的坐标;当四边形ADM′N′为平行四边形,可得三角形ADQ全等于三角形N′M′P,M′P=DQ=,N′P=AQ=3,将y=﹣代入得:﹣=﹣x2+3x,求出x的值,确定出OP的长,由OP+PN′求出ON′的长即可确定出N′坐标.【解答】解:(1)设抛物线顶点为E,根据题意OA=4,OC=3,得:E(2,3),设抛物线解析式为y=a(x﹣2)2+3,将A(4,0)坐标代入得:0=4a+3,即a=﹣,则抛物线解析式为y=﹣(x﹣2)2+3=﹣x2+3x;(2)设直线AC解析式为y=kx+b(k≠0),将A(4,0)与C(0,3)代入得:,解得:,故直线AC解析式为y=﹣x+3,与抛物线解析式联立得:,解得:或,则点D坐标为(1,);(3)存在,分两种情况考虑:①当点M在x轴上方时,如答图1所示:四边形ADMN为平行四边形,DM∥AN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,∴N1(2,0),N2(6,0);②当点M在x轴下方时,如答图2所示:过点D作DQ⊥x轴于点Q,过点M作MP⊥x轴于点P,可得△ADQ≌△NMP,∴MP=DQ=,NP=AQ=3,将y M=﹣代入抛物线解析式得:﹣=﹣x2+3x,解得:x M=2﹣或x M=2+,∴x N=x M﹣3=﹣﹣1或﹣1,∴N3(﹣﹣1,0),N4(﹣1,0).综上所述,满足条件的点N有四个:N1(2,0),N2(6,0),N3(﹣﹣1,0),N4(﹣1,0).【点评】此题考查了二次函数综合题,涉及的知识有:待定系数法确定抛物线解析式,一次函数与二次函数的交点,平行四边形的性质,以及坐标与图形性质,是一道多知识点的探究型试题。
2019年山东省中考数学二模试卷一.选择题(共14小题)1.的相反数是()A.B.C.﹣5 D.52.如图,直线a∥b,等腰直角三角板的两个顶点分别落在直线a、b上,若∠1=30°,则∠2的度数是()A.45°B.30°C.15°D.10°3.下列运算正确的是()A.3a2+5a2=8a4B.a6÷a﹣2=a4C.(a﹣b)2=a2﹣b2D.(a2+1)0=14.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.6.红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()游戏规则:若一人出“剪刀”,另一人出“布”,则出“剪刀”者胜;若一人出“锤子”,另一人出剪刀”,则出“锤子”者胜;若一人出“布”,另一人出“锤子”,则出“布”者胜若两人出相同的手势,则两人平局A..红红胜或娜娜胜的概率相等B..红红不是胜就是输,所以红红胜的概率为C..两人出相同手势的概率为D.娜娜胜的概率和两人出相同手势的概率一样7.正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A.B.2 C.2D.28.有两块面积相同的蔬菜试验田,第一块使用原品种,第二块使用新品种,分别收获蔬菜1500千克和2100千克已知第二块试验田每亩的产量比第一块多200千克若设第一块试验田每亩的产量为x千克,则根据题意列出的方程是()A.=B.=C.=D.=9.某男子排球队20名队员的身高如表:则此男子排球队20名队员的身高的众数和中位数分别是(单位:cm)()A.186,186 B.186,187 C.208,188 D.188,187 10.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tan A的值是()A.B.C.2 D.11.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2C.3 D.2.512.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4 B.2 C.1 D.﹣213.如图,平行四边形ABCD中,∠B=60°.G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF,下列说法不正确的是()A.四边形CEDF是平行四边形B.当CE⊥AD时,四边形CEDF是矩形C.当∠AEC=120°时,四边形CEDF是菱形D.当AE=ED时,四边形CEDF是菱形14.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴下方且横坐标小于3,则下列结论:①a﹣b+c<0;②2a+b+c>0;③x(αx+b)≤a+b;④a>﹣1.其中正确的有()A.4个B.3个C.2个D.1个二.填空题(共5小题)15.分解因式:2m﹣32m5=.16.计算:4﹣=.17.计算:(xy﹣x2)•=.18.飞机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数解析式是s=60t﹣1.5t2.则飞机着陆后滑行到停下来滑行的距离为米.19.在平面直角坐标系xy中,当图形W上的一点P的横坐标与纵坐标相等时,则称点P为图形W的“梦之点”.已知⊙O的半径为2,若点P位于⊙O的内部,且为双曲线y=(k ≠0)的“梦之点”,则k的取值范围是.三.解答题(共7小题)20.计算:|﹣2|﹣2cos60°+()﹣1﹣(π﹣)0.21.某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:17 18 16 13 24 15 28 26 18 1922 17 16 19 32 30 16 14 15 2615 32 23 17 15 15 28 28 16 19频数分布表数据分析表请根据以上信息解答下列问题:(1)填空:a=,b=,c=;(2)若将月销售额不低于25万元确定为销售目标,则有位营业员拿不到奖励;(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.22.如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者,在消防车上点A处测得点B和点C的仰角分别为45°和65°,点A距地面2.3米,点B距地面10.8米,为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?结果保留整数,参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)23.如图,AB是⊙O的直径,点E是AD上的一点,∠DBC=∠BED(1)求证:BC是⊙O的切线;(2)已知AD=3,CD=1,求图中阴影部分的面积.24.某网店销售一种产品.这种产品的成本价为10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/件市场调查发现,该产品每天的销售量y (件)与销售价x(元/件)之间的函数关系如图所示:(1)当12≤x≤18时,求y与x之间的函数关系式;(2)求每天的销售利润w(元)与销售价x(元/件)之间的函数关系式并求出每件销售价为多少元时.每天的销售利润最大?最大利润是多少?25.已知矩形纸片ABCD中,AB=4,BC=6操作将矩形纸片沿EF折叠使点B落在边CD上.探究(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等,请给出证明;如果不全等,请说明理由;(2)如图2,CD上是否存在一点B1,当点B落在B1处时,△FCB1与△B1DG全等?若存在,求出B1C的长度;若不存在,说明理由.26.如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PF =3PE.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE ⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.。
2018年山东省临沂市中考数学模拟试卷(样卷)一、选择题(共14小题,每小题3分,满分42分)1.的绝对值是()A.B. C.2 D.﹣22.如图,直线a∥b,∠1=60°,∠2=40°,则∠3等于()A.40°B.60°C.80°D.100°3.下列计算正确的是()A.a2+a2=2a4 B.(﹣a2b)3=﹣a6b3C.a2•a3=a6D.a8÷a2=a44.某市6月某周内每天的最高气温数据如下(单位:℃):24 26 29 26 29 32 29则这组数据的众数和中位数分别是()A.29,29 B.26,26 C.26,29 D.29,325.如图所示,该几何体的主视图是()A.B.C.D.6.不等式组的解集,在数轴上表示正确的是()A.B.C.D.7.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是()A.B.C.D.8.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100°D.130°9.多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)210.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t= C.t= D.t=11.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2018个单项式是()A.2018x2018 B.4029x2018 C.4029x2018 D.4031x201812.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE13.要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位B.向左平移1个单位,再向下平移2个单位C.向右平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位14.如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点D作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④方程2x2﹣2x﹣k=0有解.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(共5小题,每小题3分,满分15分)15.比较大小:2(用“>”或“<”号填空).16.计算:﹣=.17.如图,在▱ABCD中,连接BD,AD⊥BD,AB=4,sinA=,则▱ABCD的面积是.18.如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则=.19.定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1<y2,称该函数为增函数,根据以上定义,可以判断下面所给的函数中,是增函数的有(填上所有正确答案的序号)①y=2x;②y=﹣x+1;③y=x2(x>0);④y=﹣.三、解答题(共7小题,满分63分)20.计算:(+﹣1)(﹣+1)21.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2018年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.22.小强从自己家的阳台上,看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42m,这栋楼有多高?23.如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC 交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).24.为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,A B()求这辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.25.如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE.(1)请判断:AF与BE的数量关系是,位置关系是;(2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予说明;(3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.26.在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(1)求过A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?并说明理由.2018年山东省临沂市中考数学模拟试卷(样卷)参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)1.的绝对值是()A.B. C.2 D.﹣2【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣的绝对值是.故选:A.2.如图,直线a∥b,∠1=60°,∠2=40°,则∠3等于()A.40°B.60°C.80°D.100°【考点】平行线的性质.【分析】根据对顶角相等和利用三角形的内角和定理列式计算即可得解.【解答】解:如图:∵∠4=∠2=40°,∠5=∠1=60°,∴∠3=180°﹣60°﹣40°=80°,故选C.3.下列计算正确的是()A.a2+a2=2a4 B.(﹣a2b)3=﹣a6b3C.a2•a3=a6D.a8÷a2=a4【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法、合并同类项以及积的乘方和幂的乘方进行计算即可.【解答】解:A、a2+a2=2a2B,故A错误;B、(﹣a2b)3=﹣a6b3,故B正确;C、a2•a3=a5,故C错误;D、a8÷a2=a6,故D错误;故选B.4.某市6月某周内每天的最高气温数据如下(单位:℃):24 26 29 26 29 32 29则这组数据的众数和中位数分别是()A.29,29 B.26,26 C.26,29 D.29,32【考点】众数;中位数.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将这组数据从小到大的顺序排列24,26,26,29,29,29,32,在这一组数据中29是出现次数最多的,故众数是29℃.处于中间位置的那个数是29,那么由中位数的定义可知,这组数据的中位数是29℃;故选A.5.如图所示,该几何体的主视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】从前往后看到一个矩形,后面的轮廓线用虚线表示.【解答】解:该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.6.不等式组的解集,在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x>﹣3,由②得,x≤2,故不等式组的解集为:﹣3<x≤2.在数轴上表示为:.故选C.7.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先用A,B,C分别表示给九年级的三辆车,然后根据题意画树状图,再由树状图求得所有等可能的结果与小明与小红同车的情况,然后利用概率公式求解即可求得答案.【解答】解:用A,B,C分别表示给九年级的三辆车,画树状图得:∵共有9种等可能的结果,小明与小红同车的有3种情况,∴小明与小红同车的概率是:=.故选C.8.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100°D.130°【考点】圆周角定理.【分析】首先在上取点D,连接AD,CD,由圆周角定理即可求得∠D的度数,然后由圆的内接四边形的性质,求得∠ABC的度数.【解答】解:如图,在优弧上取点D,连接AD,CD,∵∠AOC=100°,∴∠ADC=∠AOC=50°,∴∠ABC=180°﹣∠ADC=130°.故选D.9.多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2【考点】公因式.【分析】分别将多项式mx2﹣m与多项式x2﹣2x+1进行因式分解,再寻找它们的公因式.【解答】解:mx2﹣m=m(x﹣1)(x+1),x2﹣2x+1=(x﹣1)2,多项式mx2﹣m与多项式x2﹣2x+1的公因式是(x﹣1).故选:A.10.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t= C.t= D.t=【考点】根据实际问题列反比例函数关系式.【分析】根据路程=时间×速度可得vt=20,再变形可得t=.【解答】解:由题意得:vt=20,t=,故选:B.11.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2018个单项式是()A.2018x2018 B.4029x2018 C.4029x2018 D.4031x2018【考点】单项式.【分析】系数的规律:第n个对应的系数是2n﹣1.指数的规律:第n个对应的指数是n.【解答】解:根据分析的规律,得第2018个单项式是4029x2018.故选:C.12.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE【考点】矩形的判定;平行四边形的性质.【分析】先证明四边形ABCD为平行四边形,再根据矩形的判定进行解答.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,又∵AD=DE,∴BE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四边形DBCE不能为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误.故选B.13.要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位B.向左平移1个单位,再向下平移2个单位C.向右平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位【考点】二次函数图象与几何变换.【分析】原抛物线顶点坐标为(﹣1,2),平移后抛物线顶点坐标为(0,0),由此确定平移规律.【解答】解:y=x2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(﹣1,2),抛物线y=x2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x2+2x+3向右移1个单位,再向下平移2个单位.故选:D.14.如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点D作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④方程2x2﹣2x﹣k=0有解.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】反比例函数与一次函数的交点问题.【分析】①根据题意可以求得AD、OA的长,点C和点B的坐标,从而可以求出△ADB 和△ADC的面积,从而可以判断该结论是否正确;②根据函数图象可以判断该结论是否正确;③根据函数图象可以得到0<x<3时,两个函数的大小情况,从而可以判断该结论是否成立;④根据两个函数图象有交点,然后联立方程组可知有解,通过变形可以得到方程2x2﹣2x ﹣k=0,从而可以判断该结论是否正确.【解答】解:将x=0代入y1=2x﹣2得,y=﹣2;将y=0代入y1=2x﹣2得x=1,即点A的坐标为(1,0),点B的坐标为(0,﹣2),∵OA=AD,∴点D的坐标是(2,0),将x=2代入y1=2x﹣2得,y=2,∴点C的坐标是(2,2),∴,,故①正确;由图象可知,当0<x<2时,y1<y2,当x>2时,y1>y2;故②错误;∵点C(2,2)在双曲线y2=上,∴,得k=4,∴双曲线y2=,将x=3代入双曲线y2=,得y=;将x=3代入y1=2x﹣2得y=4,∴EF=,故③正确;由图象可知,y1=2x﹣2与y2=在第一象限有解,∴2x﹣2=有解,即2x2﹣2x﹣k=0有解,故④正确;由上可得,①③④正确.故选C.二、填空题(共5小题,每小题3分,满分15分)15.比较大小:2>(用“>”或“<”号填空).【考点】实数大小比较.【分析】先估算出的值,再根据两正数比较大小的法则进行比较即可.【解答】解:∵≈1.732,2>1.732,∴2>.故答案为:>.16.计算:﹣=.【考点】分式的加减法.【分析】为同分母,通分,再将分子因式分解,约分.【解答】解:=﹣==,故答案为:.17.如图,在▱ABCD中,连接BD,AD⊥BD,AB=4,sinA=,则▱ABCD的面积是3.【考点】平行四边形的性质;解直角三角形.【分析】先由三角函数求出BD,再根据勾股定理求出AD,▱ABCD的面积=AD•BD,即可得出结果.【解答】解:∵AD⊥BD,∴∠ADB=90°,∵AB=4,sinA=,∴BD=AB•sinA==4×=3,∴AD===,∴▱ABCD的面积=AD•BD=3;故答案为:3.18.如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则=2.【考点】三角形的重心;相似三角形的判定与性质.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍列式进行计算即可求解.【解答】证明:∵△ABC的中线BD、CE相交于点O,∴点O是△ABC的重心,∴=2.故答案为:2.19.定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1<y2,称该函数为增函数,根据以上定义,可以判断下面所给的函数中,是增函数的有①③(填上所有正确答案的序号)①y=2x;②y=﹣x+1;③y=x2(x>0);④y=﹣.【考点】二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.【分析】根据一次函数、二次函数、反比例函数的性质进行分析即可得到答案.【解答】解:y=2x,2>0,∴①是增函数;y=﹣x+1,﹣1<0,∴②不是增函数;y=x2,当x>0时,是增函数,∴③是增函数;y=﹣,在每个象限是增函数,因为缺少条件,∴④不是增函数.故答案为:①③.三、解答题(共7小题,满分63分)20.计算:(+﹣1)(﹣+1)【考点】实数的运算.【分析】先根据平方差公式展开得到原式=[+(﹣1)][﹣(﹣1)]=()2﹣(﹣1)2,再根据完全平方公式展开后合并即可.【解答】解:原式=[+(﹣1)][﹣(﹣1)]=()2﹣(﹣1)2=3﹣(2﹣2+1)=3﹣2+2﹣1=2.21.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2018年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据良的天数除以量所占的百分比,可得样本容量,根据样本容量乘以轻度污染所占的百分比,可得答案;(2)根据一年的时间乘以优良所占的百分比,可得答案;(3)根据根据一年中优的天数比上一年的天数,可得答案.【解答】解:(1)样本容量3÷5%=60,60﹣12﹣36﹣3﹣2﹣1=6,条形统计图如图:(2)这一年空气质量达到“优”和“良”的总天数为:365×=292;(3)随机选取这一年内某一天,空气质量是“优”的概率为:=.22.小强从自己家的阳台上,看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42m,这栋楼有多高?【考点】解直角三角形的应用-仰角俯角问题.【分析】求这栋楼的高度,即BC的长度,根据BC=BD+DC,在Rt△ABD和Rt△ACD中分别求出BD,CD即可.【解答】解:在Rt△ABD中,∵∠BDA=90°,∠BAD=30°,AD=42m,∴BD=ADtan30°=42×=14(m).在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴CD=ADtan60°=42×=42(m).∴BC=BD+CD=14+42=56(m).答:这栋楼的高度为56m.23.如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC 交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).【考点】切线的性质;扇形面积的计算.【分析】(1)由Rt△ABC中,∠C=90°,⊙O切BC于D,易证得AC∥OD,继而证得AD 平分∠CAB.(2)如图,连接ED,根据(1)中AC∥OD和菱形的判定与性质得到四边形AEDO是菱形,则△AEM≌△DMO,则图中阴影部分的面积=扇形EOD的面积.【解答】(1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD , 即AD 平分∠CAB ;(2)设EO 与AD 交于点M ,连接ED . ∵∠BAC=60°,OA=OE , ∴△AEO 是等边三角形, ∴AE=OA ,∠AOE=60°, ∴AE=AO=OD ,又由(1)知,AC ∥OD 即AE ∥OD ,∴四边形AEDO 是菱形,则△AEM ≌△DMO ,∠EOD=60°, ∴S △AEM =S △DMO ,∴S 阴影=S 扇形EOD ==.24.为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A 、B 两贫困村的计划.现决定从某地运送152箱鱼苗到A 、B 两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,(2)现安排其中10辆货车前往A 村,其余货车前往B 村,设前往A 村的大货车为x 辆,前往A 、B 两村总费用为y 元,试求出y 与x 的函数解析式.(3)在(2)的条件下,若运往A 村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用. 【考点】一次函数的应用. 【分析】(1)设大货车用x 辆,小货车用y 辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A 村的大货车为x 辆,则前往B 村的大货车为(8﹣x )辆,前往A 村的小货车为(10﹣x )辆,前往B 村的小货车为[7﹣(10﹣x )]辆,根据表格所给运费,求出y 与x 的函数关系式;(3)结合已知条件,求x 的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【解答】解:(1)设大货车用x 辆,小货车用y 辆,根据题意得:解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x为整数).(3)由题意得:12x+8(10﹣x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9400=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.25.如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE.(1)请判断:AF与BE的数量关系是相等,位置关系是互相垂直;(2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予说明;(3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.【考点】四边形综合题.【分析】(1)易证△ADE≌△DCF,即可证明AF与BE的数量关系是:AF=BE,位置关系是:AF⊥BE.(2)证明△ADE≌△DCF,然后证明△ABE≌△ADF即可证得BE=AF,然后根据三角形内角和定理证明∠AMB=90°,从而求证;(3)与(2)的解法完全相同.【解答】解:(1)AF与BE的数量关系是:AF=BE,位置关系是:AF⊥BE.答案是:相等,互相垂直;(2)结论仍然成立.理由是:∵正方形ABCD中,AB=AD=CD,∴在△ADE和△DCF中,,∴△ADE≌△DCF,∴∠DAE=∠CDF,又∵正方形ABCD中,∠BAD=∠ADC=90°,∴∠BAE=∠ADF,∴在△ABE和△ADF中,,∴△ABE≌△ADF,∴BE=AF,∠ABM=∠DAF,又∵∠DAF+∠BAM=90°,∴∠ABM+∠BAM=90°,∴在△ABM中,∠AMB=180°﹣(∠ABM+∠BAM)=90°,∴BE⊥AF;(3)第(1)问中的结论都能成立.理由是:∵正方形ABCD中,AB=AD=CD,∴在△ADE和△DCF中,,∴△ADE≌△DCF,∴∠DAE=∠CDF,又∵正方形ABCD中,∠BAD=∠ADC=90°,∴∠BAE=∠ADF,∴在△ABE和△ADF中,,∴△ABE≌△ADF,∴BE=AF,∠ABM=∠DAF,又∵∠DAF+∠BAM=90°,∴∠ABM+∠BAM=90°,∴在△ABM中,∠AMB=180°﹣(∠ABM+∠BAM)=90°,∴BE⊥AF.26.在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(1)求过A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?并说明理由.【考点】二次函数综合题.【分析】(1)联立两直线解析式可求得B点坐标,由关于原点对称可求得C点坐标,由直线y=﹣2x﹣1可求得A点坐标,再利用待定系数法可求得抛物线解析式;(2)①当四边形PBQC为菱形时,可知PQ⊥BC,则可求得直线PQ的解析式,联立抛物线解析式可求得P点坐标;②过P作PD⊥BC,垂足为D,作x轴的垂线,交直线BC于点E,由∠PED=∠AOC,可知当PE最大时,PD也最大,用t可表示出PE的长,可求得取最大值时的t的值.【解答】解:(1)联立两直线解析式可得,解得,∴B点坐标为(﹣1,1),又C点为B点关于原点的对称点,∴C点坐标为(1,﹣1),∵直线y=﹣2x﹣1与y轴交于点A,∴A点坐标为(0,﹣1),设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2﹣x﹣1;(2)①当四边形PBQC为菱形时,则PQ⊥BC,∵直线BC解析式为y=﹣x,∴直线PQ解析式为y=x,联立抛物线解析式可得,解得或,∴P点坐标为(1﹣,1﹣)或(1+,1+);②当t=0时,四边形PBQC的面积最大.理由如下:如图,过P作PD⊥BC,垂足为D,作x轴的垂线,交直线BC于点E,=2S△PBC=2×BC•PD=BC•PD,则S四边形PBQC∵线段BC长固定不变,∴当PD最大时,四边形PBQC面积最大,又∠PED=∠AOC(固定不变),∴当PE最大时,PD也最大,∵P点在抛物线上,E点在直线BC上,∴P点坐标为(t,t2﹣t﹣1),E点坐标为(t,﹣t),∴PE=﹣t﹣(t2﹣t﹣1)=﹣t2+1,∴当t=0时,PE有最大值1,此时PD有最大值,即四边形PBQC的面积最大.2018年6月3日。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于x的一元二次方程x2﹣23x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3D.m≥3【答案】A【解析】分析:根据关于x的一元二次方程x2-23x+m=0有两个不相等的实数根可得△=(-23)2-4m >0,求出m的取值范围即可.详解:∵关于x的一元二次方程x2-23x+m=0有两个不相等的实数根,∴△=(-23)2-4m>0,∴m<3,故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.2.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同【答案】B【解析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.3.如图,已知O的周长等于6cm,则它的内接正六边形ABCDEF的面积是()A.934B.34C.32D.3【答案】C【解析】过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.【详解】过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,∵⊙O的周长等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半径为3cm,即OA=3cm,∵六边形ABCDEF是正六边形,∴∠AOB=16×360°=60°,OA=OB,∴△OAB是等边三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=12AB,∴AB=OA=3cm,∴AH=32cm,OH=22OA AH=332cm,∴S正六边形ABCDEF=6S△OAB=6×12×3×33=273(cm2).故选C.【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.4.下列解方程去分母正确的是( )A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+6【答案】D【解析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D 方程的两边都乘以6,去分母后判断即可.【详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D .由,得:3( y+1)=2y+6,此选项正确.故选D .【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.5.如图,两个一次函数图象的交点坐标为(2,4),则关于x ,y 的方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为( )A .2,4x y =⎧⎨=⎩B .4,2x y =⎧⎨=⎩C .4,0x y =-⎧⎨=⎩D .3,0x y =⎧⎨=⎩ 【答案】A【解析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【详解】解:∵直线y 1=k 1x+b 1与y 2=k 2x+b 2的交点坐标为(2,4),∴二元一次方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,4.x y =⎧⎨=⎩ 故选A.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.6.已知(AC BC)ABC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,则符合要求的作图痕迹是( )A .B .C.D.【答案】D【解析】试题分析:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故选D.考点:作图—复杂作图.7.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°【答案】C【解析】解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故选C.【点睛】本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.8.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为UIR,当电压为定值时,I关于R的函数图象是()A.B. C.D.【答案】C【解析】根据反比例函数的图像性质进行判断.【详解】解:∵UIR,电压为定值,∴I关于R的函数是反比例函数,且图象在第一象限,故选C.【点睛】本题考查反比例函数的图像,掌握图像性质是解题关键.9.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.【答案】B【解析】观察图形,利用中心对称图形的性质解答即可.【详解】选项A,新图形不是中心对称图形,故此选项错误;选项B,新图形是中心对称图形,故此选项正确;选项C,新图形不是中心对称图形,故此选项错误;选项D,新图形不是中心对称图形,故此选项错误;故选B.【点睛】本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.10.某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是()A.4.5πcm2B.3cm2C.4πcm2D.3πcm2【答案】A【解析】根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.【详解】∵圆锥的轴截面是一个边长为3cm的等边三角形,∴底面半径=1.5cm,底面周长=3πcm,∴圆锥的侧面积=×3π×3=4.5πcm2,故选A .【点睛】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.二、填空题(本题包括8个小题)11.如果a c e b d f ===k (b+d+f≠0),且a+c+e=3(b+d+f ),那么k=_____. 【答案】3【解析】∵a c e b d f===k ,∴a=bk ,c=dk ,e=fk ,∴a+c+e=bk+dk+fk=k(a+b+c), ∵a+c+e=3(b+d+f),∴k=3,故答案为:3.12.如图,点A (m ,2),B (5,n )在函数k y x=(k >0,x >0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A 、B 的对应点分别为A′、B′.图中阴影部分的面积为8,则k 的值为 .【答案】2.【解析】试题分析:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A 、B 的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=2,∴A (2,2),∴k=2×2=2.故答案为2. 考点:2.反比例函数系数k 的几何意义;2.平移的性质;3.综合题.13.太阳半径约为696000千米,数字696000用科学记数法表示为 千米.【答案】56.9610⨯ .【解析】试题分析:696000=6.96×1,故答案为6.96×1.考点:科学记数法—表示较大的数.14.正六边形的每个内角等于______________°.【答案】120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°.考点:多边形的内角与外角.15.如图,在矩形ABCD 中,AB=3,BC=5,在CD 上任取一点E ,连接BE ,将△BCE 沿BE 折叠,使点C 恰好落在AD 边上的点F 处,则CE 的长为_____.【答案】53【解析】设CE=x ,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x ,DE=CD-CE=3-x .在Rt △ABF 中利用勾股定理求出AF 的长度,进而求出DF 的长度;然后在Rt △DEF 根据勾股定理列出关于x 的方程即可解决问题.【详解】设CE=x .∵四边形ABCD 是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE 沿BE 折叠,使点C 恰好落在AD 边上的点F 处,∴BF=BC=5,EF=CE=x ,DE=CD-CE=3-x .在Rt △ABF 中,由勾股定理得:AF 2=52-32=16,∴AF=4,DF=5-4=1.在Rt △DEF 中,由勾股定理得:EF 2=DE 2+DF 2,即x 2=(3-x )2+12,解得:x=53, 故答案为53. 16.在Rt △ABC 中,∠C =90°,AB =2,BC 3sin2A =_____. 【答案】12【解析】根据∠A 的正弦求出∠A =60°,再根据30°的正弦值求解即可.【详解】解:∵3sin 2BC A AB == ∴∠A =60°, ∴1sin sin 3022A ︒==.故答案为12.【点睛】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.17.已知方程x2﹣5x+2=0的两个解分别为x1、x2,则x1+x2﹣x1•x2的值为______.【答案】1【解析】解:根据题意可得x1+x2=ba-=5,x1x2=ca=2,∴x1+x2﹣x1x2=5﹣2=1.故答案为:1.点睛:本题主要考查了根据与系数的关系,利用一元二次方程的两个根x1、x2具有这样的关系:x1+x2=ba -,x1x2=ca是解题的关键.18.-3的倒数是___________【答案】1 3 -【解析】乘积为1的两数互为相反数,即a的倒数即为1a,符号一致【详解】∵-3的倒数是1 3 -∴答案是13-三、解答题(本题包括8个小题)19.为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB 行驶.已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:2≈1.41,3≈1.73)【答案】(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米【解析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】解:(1)过点C作AB的垂线CD,垂足为D,∵AB ⊥CD ,sin30°=CD BC,BC=80千米, ∴CD=BC•sin30°=80×1402=(千米), AC==402sin 452CD =︒, 2≈40×1.41+80=136.4(千米),答:开通隧道前,汽车从A 地到B 地大约要走136.4千米;(2)∵cos30°=BD BC,BC=80(千米), ∴3403=, ∵tan45°=CD AD,CD=40(千米), ∴AD=4040tan 451CD ==︒(千米), ∴3(千米),∴汽车从A 地到B 地比原来少走多少路程为:AC+BC ﹣AB=136.4﹣109.2=27.2(千米).答:汽车从A 地到B 地比原来少走的路程为27.2千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.20.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台.商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?【答案】100或200【解析】试题分析:此题利用每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x 元,列方程解答即可.试题解析:设每台冰箱应降价x 元,每件冰箱的利润是:元,卖(8+x 50×4)件, 列方程得,(8+x 50×4)=4800, x 2﹣300x+20000=0,解得x 1=200,x 2=100;要使百姓得到实惠,只能取x=200,答:每台冰箱应降价200元.考点:一元二次方程的应用.21.计算:11|12sin 60(2016)3π-︒︒⎛⎫+-+-- ⎪⎝⎭先化简,再求值:2344111x x x x x ++⎛⎫-+÷ ⎪++⎝⎭,其中2x =.【答案】 (1)1;(2)【解析】(1)分别计算负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根;(2)先把括号内通分相减,再计算分式的除法,除以一个分式,等于乘它的分子、分母交换位置.【详解】(1)原式1﹣﹣﹣1﹣2=1. (2)原式=[31x +﹣(1)(1)1x x x +-+]•21(2)x x ++ =(2)(2)1x x x -+-+•21(2)x x ++ =22x x -+,当2时,原式-1. 【点睛】 本题考查负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根以及分式的化简求值,解题关键是熟练掌握以上性质和分式的混合运算.22.先化简代数式22321(1)24a a a a -+-÷+-,再从-2,2,0三个数中选一个恰当的数作为a 的值代入求值. 【答案】21a a --,2 【解析】试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a 的值时,不能使原分式没有意义,即a 不能取2和-2.试题解析:原式=232a a +-+·2(2)(2)(1)a a a +--=21a a --当a=0时,原式=21a a --=2. 考点:分式的化简求值.23.已知:如图,∠ABC ,射线BC 上一点D ,求作:等腰△PBD ,使线段BD 为等腰△PBD 的底边,点P 在∠ABC 内部,且点P 到∠ABC 两边的距离相等.【答案】见解析.【解析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【详解】∵点P 在∠ABC 的平分线上,∴点P 到∠ABC 两边的距离相等(角平分线上的点到角的两边距离相等),∵点P 在线段BD 的垂直平分线上,∴PB=PD (线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【点睛】本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.24.2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB 段为监测区,C 、D 为监测点(如图).已知C 、D 、B 在同一条直线上,且AC BC ⊥,CD=400米,tan 2ADC ∠=,35ABC ∠=︒.求道路AB 段的长;(精确到1米)如果AB 段限速为60千米/时,一辆车通过AB 段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:sin350.57358︒≈,cos350.8195︒≈,tan350.7︒≈)【答案】 (1)AB≈1395 米;(2)没有超速.【解析】(1)先根据tan ∠ADC =2求出AC ,再根据∠ABC =35°结合正弦值求解即可(2)根据速度的计算公式求解即可.【详解】解:(1)∵AC ⊥BC ,∴∠C =90°,∵tan ∠ADC =AC CD =2, ∵CD =400,∴AC =800,在Rt △ABC 中,∵∠ABC =35°,AC =800,∴AB =sin 35AC =8000.57358≈1395 米; (2)∵AB =1395, ∴该车的速度=139590=55.8km/h <60千米/时, 故没有超速.【点睛】此题重点考察学生对三角函数值的实际应用,熟练掌握三角函数值的实际应用是解题的关键.25.如图,已知等腰三角形ABC 的底角为30°,以BC 为直径的⊙O 与底边AB 交于点D ,过D 作DE ⊥AC ,垂足为E .证明:DE 为⊙O 的切线;连接OE ,若BC =4,求△OEC 的面积.【答案】 (1)证明见解析;(2)32【解析】试题分析:(1)首先连接OD ,CD ,由以BC 为直径的⊙O ,可得CD ⊥AB ,又由等腰三角形ABC 的底角为30°,可得AD=BD ,即可证得OD ∥AC ,继而可证得结论;(2)首先根据三角函数的性质,求得BD ,DE ,AE 的长,然后求得△BOD ,△ODE ,△ADE 以及△ABC 的面积,继而求得答案.试题解析:(1)证明:连接OD,CD,∵BC为⊙O直径,∴∠BDC=90°,即CD⊥AB,∵△ABC是等腰三角形,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵D点在⊙O上,∴DE为⊙O的切线;(2)解:∵∠A=∠B=30°,BC=4,∴CD=12BC=2,3∴33,∴S△ABC=12AB•CD=1233,∵DE⊥AC,∴DE=12AD=1233,AE=AD•cos30°=3,∴S△ODE =12OD•DE=12S △ADE =12AE•DE=12×3=2, ∵S△BOD =12S △BCD =12×12S △ABC =14,∴S△OEC =S △ABC -S △BOD -S △ODE -S △ADE =2. 26.先化简再求值:a b a -÷(a ﹣22ab b a-),其中a =2cos30°+1,b =tan45°.【答案】1a b -;3【解析】先根据分式的混合运算顺序和运算法则化简原式,再由特殊锐角的三角函数值得出a 和b 的值,代入计算可得. 【详解】原式=a b a -÷(2a a ﹣22ab b a-) =222a b a ab b a a--+÷ =()2•a b a a a b -- =1a b-,当a =2cos30°+1=,b =tan45°=1时,原式==3. 【点睛】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式,也考查了特殊锐角的三角函数值.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确【答案】A【解析】过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB【详解】如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,∵两把完全相同的长方形直尺,∴CE=CF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.2.若数a,b在数轴上的位置如图示,则()A .a+b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >0【答案】D【解析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.【详解】由数轴可知:a <0<b ,a<-1,0<b<1,所以,A.a+b<0,故原选项错误;B. ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确.故选D .【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.3.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .∠ABD =∠EB .∠CBE =∠C C .AD ∥BC D .AD =BC【答案】C 【解析】根据旋转的性质得,∠ABD =∠CBE=60°, ∠E =∠C,则△ABD 为等边三角形,即 AD =AB=BD,得∠ADB=60°因为∠ABD =∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD ,得AD ∥BC.故选C.4.若a+b=3,,则ab 等于( ) A .2B .1C .﹣2D .﹣1【答案】B【解析】∵a+b=3,∴(a+b )2=9∴a 2+2ab+b 2=9∵a 2+b 2=7∴7+2ab=9,7+2ab=9∴ab=1.故选B .考点:完全平方公式;整体代入.5.一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()A .B .C .D .【答案】B【解析】根据题中给出的函数图像结合一次函数性质得出a <0,b >0,再由反比例函数图像性质得出c <0,从而可判断二次函数图像开口向下,对称轴:2b x a =->0,即在y 轴的右边,与y 轴负半轴相交,从而可得答案.【详解】解:∵一次函数y=ax+b 图像过一、二、四,∴a <0,b >0,又∵反比例 函数y=c x 图像经过二、四象限, ∴c <0,∴二次函数对称轴:2b x a=->0, ∴二次函数y=ax 2+bx+c 图像开口向下,对称轴在y 轴的右边,与y 轴负半轴相交,故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y 轴的交点坐标等确定出a 、b 、c 的情况是解题的关键.6.在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为( )A.(32,0)B.(2,0)C.(52,0)D.(3,0)【答案】C【解析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,OAC BCDAOC BDC AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=kx,将B(3,1)代入y=kx,∴k=3,∴y=3x,∴把y=2代入y=3x,∴x=32,当顶点A恰好落在该双曲线上时,此时点A移动了32个单位长度,∴C也移动了32个单位长度,此时点C的对应点C′的坐标为(52,0)故选:C.【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.7.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P 点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.【答案】C【解析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【详解】由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=12PB•BQ=12(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选C.【点睛】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.8.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A .10B .9C .8D .7【答案】D 【解析】分析:先根据多边形的内角和公式(n ﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O ,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.故选D .点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.9.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =--【答案】A【解析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .10.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像CD 的长( )A .16cmB .13cm C .12cm D .1cm【答案】D【解析】过O 作直线OE ⊥AB ,交CD 于F ,由CD//AB 可得△OAB ∽△OCD ,根据相似三角形对应边的比等于对应高的比列方程求出CD 的值即可.【详解】过O 作直线OE ⊥AB ,交CD 于F ,∵AB//CD ,∴OF ⊥CD ,OE=12,OF=2,∴△OAB ∽△OCD ,∵OE 、OF 分别是△OAB 和△OCD 的高,∴OF CD OE AB =,即2126CD =, 解得:CD=1.故选D.【点睛】本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.二、填空题(本题包括8个小题)11.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 .【答案】1.【解析】试题分析:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1.考点:等腰三角形的性质;三角形三边关系.12.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.【答案】8【解析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).故答案为:8【点睛】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数. 13.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.【答案】360°.【解析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.14.因式分解:x 2y-4y 3=________.【答案】y (x++2y )(x-2y )【解析】首先提公因式y ,再利用平方差进行分解即可.【详解】原式()224(2)(2)y x y y x y x y =-=-+.故答案是:y (x+2y )(x-2y ).【点睛】考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.15.如图,Rt △ABC 中,∠BAC=90°,AB=3,AC=62,点D ,E 分别是边BC ,AC 上的动点,则DA+DE 的最小值为_____.【答案】163【解析】如图,作A 关于BC 的对称点A',连接AA',交BC 于F ,过A'作AE ⊥AC 于E ,交BC 于D ,则AD=A'D ,此时AD+DE 的值最小,就是A'E 的长,根据相似三角形对应边的比可得结论.【详解】如图,作A 关于BC 的对称点A',连接AA',交BC 于F ,过A'作AE ⊥AC 于E ,交BC 于D ,则AD=A'D ,此时AD+DE 的值最小,就是A'E 的长;Rt △ABC 中,∠BAC=90°,AB=3,2,∴()22362+, S △ABC =12AB•AC=12BC•AF , ∴2=9AF ,2,∴2∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE ,∴∠A'=∠C , ∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC ,∴''AA BC A E AC =, ∴4262=, ∴A'E=163, 即AD+DE 的最小值是163, 故答案为163.【点睛】本题考查轴对称﹣最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题.16.如图,已知CD 是ABC △的高线,且CD 2cm =,30B ∠=︒,则BC =_________.【答案】4cm【解析】根据三角形的高线的定义得到90BDC ∠=︒,根据直角三角形的性质即可得到结论.【详解】解:∵CD 是ABC ∆的高线,∴90BDC ∠=︒,∵30B ∠=︒,2CD =,∴24BC CD cm ==.故答案为:4cm.【点睛】本题考查了三角形的角平分线、中线、高线,含30°角的直角三角形,熟练掌握直角三角形的性质是解题的关键.17.如图,点E 在正方形ABCD 的边CD 上.若△ABE 的面积为8,CE=3,则线段BE 的长为_______.【答案】5.【解析】试题解析:过E 作EM ⊥AB 于M ,∵四边形ABCD 是正方形,∴AD=BC=CD=AB ,∴EM=AD ,BM=CE ,∵△ABE 的面积为8, ∴12×AB×EM=8, 解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE=222243BC CE +=+=5.考点:1.正方形的性质;2.三角形的面积;3.勾股定理.18.规定用符号[]m 表示一个实数m 的整数部分,例如:203⎡⎤=⎢⎥⎣⎦,[]3.143=.按此规定,101⎡⎤+⎣⎦的值为________.【答案】4【解析】根据规定,取101+的整数部分即可.【详解】∵103<<4,∴104<+1<5∴整数部分为4.【点睛】本题考查无理数的估值,熟记方法是关键.三、解答题(本题包括8个小题)19.在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x ,再从乙袋中任意摸出一个小球,记其标有的数字为y ,以此确定点M 的坐标(x ,y ).请你用画树状图或列表的方法,写出点M 所有可能的坐标;求点M (x ,y )在函数y=﹣的图象上的概率.【答案】(1)树状图见解析,则点M 所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2). 【解析】试题分析:(1)画出树状图,可求得所有等可能的结果;(2)由点M (x ,y )在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),直接利用概率公式求解即可求得答案.试题解析:(1)树状图如下图:。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-9C. πD. 2π答案:A2. 如果a < b,那么下列不等式中正确的是()A. a - 2 < b - 2B. a + 2 > b + 2C. 2a < 2bD. 2a > 2b答案:C3. 已知函数f(x) = 2x + 1,那么f(-3)的值是()A. -5B. -1C. 5D. 7答案:A4. 下列各组数中,成等差数列的是()A. 2, 4, 6, 8B. 1, 3, 5, 7C. 1, 4, 9, 16D. 2, 6, 12, 18答案:D5. 已知一次函数y = kx + b,其中k < 0,那么函数图像()A. 经过第一、二、四象限B. 经过第一、二、三象限C. 经过第一、二、四象限D. 经过第一、二、三象限答案:A6. 已知正方形的对角线长为10cm,那么正方形的边长是()A. 5cmB. 10cmC. 5√2cmD. 10√2cm答案:C7. 下列图形中,是轴对称图形的是()A. 等腰三角形B. 平行四边形C. 梯形D. 矩形答案:D8. 下列各式中,正确的是()A. a^2 = |a|B. (a + b)^2 = a^2 + b^2C. (a - b)^2 = a^2 - b^2D. (a + b)^2 = a^2 + 2ab + b^2答案:D9. 下列各式中,正确的是()A. sin 45° = √2/2B. cos 45° = √2/2C. tan 45° = 1D. cot 45° = 1答案:A10. 下列各式中,正确的是()A. log2(4) = 2B. log2(8) = 3C. log2(16) = 4D. log2(32) = 5答案:C二、填空题(每题5分,共20分)11. √9的值是______。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-. 【答案】C【解析】直接利用反比例函数的性质分别分析得出答案. 【详解】A 、关于反比例函数y=-4x,函数图象经过点(2,-2),故此选项错误; B 、关于反比例函数y=-4x ,函数图象位于第二、四象限,故此选项错误; C 、关于反比例函数y=-4x ,当x >0时,函数值y 随着x 的增大而增大,故此选项正确;D 、关于反比例函数y=-4x,当x >1时,y >-4,故此选项错误;故选C . 【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.2.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1 B .m≤1 C .m >1 D .m <1【答案】D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->,解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 3.如图,A,B 两点分别位于一个池塘的两端,小聪想用绳子测量A,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B 的点C,找到AC,BC 的中点D,E,并且测出DE 的长为10m,则A,B 间的距离为( )A .15mB .25mC .30mD .20m【答案】D【解析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.4.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是()A.∠1=50°,∠1=40°B.∠1=40°,∠1=50°C.∠1=30°,∠1=60°D.∠1=∠1=45°【答案】D【解析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°.故选:D.【点睛】考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.5.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD 的周长为()A.13 B.15 C.17 D.19【答案】B【解析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.6.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是()A.(3,-2 ) B.(-2,-3 ) C.(2,3 ) D.(3,2)【答案】A【解析】因为点M(-2,3)在双曲线上,所以xy=(-2)×3=-6,四个答案中只有A符合条件.故选A7.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线【答案】C【解析】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.8.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像CD的长()A.16cm B.13cm C.12cm D.1cm【答案】D【解析】过O作直线OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根据相似三角形对应边的比等于对应高的比列方程求出CD的值即可.【详解】过O作直线OE⊥AB,交CD于F,∵AB//CD,∴OF⊥CD,OE=12,OF=2,∴△OAB∽△OCD,∵OE 、OF 分别是△OAB 和△OCD 的高, ∴OF CD OE AB =,即2126CD=, 解得:CD=1.故选D. 【点睛】本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.9.已知抛物线y =x 2+bx+c 的部分图象如图所示,若y <0,则x 的取值范围是( )A .﹣1<x <4B .﹣1<x <3C .x <﹣1或x >4D .x <﹣1或x >3【答案】B【解析】试题分析:观察图象可知,抛物线y=x 2+bx +c 与x 轴的交点的横坐标分别为(﹣1,0)、(1,0), 所以当y <0时,x 的取值范围正好在两交点之间,即﹣1<x <1. 故选B .考点:二次函数的图象.10614410.如图,AB ∥CD ,∠1=45°,∠3=80°,则∠2的度数为( )A .30°B .35°C .40°D .45°【答案】B【解析】分析:根据平行线的性质和三角形的外角性质解答即可. 详解:如图,∵AB ∥CD ,∠1=45°, ∴∠4=∠1=45°, ∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°, 故选B .点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答. 二、填空题(本题包括8个小题)11.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3h ,若静水时船速为26km/h ,水速为2km/h ,则A 港和B 港相距_____km . 【答案】1.【解析】根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解. 【详解】解:设A 港与B 港相距xkm , 根据题意得:3262262x x+=+- , 解得:x=1,则A 港与B 港相距1km . 故答案为:1. 【点睛】此题考查了分式方程的应用题,解答关键是在顺流、逆流过程中找出等量关系构造方程. 12.把多项式x 3﹣25x 分解因式的结果是_____ 【答案】x (x+5)(x ﹣5).【解析】分析:首先提取公因式x ,再利用平方差公式分解因式即可. 详解:x 3-25x =x (x 2-25) =x (x+5)(x-5). 故答案为x (x+5)(x-5).点睛:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键. 13.让我们轻松一下,做一个数字游戏:第一步:取一个自然数15n =,计算211n +得1a ;第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ;第三步:算出2a 的各位数字之和得3n ,再计算231n +得3a ;依此类推,则2019a =____________【答案】1【解析】根据题意可以分别求得a 1,a 2,a 3,a 4,从而可以发现这组数据的特点,三个一循环,从而可以求得a 2019的值.【详解】解:由题意可得, a 1=52+1=26, a 2=(2+6)2+1=65, a 3=(6+5)2+1=1, a 4=(1+2+2)2+1=26, …∴2019÷3=673, ∴a 2019= a 3=1, 故答案为:1. 【点睛】本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a 2019的值.14.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是_____.【答案】0.1【解析】根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出白球的概率. 【详解】解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.1左右, 则P 白球=0.1. 故答案为0.1. 【点睛】本题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.15.已知⊙O 半径为1,A 、B 在⊙O 上,且2AB =,则AB 所对的圆周角为__o .【答案】45º或135º【解析】试题解析:如图所示,∵OC ⊥AB ,∴C 为AB 的中点,即1222AC BC AB === 在Rt △AOC 中,OA=1, 22AC =根据勾股定理得:222OC OA AC =-=即OC=AC , ∴△AOC 为等腰直角三角形, 45AOC ∴∠=, 同理45BOC ∠=,90AOB AOC BOC ∴∠=∠+∠=, ∵∠AOB 与∠ADB 都对AB ,1452ADB AOB ,∴∠=∠= ∵大角270AOB ∠=,135.AEB ∴∠=则弦AB 所对的圆周角为45或135. 故答案为45或135.16.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____. 【答案】20【解析】利用频率估计概率,设原来红球个数为x 个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x 的方程,解方程即可得.【详解】设原来红球个数为x个,则有1010x=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.17.方程3x(x-1)=2(x-1)的根是【答案】x1=1,x2=-.【解析】试题解析:3x(x-1)=2(x-1)3x(x-1)-2 (x-1) =0(3x-2)(x-1)=03x-2=0,x-1=0解得:x1=1,x2=-.考点:解一元二次方程---因式分解法.18.如图,已知△ABC和△ADE均为等边三角形,点OAC的中点,点D在A射线BO上,连接OE,EC,若AB=4,则OE的最小值为_____.【答案】1【解析】根据等边三角形的性质可得OC=12AC,∠ABD=30°,根据“SAS”可证△ABD≌△ACE,可得∠ACE=30°=∠ABD,当OE⊥EC时,OE的长度最小,根据直角三角形的性质可求OE的最小值.【详解】解:∵△ABC的等边三角形,点O是AC的中点,∴OC=12AC,∠ABD=30°∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD ≌△ACE (SAS ) ∴∠ACE =30°=∠ABD当OE ⊥EC 时,OE 的长度最小, ∵∠OEC =90°,∠ACE =30° ∴OE 最小值=12OC =14AB =1, 故答案为1 【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键. 三、解答题(本题包括8个小题)19.如图,一次函数5y kx =+(k 为常数,且0k ≠)的图像与反比例函数8y x=-的图像交于()2,A b -,B 两点.求一次函数的表达式;若将直线AB 向下平移(0)m m >个单位长度后与反比例函数的图像有且只有一个公共点,求m 的值.【答案】(1)152y x =+;(2)1或9. 【解析】试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k 、b 的值,即可得一次函数的解析式;(2)直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m ,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m 的值. 试题解析:(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得2582b k b =-+⎧⎪⎨-=⎪-⎩,解得412b k =⎧⎪⎨=⎪⎩,所以一次函数的表达式为y =12x +5. (2)将直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m.由8152y x y x m ⎧=-⎪⎪⎨⎪=+-⎪⎩得, 12x 2+(5-m)x +8=0.Δ=(5-m)2-4×12×8=0, 解得m =1或9.点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.20.如图,在平行四边形ABCD 中,E 、F 分别在AD 、BC 边上,且AE=CF .求证:(1)△ABE ≌△CDF ;四边形BFDE 是平行四边形.【答案】(1)见解析;(2)见解析;【解析】(1)由四边形ABCD 是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C ,AB=CD ,又由AE=CF ,利用SAS ,即可判定△ABE ≌△CDF .(2)由四边形ABCD 是平行四边形,根据平行四边形对边平行且相等,即可得AD ∥BC ,AD=BC ,又由AE=CF ,即可证得DE=BF .根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE 是平行四边形. 【详解】证明:(1)∵四边形ABCD 是平行四边形,∴∠A=∠C ,AB=CD , 在△ABE 和△CDF 中,∵AB=CD ,∠A=∠C ,AE=CF , ∴△ABE ≌△CDF (SAS ).(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC . ∵AE=CF ,∴AD ﹣AE=BC ﹣CF ,即DE=BF . ∴四边形BFDE 是平行四边形.21.先化简,后求值:(1﹣11a +)÷(2221a a a a -++),其中a =1.【答案】11a a +-,2. 【解析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.【详解】解:原式=()()2111111a a a a a a -+⎛⎫-÷ ⎪++⎝⎭+ ()()2111a aa a a +=+- 11a a +=-, 当a =1时,原式=3131+-=2.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.22.如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=12OB.求证:AB是⊙O的切线;若∠ACD=45°,OC=2,求弦CD的长.【答案】(1)见解析;(2)+【解析】(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD.【详解】(1)直线AB是⊙O的切线,理由如下:连接OA.∵OC=BC,AC=12 OB,∴OC=BC=AC=OA,∴△ACO是等边三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切线.(2)作AE⊥CD于点E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt △ACE 中,CE=AE=2; ∵∠D=30°,∴AD=22. 【点睛】 本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,且DE=23BC .如果AC=6,求AE 的长;设AB a =,AC b =,求向量DE (用向量a 、b 表示).【答案】(1)1;(2)2()3DE b a =-.【解析】(1)由平行线截线段成比例求得AE 的长度;(2)利用平面向量的三角形法则解答.【详解】(1)如图,∵DE ∥BC ,且DE=23BC ,∴23AE DE AC BC ==.又AC=6,∴AE=1.(2)∵AB a =,AC b =,∴BC AC AB b a =-=-.又DE ∥BC ,DE=23BC ,∴22()33DE BC b a ==-【点睛】考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.24.数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒······一只到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求1236312222++++⋅⋅⋅+是多少?请同学们阅读以下解答过程就知道答案了.设1236312222S =++++⋅⋅⋅+,则()123632212222S =++++⋅⋅⋅+ 2346364222222=++++⋅⋅⋅++()()2363236322122212222S S ∴-=+++⋅⋅⋅+-++++⋅⋅⋅+即:6421S =-事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()12363641222221+++⋅⋅⋅+=-粒米.那么6421-到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:18446744 0737********,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:()1我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?()2计算: 13927...3.n +++++()3某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋅⋅⋅,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,⋅⋅⋅,以此类推,求满足如下条件的所有正整数:10100N N <<,且这一数列前N 项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N 的值. 【答案】(1)3;(2)1312n +-;(3)1218,95N N == 【解析】()1设塔的顶层共有x 盏灯,根据题意列出方程,进行解答即可.()2参照题目中的解题方法进行计算即可.()3由题意求得数列的每一项,及前n 项和S n =2n+1-2-n ,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n 消去即可,分别分别即可求得N 的值【详解】()1设塔的顶层共有x 盏灯,由题意得01234562222222381x x x x x x x ++++++=.解得3x =,∴顶层共有3盏灯.()2设13927...3n S =+++++,133927...,33n n S +=+++++()()133927...3313927...3n n n S S +∴-=++++-++++++,即:1231,n S +=-1312n S +-=. 即13113927...3.2n n+-+++++= ()3由题意可知:20第一项,20,21第二项,20,21,22第三项,…20,21,22…,2n−1第n 项,根据等比数列前n 项和公式,求得每项和分别为:12321,21,21,,21n ---⋯-,每项含有的项数为:1,2,3,…,n , 总共的项数为1(1)232n n N n +=+++⋯+=, 所有项数的和为123:21212121,n n S -+-+-+⋯+-()1232222,n n =+++⋯+-()221,21n n -=--122n n +=--,由题意可知:12n +为2的整数幂,只需将−2−n 消去即可,则①1+2+(−2−n)=0,解得:n=1,总共有()111232+⨯+=,不满足N>10, ②1+2+4+(−2−n)=0,解得:n=5,总共有()1553182+⨯+=, 满足:10100N <<, ③1+2+4+8+(−2−n)=0,解得:n=13,总共有()113134952+⨯+=, 满足:10100N <<,④1+2+4+8+16+(−2−n)=0,解得:n=29,总共有()1292954402+⨯+=, 不满足100N <, ∴1218,95N N ==【点睛】 考查归纳推理,读懂题目中等比数列的求和方法是解题的关键.25.如图,在平面直角坐标系xOy 中,直线y =x+b 与双曲线y =k x相交于A ,B 两点, 已知A (2,5).求:b 和k 的值;△OAB 的面积.【答案】(1)b=3,k=10;(2)S △AOB =212. 【解析】(1)由直线y=x+b 与双曲线y=k x相交于A 、B 两点,A (2,5),即可得到结论; (2)过A 作AD ⊥x 轴于D ,BE ⊥x 轴于E ,根据y=x+3,y=10x ,得到(-5,-2),C (-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论. 解:(1)把()2,5A 代入y x b =+.∴52b =+∴3b =.把()2,5A 代入k y x =,∴52k =, ∴10k =.(2)∵10y x =,3y x =+. ∴103x x=+时,2103x x =+, ∴12x =,25x =-.∴()5,2B --.又∵()3,0C -,∴AOB AOC BOC S S S =+ 353222⨯⨯=+ 10.5=. 26.某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?【答案】(1)补图见解析;(2)27°;(3)1800名【解析】(1)根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B 类的人数;(2)用360°乘以对应的比例即可求解;(3)用总人数乘以对应的百分比即可求解.【详解】(1)抽取的总人数是:10÷25%=40(人),在B类的人数是:40×30%=12(人).;(2)扇形统计图扇形D的圆心角的度数是:360×340=27°;(3)能在1.5小时内完成家庭作业的人数是:2000×(25%+30%+35%)=1800(人). 考点:条形统计图、扇形统计图.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.4的平方根是( )A.2 B.2C.±2 D.±2【答案】D【解析】先化简4,然后再根据平方根的定义求解即可.【详解】∵4=2,2的平方根是±2,∴4的平方根是±2.故选D.【点睛】本题考查了平方根的定义以及算术平方根,先把4正确化简是解题的关键,本题比较容易出错.2.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=330【答案】D【解析】解:设上个月卖出x双,根据题意得:(1+10%)x=1.故选D.3.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A.10 B.9 C.8 D.7【答案】D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.4.若x =-2 是关于x 的一元二次方程x 2-52ax +a 2=0的一个根,则a 的值为( ) A .1或4B .-1或-4C .-1或4D .1或-4 【答案】B【解析】试题分析:把x=﹣2代入关于x 的一元二次方程x 2﹣52ax+a 2=0 即:4+5a+a 2=0解得:a=-1或-4,故答案选B .考点:一元二次方程的解;一元二次方程的解法.5.下列命题是假命题的是( )A .有一个外角是120°的等腰三角形是等边三角形B .等边三角形有3条对称轴C .有两边和一角对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等【答案】C【解析】解:A . 外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A 选项正确;B . 等边三角形有3条对称轴,故B 选项正确;C .当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS 来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;D .利用SSS .可以判定三角形全等.故D 选项正确;故选C .6.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠3 【答案】B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x 轴交点的特点.7.一、单选题如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°【答案】A 【解析】分析:依据AD 是BC 边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE 平分∠BAC ,即可得到∠DAE=5°,再根据△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,可得∠EAD+∠ACD=75°. 详解:∵AD 是BC 边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE 平分∠BAC ,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A .点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.8.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为( )A 3B 5C 23D 25【答案】D【解析】过B 点作BD ⊥AC ,如图,由勾股定理得,AB=221310+=,AD=222222+=, cosA=AD AB =2210=255,故选D .9.函数1y x =-的自变量x 的取值范围是( )A .1x >B .1x <C .1x ≤D .1x ≥【答案】D【解析】根据二次根式的意义,被开方数是非负数. 【详解】根据题意得10x -≥, 解得1x ≥. 故选D . 【点睛】本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负数.10.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .3C .3D .100(31)米【答案】D【解析】在热气球C 处测得地面B 点的俯角分别为45°,BD=CD=100米,再在Rt △ACD 中求出AD 的长,据此即可求出AB 的长.【详解】∵在热气球C 处测得地面B 点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD=22200100=1003米,∴AB=AD+BD=100+1003=100(1+3)米,故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.二、填空题(本题包括8个小题)11.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为_________________________.【答案】(32,2).【解析】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=52,∴BE=ED=52,AE=AD-ED=32,∴点E坐标(32,2).故答案为:(32,2). 【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.12.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______. 【答案】3212a b ⎧=⎪⎪⎨⎪=-⎪⎩【解析】分析:利用关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩可得m 、n 的数值,代入关于a 、b 的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好. 详解:∵关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,∴将解12x y =⎧⎨=⎩代入方程组3526x my x ny -=⎧⎨+=⎩可得m=﹣1,n=2∴关于a 、b 的二元一次方程组()()()()3=526a b m a b a b n a b ⎧+--⎪⎨++-=⎪⎩整理为:42546a b a +=⎧⎨=⎩ 解得:3212a b ⎧=⎪⎪⎨⎪=-⎪⎩点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显. 13.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数是______. 【答案】7【解析】根据多边形内角和公式得:(n-2)180⨯︒ .得:(3603180)18027︒⨯-︒÷︒+=14.设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为________.(用含n 的代数式表示,其中n 为正整数)【答案】12n1+【解析】试题解析:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=11n+,∵1111AB BM nD E ME n+==,∴1121BM nBE n+=+,∴S△ABM:S△ABE1=(n+1):(2n+1),∴S△ABM:11n+=(n+1):(2n+1),∴S n=121n+.故答案为121n+.15.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快50千米,提速后从北京到上海运行时间缩短了30分钟.已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为__.【答案】132013201502x x-=-【解析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-50)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-50)千米/时,根据题意得132013201502x x-=-.故答案为132013201502x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.16.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是【答案】k≥,且k≠1【解析】试题解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,解得:k≥-,∵原方程是一元二次方程,∴k≠1.考点:根的判别式.17.在我国著名的数学书《九章算术》中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x钱,则可列关于x的方程为______.【答案】x45x3 57 --=【解析】设羊价为x钱,根据题意可得合伙的人数为455x-或37x-,由合伙人数不变可得方程.【详解】设羊价为x钱,根据题意可得方程:453 57x x--=,故答案为:453 57x x--=.【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.18.如图,在△ABC中,点D、E分别在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,则BC=_____.【答案】1【解析】先由DE∥BC,可证得△ADE∽△ABC,进而可根据相似三角形得到的比例线段求得BC的长.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案为:1.【点睛】考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.三、解答题(本题包括8个小题)19212sin60(1)2-︒⎛⎫+-+ ⎪⎝⎭解不等式组3(1)45513x xxx--⎧⎪-⎨->⎪⎩,并写出它的所有整数解.【答案】(1)7-(1)0,1,1.【解析】(1)本题涉及零指数幂、负指数幂、特殊角的三角函数值,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果(1)先求出每个不等式的解集,再求出不等式组的解集,最后再找出整数解即可【详解】解:(1)原式=1﹣,=7(1)()3145{513x xxx-≥---①>②,解不等式①得:x≤1,解不等式②得:x>﹣1,∴不等式组的解集是:﹣1<x≤1.故不等式组的整数解是:0,1,1.【点睛】此题考查零指数幂、负指数幂、特殊角的三角函数值,一元一次不等式组的整数解,掌握运算法则是解题关键20.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:。
山东省临沂市费县2019届中考数学二模试卷(解析版)一、选择题(本大题共14小题,每小题3分,共42分)1.﹣3的倒数的绝对值是()A.﹣3 B.﹣C.D.3【分析】依据倒数、绝对值的定义求解即可.【解答】解:﹣3的倒数是﹣,﹣的绝对值是.故选:C.【点评】本题主要考查的是倒数、绝对值的定义,掌握相关知识是解题的关键.2.2016年山东省高考报名人数位居全国第三,约有696000人报名,将696000用科学记数法表示为()A.69.6×104 B.6.96×105 C.6.96×106 D.0.696×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将696000用科学记数法表示为6.96×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算中,正确的是()A.(a3)4=a12B.a3•a5=a15C.a2+a2=a4D.a6÷a2=a3【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、(a3)4=a3×4=a12,故A正确;B、a3•a5=a3+5=a8,故B错误;C、a2+a2=2a2,故C错误;D、a6÷a2=a6﹣2=a4,故D错误;故选:A.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.如图,直线a∥b,直线c分别与a、b相交于A、B两点,AC⊥AB于点A,交直线b于点C.已知∠1=44°,则∠2的度数是()A.36°B.44°C.46°D.56°【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠CBA,∵∠1=44°,∴∠CBA=44°,∵AC⊥AB,∴∠2+∠CBA=90°,∴∠2=46°,故选C.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.5.某学校为了了解九年级女生仰卧起坐训练情况,课外活动时间随机抽取10名女生测试,成绩如下表所示,那么这10名女生测试成绩的众数与中位数依次是()A.52,51 B.51,51 C.49,49 D.49,50【分析】根据众数与中位数的定义,众数是出现次数最多的一个,中位数应是把10个数据按从小到大的顺序排列后第5个和第6个数据的平均数解答即可.【解答】解:把这些数从小到大排列为47,48,49,49,49,51,51,52,52,53,最中间两个数的平均数是:=50,则中位数是50;数据49出现了3次,出现次数最多,所以这组数据的众数为49.故选D.【点评】本题考查了中位数和众数:在一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.不等式的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每个不等式的解集,再找到其公共部分,然后在数轴上表示出来即可.【解答】解:,由①得,x≥﹣1,由②得,x<3,不等式组的解集为﹣1≤x<3.在数轴上表示为.【点评】本题考查了解一元一次不等式组,明确不等式的解集与不等式组的解集的异同是解题的关键.7.化简﹣等于()A.B.C.﹣D.﹣【分析】原式第二项约分后两项通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+=+==,故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,﹣=,故选C.【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.9.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣3|,则其结果恰为1的概率是()A.B.C.D.【分析】先求出绝对值方程|x﹣4|=2的解,再根据概率公式即可解决问题.【解答】解:∵|x﹣3|=2,∴x=1或5.∴计算结果恰为1的概率==.故选C.【点评】本题考查概率的定义、绝对值方程等知识,解题的关键是掌握:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.如图是某工件的三视图,则此工件的表面积为()A.15πcm2B.51πcm2C.66πcm2D.24πcm2【分析】根据三视图,可得几何体是圆锥,根据勾股定理,可得圆锥的母线长,根据扇形的面积公式,可得圆锥的侧面积,根据圆的面积公式,可得圆锥的底面积,可得答案.【解答】解:由三视图,得:OB=3cm,0A=4cm,由勾股定理,得AB==5cm,圆锥的侧面积×6π×5=15π(cm2),圆锥的底面积π×()2=9π(cm2),圆锥的表面积15π+9π=24π(cm2),故选:D.【点评】本题考查了由三视图判断几何体,利用三视图得出圆锥是解题关键,注意圆锥的侧面积等于圆锥的底面周长与母线长乘积的一半.11.已知抛物线y=x2﹣x﹣3与x轴的一个交点为(m,0),则代数式m2﹣m+2018的值为()A.2018 B.2020 C.2019 D.2018【分析】把(m,0)代入y=x2﹣x﹣3可以求得m2﹣m=3,再将其整体代入所求的代数式进行求值即可.【解答】解:∵抛物线y=x2﹣x﹣3与x轴的一个交点为(m,0),∴m2﹣m﹣3=0,∴m2﹣m=3,∴m2﹣m+2018=3+2018=2020.故选:B.【点评】本题考查了抛物线与x轴的交点.二次函数图象上点的坐标都满足该二次函数的解析式.12.观察下列等式:第一层1+2=3第二层4+5+6=7+8第三层9+10+11+12=13+14+15第四层16+17+18+19+20=21+22+23+24…在上述的数字宝塔中,从上往下数,2018在第()层.A.41 B.45 C.43 D.44【分析】由题意得出每层第1个数为层数的平方,据此得出第44层的第1个数为442=1936,第45层的第1个数为452=2025,即可得答案.【解答】解:∵第1层的第1个数为1=12,第2层的第1个数为4=22,第3层的第1个数为9=32,∴第44层的第1个数为442=1936,第45层的第1个数为452=2025,∴2018在第44层,故选:D.【点评】本题主要考查数字的变化规律,根据数列得出每层第1个数为层数的平方是解题的关键.13.如图,在Rt△ABC中,∠B=90°,AB=5,BC=12,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.5 B.6 C.12 D.13【分析】由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.【解答】解:∵在Rt△ABC中,∠B=90°,∴BC⊥AB.∵四边形ADCE是平行四边形,∴OD=OE,OA=OC.∴当OD取最小值时,DE线段最短,此时OD⊥BC.∴OD是△ABC的中位线,∴OD=AB=2.5,∴ED=2OD=5.故选:A.【点评】本题考查了平行四边形的性质,以及垂线段最短.此题难度适中,注意掌握数形结合思想的应用.14.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.【分析】首先根据正方形的边长与动点P、Q的速度可知动点Q始终在AB边上,而动点P可以在BC边、CD边、AD边上,再分三种情况进行讨论:①0≤x≤1;②1<x≤2;③2<x≤3;分别求出y关于x的函数解析式,然后根据函数的图象与性质即可求解.【解答】解:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=BP•BQ,解y=•3x•x=x2;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=BQ•BC,解y=•x•3=x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=AP•BQ,解y=•(9﹣3x)•x=x﹣x2;故D选项错误.故选:C.【点评】本题考查了动点问题的函数图象,正方形的性质,三角形的面积,利用数形结合、分类讨论是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)15.因式分解:3x2﹣6x+3=3(x﹣1)2.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6x+3,=3(x2﹣2x+1),=3(x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16.当x满足x﹣4=0时,()÷=.【分析】根据分式的加法和除法可以化简题目中的式子,然后根据x﹣4=0可以求得x的值,然后代入化简后的式子即可解答本题.【解答】解:()÷===,∵x﹣4=0,∴x=4,当x=4时,原式=,故答案为:.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.已知,在平行四边形ABCD中,点E在直线AD上,AE=AD,连接CE交BD于点F,则EF:FC的值是或.【分析】分两种情况进行讨论:E在线段AD上;E在线段DA的延长线上,分别根据相似三角形的对应边成比例进行计算求解即可.【解答】解:分两种情况:①如图所示,当E在线段AD上时,∵AE=AD,∴DE=AD=BC,即=,∵DE∥BC,∴△DEF∽△BCF,∴==;②如图所示,当E在线段DA的延长线上时,∵AE=AD,∴DE=AD=BC,即=,∵DE∥BC,∴△DEF∽△BCF,∴==.故答案为:或.【点评】本题主要考查了相似三角形的判定与性质的运用,解决问题的关键是运用分类思想进行求解.18.如图,反比例函数y=的图象经过A、B两点,过点A作AC⊥x轴,垂足为C,过点B 作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE的面积为1,则k的值为﹣.【分析】先设点B坐标为(a,b),根据平行线分线段成比例定理,求得梯形BDCE的上下底边长与高,再根据四边形BDCE的面积求得ab的值,最后计算k的值.【解答】解:设点B坐标为(a,b),则DO=﹣a,BD=b∵AC⊥x轴,BD⊥x轴∴BD∥AC∵OC=CD∴CE=BD=b,CD=DO=a,∵四边形BDCE的面积为1,∴(BD+CE)×CD=1,即(b+b)×(﹣a)=1,∴ab=﹣,将B(a,b)代入反比例函数,得k=ab=﹣.故答案为:﹣.【点评】本题主要考查了反比例函数系数k的几何意义,解决问题的关键是运用数形结合的思想方法进行求解.本题也可以根据△OCE与△ODB相似比为1:2求得△BOD的面积,进而得到k的值.19.我们根据指数运算,得出了一种新的运算.下表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子,①log 232=5;②log 416=4;③log2=﹣1,其中正确的是 ①③ (填式子序号)【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.【解答】解:①因为25=32,所以log 232=5正确; ②因为42=16,所以log 416=2,即log 416=4错误.③因为2﹣1=,所以此选项正确;故答案是:①③.【点评】此题考查了指数运算和新定义运算,发现运算规律是解答此题的关键.三、解答题(本大题共7小题,共63分) 20.(7分)计算:2cos30°+(π﹣4)0﹣+|1﹣|+()﹣1.【分析】利用负整数指数幂的性质以及零指数幂的性质和特殊角的三角函数值、绝对值的性质和二次根式的性质分别化简得出答案. 【解答】解:原式=2×+1﹣2+﹣1+5=5.【点评】此题主要考查了负整数指数幂的性质以及零指数幂的性质和特殊角的三角函数值等知识,正确化简各数是解题关键.21.(7分)某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A 类(12≤m ≤15),B 类(9≤m ≤11),C 类(6≤m ≤8),D 类(m ≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为 50 ,扇形统计图中A 类所对的圆心角是 72 度; (2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C 类的有多少名?【分析】(1)根据统计图可以得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C类学生数和C类与D类所占的百分比,从而可以将统计图补充完整;(3)根据统计图可以估计该校九年级男生“引体向上”项目成绩为C类的有多少名.【解答】解:(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,故答案为:50,72;(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如右图所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.【点评】本题考查条形统计图、扇形统计图、用本估计总体,解题的关键是明确题意,利用数形结合的思想解答.22.(7分)如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走50m到达C点,测得点B在点C的北偏东60°方向,如图2,求出这段河的宽(结果精确到1m,备用数据≈1.41,≈1.73).【分析】作BD⊥CA,由CD==x、AD=BD=x,根据AC+AD=CD可得50+x=x,解之即可得.【解答】解:如图,作BD⊥CA,交CA延长线于点D,设BD=xm,∵∠BCA=30°,∴CD===x,∵∠BAD=45°,∴AD=BD=x,由AC+AD=CD可得50+x=x,解得:x==25+25≈68(m),答:这段河的宽约为68m.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握三角函数的定义表示出各线段的长,根据线段间的关系建立方程.23.(9分)如图所示,MN是⊙O的切线,B为切点,BC是⊙O的弦且∠CBN=45°,过C的直线与⊙O,MN分别交于A,D两点,过C作CE⊥BD于点E.(1)求证:CE是⊙O的切线;(2)若∠D=30°,BD=4,求⊙O的半径r.【分析】(1)证明:连接OC、OB,如图,先利用切线的性质得∠OBE=90°,再根据圆周角定理得到∠BOC=2∠BAC=90°,则可判断四边形OBEC为矩形,所以∠OCE=90°,然后根据切线的判定定理得到CE是⊙O的切线;(2)先证明四边形OBEC为正方形得到BE=CE=OB=r,然后在Rt△CED中利用正切的定义得到=,然后解方程求出r即可.【解答】(1)证明:连接OC、OB,如图,∵MN是⊙O的切线,∴OB⊥MN,∴∠OBE=90°,∵CE⊥MN,∴∠CEB=90°,∵∠BOC=2∠BAC=2×45°=90°,∴四边形OBEC为矩形,∴∠OCE=90°,∴OC⊥CE,∴CE是⊙O的切线;(2)解:∵OB=OC,∴四边形OBEC为正方形,∴BE=CE=OB=r,∴DE=BD﹣BE=4﹣r,在Rt△CED中,∵tanD==tan30°,∴=,∴r=2﹣2.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.24.(9分)某宾馆拥有客房90间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每日空置的客房,宾馆每日需支出60元,当房价为多少元时,宾馆当日利润最大?求出最大值.(宾馆当日利润=当日房费收入﹣当日支出)【分析】(1)待定系数法求解可得;(2)根据“总利润=每间客房的利润×入住客房数量﹣每间空置客房的支出×空置客房数量”列出函数解析式,配方成顶点式即可得出函数的最值.【解答】解:(1)设y=kx+b,将(200,90)、(240,70)代入,得:,解得:,∴y=﹣x+190;(2)设宾馆当日利润为W,则W=(x﹣100)y﹣60(90﹣y)=(x﹣100)(﹣x+190)﹣60[90﹣(﹣x+190)]=﹣x2+210x﹣13000=﹣(x﹣210)2+9050,∴当x=210时,W最大=9050,答:当房价为210元时,宾馆当日利润最大,最大利润为9050元.【点评】本题考查了二次函数的应用、待定系数法求函数解析式以及二次函数的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据数量关系找出w关于x的函数关系式.25.(11分)已知四边形ABCD中,EF分别是AB、AD边上的点,DE与CF交于点G.(1)如图1,若四边形ABCD是正方形,且DE⊥CF,求证:DE=CF;(2)如图2,若四边形ABCD是矩形,且DE⊥CF,求证:=;(3)如图3,若四边形ABCD是平行四边形,当∠B=∠EGF时,第(2)问的结论是否成立?若成立给予证明;若不成立,请说明理由.【分析】(1)由四边形ABCD为正方形,利用正方形的性质得到一对角为直角,相等,且AD=DC,利用同角的余角相等得到一对角相等,利用AAS得到三角形ADE与三角形DCF全等,利用全等三角形对应边相等即可得证;(2)由四边形ABCD为矩形,得到一对直角相等,利用同角的余角相等得到一对角相等,利用两对角相等的三角形相似得到三角形ADE与三角形DCF相似,利用相似三角形对应边成比例即可得证;(3)当∠B=∠EGF时,=成立,理由为:如图3,在AD的延长线上取点M,使CM=CF,利用平行线的性质,以及同角的补角相等得到三角形ADE与三角形DCM相似,利用相似三角形对应边成比例即可得证.【解答】(1)证明:∵四边形ABCD是正方形,∴∠A=∠ADC=90°,AD=DC,∴∠ADE+∠AED=90°,∵DE⊥CF,∴∠ADE +∠CFD=90°, ∴∠AED=∠CFD , ∴△ADE ≌△DCF , ∴DE=CF ;(2)证明:∵四边形ABCD 是矩形, ∴∠A=∠ADC=90°, ∵DE ⊥CF ,∴∠ADE +∠CFD=90°,∠DCF +∠CFD=90°, ∴∠ADE=∠DCF , ∴△ADE ∽△DCF ,∴=;(3)解:当∠B=∠EGF 时,=成立,证明:如图3,在AD 的延长线上取点M ,使CM=CF ,则∠CMF=∠CFM , ∵AB ∥CD , ∴∠A=∠CDM , ∵AD ∥BC , ∴∠B +∠A=180°, ∵∠B=∠EGF , ∴∠EGF +∠A=180°, ∴∠AED=∠CFM=∠CMF , ∴△ADE ∽△DCM ,∴=,即=.【点评】此题属于相似形综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,平行四边形的性质,以及平行线的性质,熟练掌握相似三角形的判定与性质是解本题的关键.26.(13分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.【分析】(1)将A、C两点坐标代入抛物线y=﹣x2+bx+c,即可求得抛物线的解析式;(2)①先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;②直接写出满足条件的F点的坐标即可,注意不要漏写.【解答】解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(,6+),F4(,6﹣).【点评】本题是二次函数的综合题,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.百度文库出品。