辽宁省大连市八年级上学期数学期末考试试卷
- 格式:doc
- 大小:703.00 KB
- 文档页数:15
2023-2024学年辽宁省大连市沙河口区八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列亚运会的会徽中,是轴对称图形的是( )A. B. C. D.2.下列长度的三条线段中,能组成三角形的是( )A. 3cm,5cm,8cmB. 8cm,8cm,18cmC. 1cm,1cm,1cmD. 3cm,4cm,8cm3.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC三个内角度数分别是( )A. 30°,60°,90°B. 45°,45°,90°C. 20°,40°,60°D. 36°,72°,108°4.点(−4,3)关于x轴对称的点坐标是( )A. (−4,−3)B. (4,3)C. (4,−3)D. (3,−4)5.计算2−3的结果是( )A. 8B. 0.8C. −8D. 186.下列计算正确的是( )A. x3⋅x−3=0B. x2⋅x3=x6C. (x2)3=x5D. x2÷x5=1x37.如图是一个钝角△ABC,利用一个直角三角板作边AC上的高,下列作法正确的是( )A. B.C. D.8.在解一个分式方程时,老师设计了一个接力游戏,规则是:每人只能看见前一个人给的式子,进行一步计算后将结果传递给下一个人,最后完成计算.下面是其中一个组的解答过程,老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.老师:3x−1=1−xx+1.甲:3(x+1)=(x+1)(x−1)−x(x−1).乙:3x+3=x2+1−x2+x.丙:3x−x=1−3.丁:解得,x=−1.在接力中,出现计算错误步骤的同学是( )A. 甲B. 乙C. 丙D. 丁9.如果二次三项式a2+mab+b2是一个完全平方式,那么m的值是( )A. 1B. 2C. ±2D. ±110.在如图的3×3正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数是( )A. 2B. 3C. 4D. 5二、填空题:本题共5小题,每小题3分,共15分。
辽宁省大连市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)已知a2=25,=7,且|a+b|=a+b,则a﹣b的值为()A . 2或12B . 2或﹣12C . ﹣2或12D . ﹣2或﹣122. (2分)下列计算正确的是()A . (a3)2=a5B . =±5C . =﹣2D . a6÷a2=a33. (2分) (2018八上·郓城期中) 下列说法正确的是()A . 0.64的立方根是0.4B . 9的平方根是3C . 0.01的立方是0.000001D .4. (2分)长度分别为9cm、12cm、15cm、36cm、39cm五根木棍首尾连接,最多可搭成直角三角形的个数为()A . 1个B . 2个C . 3个D . 4个5. (2分) (2020八下·横县期末) 若一次函数的图象经过第一、二、四象限,则下列不等式中总成立的是()A . >0B . >0C . >0D . >06. (2分) (2017八上·双柏期末) 下列四个命题是真命题的有()①同位角相等;②相等的角是对顶角;③直角三角形两个锐角互余;④三个内角相等的三角形是等边三角形.A . 1个B . 2个C . 3个D . 4个7. (2分) (2020八下·海沧期末) 有一组数据:1,2,2,x,3,3的众数是2,则x的值可以是()A .B .C .D .8. (2分)若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A . -1B . 0C . 1D . ±19. (2分) (2017八下·临沭期末) 下列各曲线中表示y是x的函数的是()A .B .C .D .10. (2分) (2016九上·丰台期末) 如图,点A,B,C,D,E,F为⊙O的六等分点,动点P从圆心O出发,沿OE弧EFFO的路线做匀速运动,设运动的时间为t,∠BPD的度数为y,则下列图象中表示y与t之间函数关系最恰当的是()A .B .C .D .二、填空题 (共4题;共4分)11. (1分) m是的算术平方根,n的算术平方根是5,则2m-3n=________.12. (1分) (2019八上·滨海月考) 如图,在棋盘中建立直角坐标系xOy,三颗棋子A,O,B的位置分别是 ,和如果在其它格点位置添加一颗棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请写出所有满足条件的棋子C的位置的坐标:________13. (1分)(2018·湖北模拟) 直线y=3x﹣1与直线y=x﹣k的交点在第四象限,k的取值范围是________.14. (1分)如图,AC//BD,BC平分∠ABD,若∠EAF=130°,则∠ACB=________.三、解答题 (共14题;共89分)15. (6分) (2019八下·郾城期中) 在计算×2 - ÷ 的值时,小亮的解题过程如下:解:原式=2 - ……①=2 - ……②=(2-1)……③= ……④.(1)老师认为小亮的解法有错,请你指出:小亮是从第________步开始出错的;(2)请你给出正确的解题过程.16. (10分)某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔方复原,每个项目得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况(单位:分)七巧板拼图趣题巧解数学应用魔方复原甲66898668乙66608068丙66809068(1)比赛后,甲猜测七巧板拼图,趣题巧解,数学应用,魔方复原这四个项目得分分别按10%,40%,20%,30%折算△记入总分,根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?17. (5分)(2020·武汉) 如图,直线分别与直线,交于点E,F. 平分,平分,且∥ .求证:∥ .18. (8分)(2014·海南) 海南有丰富的旅游产品.某校九年级(1)班的同学就部分旅游产品的喜爱情况对游客随机调查,要求游客在列举的旅游产品中选出喜爱的产品,且只能选一项.以下是同学们整理的不完整的统计图:根据以上信息完成下列问题:(1)请将条形统计图补充完整;(2)随机调查的游客有________人;在扇形统计图中,A部分所占的圆心角是________度;(3)请根据调查结果估计在1500名游客中喜爱攀锦的约有________人.19. (15分) (2018·福田模拟) 天虹超市购进甲、乙两种水果,已知 1 千克甲种水果的进价比 1 千克乙种水果的进价多 4 元,购进 2千克甲种水果与 3 千克乙种水果共需 28 元.(1)求甲种水果的进价为每千克多少元?(2)经市场调查发现,甲种水果每天销售量 y(千克)与售价 m(元/千克)之间满足如图所示的函数关系,求 y与 m 之间的函数关系;(3)在(2)的条件下,为减少库存,每天甲种水果的销售量不能低于 16 千克,当甲种水果的售价定为多少元时,才能使每天销售甲种水果的利润最大?最大利润是多少?20. (10分) (2019八上·永登期末) 如图,在平面直角坐标系xOy中,矩形ABCD的边AD=3,A(,0),B(2,0),直线y=kx+b经过B,D两点.(1)求直线y=kx+b的解析式;(2)将直线y=kx+b平移,若它与矩形有公共点,直接写出b的取值范围.21. (1分)已知x﹣1= ,则 =________.22. (1分)如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为________23. (1分)某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶x千米,个体车主收费y1元,国营出租车公司收费为y2元,观察下列图象可知,当x________ 时,选用个体车较合算24. (1分)直线向下平移________ 个单位,就可以得到直线.25. (1分)(2020·高新模拟) 同一直角坐标系中,一次函数y=k1x+b与正比例函数y=k2x的图象如图所示,则满足k1x+b>k2x的x取值范围是________.26. (10分)(2017·十堰) 某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?27. (10分)已知:如图①,在△ABC中,BC=AC,在△CDE中,CE=CD,现把两个三角形的C点重合,且使∠BCA=∠ECD,连接BE、AD.(1)求证:BE=AD(2)若将△ECD绕点C旋转至图②、③所示的情况时,其余条件不变,BE与AD还相等么?若相等,请给与证明;若不相等,请说明理由.28. (10分) (2017八下·安岳期中) 工厂需要某一规格的纸箱x个.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由工厂租赁机器加工制作.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)请直接写出方案一的费用y1(元)和方案二的费用y2(元)关于x(个)的函数关系式;(2)请你根据纸箱的个数选择哪种方案费用更少?并说明理由.参考答案一、选择题 (共10题;共20分)1-1、答案:略2-1、3-1、4-1、5-1、6-1、7-1、答案:略8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、答案:略三、解答题 (共14题;共89分)15-1、15-2、答案:略16-1、16-2、答案:略17-1、答案:略18-1、18-2、18-3、19-1、答案:略19-2、答案:略19-3、答案:略20-1、答案:略20-2、答案:略21-1、22-1、23-1、24-1、25-1、26-1、26-2、27-1、答案:略27-2、答案:略28-1、28-2、。
辽宁省大连市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图所示,该图案是经过()A . 平移得到的B . 旋转或轴对称得到的C . 轴对称得到的D . 旋转得到的2. (2分) (2016八上·蕲春期中) 如图△ABC≌△AEF,点F在BC上,下列结论:①AC=AF②∠FAB=∠EAB③∠FAC=∠BAE④若∠C=50°,则∠BFE=80°其中错误结论有()A . 1个B . 2个C . 3个D . 4个3. (2分) (2019八上·丰润期中) 一个五边形的三个内角是直角,另两个内角相等,则相等的这两个角的度数是()A .B .C .D .4. (2分)(2017·和县模拟) 化简﹣等于()A .B .C . ﹣D . ﹣5. (2分)把a3-4ab2分解因式,结果正确的是()A . a(a+4b)(a-4b)B . a(a2-4b2)C . a(a+2b)(a-2b)D . a(a-2b)26. (2分)尺规作图所用的作图工具是指()A . 刻度尺和圆规B . 不带刻度的直尺和圆规C . 刻度尺D . 圆规7. (2分)(2017·盘锦) 十一期间,几名同学共同包租一辆中巴车去红海滩游玩,中巴车的租价为480元,出发时又有4名学生参加进来,结果每位同学比原来少分摊4元车费.设原来游玩的同学有x名,则可得方程()A . ﹣ =4B . ﹣ =4C . ﹣ =4D . ﹣ =48. (2分) (2020七下·槐荫期末) 某平原有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向这两个村庄供水. 某同学用直线(虛线)表示小河,两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是().A .B .C .D .9. (2分)若关于x的方程的解是正数,则一元二次方程mx2=1的根的情况是()A . 有两个相等的实数根B . 有两个不相等的实数根C . 没有实数根D . 只有一个实数根10. (2分) (2017七上·常州期中) 观察图给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为()A . 3n﹣2B . 3n﹣1C . 4n+1D . 4n﹣3二、填空题 (共5题;共5分)11. (1分) (2019八下·鹿角镇期中) 的算术平方根是________.12. (1分) (2020七下·溧水期末) 某粒子的直径为0.000 006米,用科学记数法表示0.000 006是________.13. (1分) (2017七上·郑州期中) 已知|a-b|=7,|b|=3,|a+b|=|a|-|b|,则a+b=________.14. (1分) (2019八上·沙坪坝月考) 如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C'处,若,,则AE的长为________.15. (1分)计算:(﹣3)0÷(﹣2)﹣2=________三、解答题 (共9题;共80分)16. (10分) (2019七下·南县期中) 分解因式:.17. (5分)先化简,再求值:[(xy+2)(xy-2)-2(x2y2-2)]÷(xy),其中x=10,y=-.18. (5分)综合题。
八年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列四个交通标志图中,是轴对称图形的是()A. B. C. D.2.下列计算正确的是()A. a2+a3=a5B. a6÷a2=a3C. (a2)3=a6D. 2a×3a=6a3.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A. 带①去B. 带②去C. 带③去D. ①②③都带去4.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A. 5.6×10−1B. 5.6×10−2C. 5.6×10−3D. 0.56×10−15.如图,AC与BD交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC,还需()A. AB=DCB. OB=OCC. ∠A=∠DD. ∠AOB=∠DOC6.下列各式由左边到右边的变形中,是分解因式的为()A. a(x+y)=a x+a yB. x2−4x+4=x(x−4)+4C. 10x2−5x=5x(2x−1)D. x2−16+3x=(x−4)(x+4)+3x7.若把分式2xx+y中的x和y同时扩大为原来的10倍,则分式的值()A. 扩大10倍B. 缩小10倍C. 缩小100倍D. 保持不变8.若等腰三角形底角为72°,则顶角为()A. 108∘B. 72∘C. 54∘D. 36∘9.已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶15千米.若设甲车的速度为x千米/时,依题意列方程正确的是()A. 30x−15=40xB. 30x+15=40xC. 30x=40x+15D. 30x=40x−1510.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A. 13B. 26C. 47D.94二、填空题(本大题共6小题,共18.0分)11.已知等腰三角形两条边的长分别是3和6,则它的周长等于______.12.当x≠______时,分式1x−3有意义.13.因式分解:x2-9=______.14.如图,在Rt△ABC中,∠B=90°,CD是∠ACB的平分线,若BD=2,则D到AC的距离为______.15.如果实数a,b满足a+b=6,ab=8,那么a2+b2=______.16.直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则AE的长为______.三、计算题(本大题共2小题,共24.0分)17.计算:(1)-(-2)+(π-3.14)0+327+(−13)−1(2)先化简,再求值:(2x+3y)2-(2x+y)(2x-y),其中x=12,y=-1.18.计算(1)5x+3yx2−y2−2xx2−y2(2)(1−1x+1)÷x2−1x2+2x+1四、解答题(本大题共8小题,共78.0分)19.解方程:2x+xx−3=120.如图,点A、B、C、D在同一条直线上,AB=DC,AE∥DF,AE=DF.求证:EC=FB.21.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?22.如图,在长方形ABCD中,把△BCD沿对角线BD折叠得到△BED,线段BE与AD相交于点P,若AB=3m,BC=4m.(1)求BD长度(用含m的式子表示);(2)若点P到BD的距离为152,试求此时m的值.23.如图,在等腰△ABC中,AB=AC,D为底边BC延长线上任意一点,过点D作DE∥AB,与AC延长线交于点E.(1)则△CDE的形状是______;(2)若在AC上截取AF=CE,连接FB、FD,判断FB、FD的数量关系,并给出证明.24.如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.25.阅读下列材料:小明遇到这样问题:如图1,在△ABC中,AB=AC,在AB上取一点D,在AC延长线上取一点E,若BD=CE,判断PD与PE的数量关系.小明通过思考发现,可以采用两种方法解决向题:方法一:过点D作DF∥AC,交BC于F,即可解决向题;方法二:过点D、点E分别向直线BC引垂钱,垂足分别是F、G,也可解决问题.(1)请回答:PD与PE的数量关系是______;(2)任选上述两种方法中的一种方法,在图1中补全图象,并给出证明;参考小明思考问题的方法,解决问题:(3)如图2,在△ABC中,∠ABC=α,将AC绕点A顺时针旋转α度后得到AD,过点D作DE∥BC,交AB于点E,BC=BA,则图中是否存在与DE相等的线段,请找出来并给出证明.26.如图,在平面直角坐标系中,点A(0,2),B(-4,0),C(2,0),∠DAE+∠BAC=180°,且AD=22,AE=25,连接DE,点F是DE的中点,连接AF.(1)∠ACB=______°;(2)猜想AF的长并说明理由;(3)直接写出△ADE的面积是______.答案和解析1.【答案】B【解析】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.根据轴对称图形的概念对各选项分析判断后利用排除法求解.本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】C【解析】解:A、a2与a3是相加,不是相乘,不能运用同底数幂的乘法计算,故本选项错误;B、应为a6÷a2=a4,故本选项错误;C、(a2)3=a6,正确;D、应为2a×3a=6a2,故本选项错误.故选:C.根据同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;单项式乘单项式:把系数和相同字母分别相乘,只在一个单项式里含有的字母,则连同它的指数,作为积的一个因式.主要考查合并同类项、同底数幂的除法、幂的乘方、单项式乘单项式,熟练掌握运算法则和性质是解题的关键.3.【答案】C【解析】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.4.【答案】B【解析】解:将0.056用科学记数法表示为5.6×10-2,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【答案】B【解析】解:A、根据条件AB=DC,OA=OB,∠AOB=∠DOC不能推出△AOB≌△DOC,故本选项错误;B、∵在△AOB和△DOC中∴△AOB≌△DOC(SAS),故本选项正确;C、∠A=∠D,OA=OD,∠AOB=∠DOC,符合全等三角形的判定定理ASA,不符合全等三角形的判定定理SAS,故本选项错误;D、根据∠AOB=∠DOC和OA=OD不能推出△AOB≌△DOC,故本选项错误;故选:B.根据全等三角形的判定定理逐个判断即可.本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.【答案】C【解析】解:A、a (x+y)=ax+ay,是整式的乘法运算,故此选项不合题意;B、x2-4x+4=(x-2)2,故此选项不合题意;C、10x2-5x=5x(2x-1),正确,符合题意;D、x2-16+3x,无法分解因式,故此选项不合题意;故选:C.直接利用分解因式的意义分别分析得出答案.此题主要考查了因式分解的意义,正确分解因式是解题关键.7.【答案】D【解析】解:变形得:=,则分式的值保持不变,故选:D.把x,y分别换为10x,10y,计算得到结果,即可作出判断.此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.8.【答案】D【解析】解:∵等腰三角形底角为72°∴顶角=180°-(72°×2)=36°故选:D.根据三角形内角和定理和等腰三角形的性质,可以计算其顶角的度数.根据三角形内角和定理和等腰三角形的性质来计算.9.【答案】C【解析】解:设甲车的速度为x千米/时,则乙车的速度为(x+15)千米/时,甲车行驶30千米所用的时间为:,乙车行驶40千米所用时间为:,根据题意得:=,故选:C.设甲车的速度为x千米/时,则乙车的速度为(x+15)千米/时,根据“甲车行驶30千米与乙车行驶40千米所用时间相同”,结合时间=路程÷时间,列出关于x 的分式方程,即可得到答案.本题考查由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.10.【答案】C【解析】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=9+25+4+9=47.故选:C.根据正方形的面积公式,结合勾股定理,能够导出正方形A,B,C,D的面积和即为最大正方形的面积.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.11.【答案】15【解析】解:①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故答案为:15.由于等腰三角形的两边长分别是3和6,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的三边关系与三角形周长的定义求解即可.本题考查了等腰三角形的性质与三角形的三边关系,利用分类讨论思想求解是解答本题的关键.12.【答案】3【解析】解:根据题意得:x-3≠0.解得:x≠3.分式有意义的条件为分母不为0.此题主要考查了分式的意义,要求掌握.分式有意义的条件:对于任意一个分式,分母都不能为0,否则分式无意义.解此类问题,只要令分式中分母不等于0,求得字母的取值即可.13.【答案】(x+3)(x-3)【解析】解:原式=(x+3)(x-3),故答案为:(x+3)(x-3).原式利用平方差公式分解即可.此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.14.【答案】2【解析】解:作DH⊥AC于H,∵CD是∠ACD的平分线,∠B=90°,DH⊥AC,∴DH=DB=2,故D到AC的距离为2,故答案为:2.作DH⊥AC于H,根据角平分线的性质求出DH即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【答案】20【解析】解:∵a+b=6,ab=8,∴a2+b2=(a+b)2-2ab=36-16=20,故答案为:20原式利用完全平方公式化简,将已知等式代入计算即可求出值.此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.16.【答案】254【解析】解:根据题意得:∠C=90°,BC=6,AC=8,设AE=x,由折叠的性质得:BE=AE=x,则CE=AC-AE=8-x,在Rt△BCE中,BE2=CE2+BC2,即x2=62+(8-x)2,解得:x=.故答案为:.由题意可得:∠C=90°,BC=6,AC=8,由折叠的性质得BE=AE,然后设AE=x,在Rt△BCE中,利用勾股定理即可求得方程x2=62+(8-x)2,解此方程即可求得答案.此题考查了折叠的性质与勾股定理.此题难度适中,注意掌握方程思想与数形结合思想的应用,注意折叠中的对应关系.17.【答案】解:(1)原式=2+1+3+(-3)=3;(2)原式=4x4+12xy+9y2-(4x2-y2)=4x4+12xy+9y2-4x2+y2=12xy+10y2,当x=12,y=-1时,原式=12×12×(-1)+10×(-1)2=-6+10=4.【解析】(1)先利用相反数定义、零指数幂和立方根及负整数指数幂的运算法则计算,再计算加减可得;(2)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可化简原式,继而将x、y的值代入计算.本题主要考查整式的混合运算-化简求值,解题的关键是掌握实数和整式的混合运算顺序和运算法则.18.【答案】解:(1)原式=3x+3yx2−y2=3(x+y)(x+y)(x−y)=3x−y;(2)原式=(x+1x+1-1x+1)÷(x+1)(x−1)(x+1)2=xx+1•x+1x−1=xx−1.【解析】(1)先根据同分母分式的减法计算,再约分化简即可得;(2)根据分式的混合运算顺序和运算法则计算可得.本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.19.【答案】解:去分母得:2x-6+x2=x2-3x解得:x=65,经检验x=65是原方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【答案】证明:∵AE∥DF,∴∠EAC=∠FDB.∵AB=DC,BC=BC,∴AC=DB.在△EAC和△FDB中∵AE=DF∠EAC=∠FDBAC=BD,∴△EAC≌△FDB(SAS).∴EC=FB.【解析】因为AB=DC,AE∥DF,所以∠EAC=∠FDB,AC=DB.又因为AE=DF,故△EAC≌△FDB,则EC=FB.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.【答案】解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有78001.5x+30=6400x,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)6400x=160,160-30=130(元),130×60%×60+160×60%×(40÷2)-160×[1-(1+60%)×0.5]×(40÷2)=4680+1920-640=5960(元)答:售完这批T恤衫商店共获利5960元.【解析】(1)可设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,根据甲种款型每件的进价比乙种款型每件的进价少30元,列出方程即可求解;(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.【答案】解:(1)∵四边形ABCD是矩形,∴∠C=90°,CD=AB=3m,BC=AD=4m,∴BD=BC2+CD2=(3m)2+(4m)2=5m.(2)如图,作PH⊥BD于H.∵AD∥BC,∴∠PDB=∠DBC,∵∠DBC=∠DBP,∴∠PDB=∠PBD,∴PD=PB,∵PH⊥BD,∴BH=DH=52m,∵∠PDH=∠ADH,∠PHD=∠A=90°,∴△PDH∽△BDA,∴PHAB=DHDA,∴1523m=52m4m,∴m=4.【解析】(1)利用勾股定理计算即可解决问题.(2)如图,作PH⊥BD于H.首先证明PB=PD,推出BH=HD=m,利用相似三角形的性质构建方程解决问题即可.本题考查矩形的性质,翻折变换,相似三角形的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【答案】等腰三角形【解析】解:(1)△CDE是等腰三角形,理由:∵AB=AC,∴∠ABC=∠ACB,∵∠DCE=∠ACB,∵DE∥AB,∴∠ABC=∠CDE,∴∠DCE=∠CDE,∴△CDE是等腰三角形;故答案为:等腰三角形;(2)BF=DF,理由:∵AB∥DE,∴∠A=∠E,∵AF=CE,∴AF=DE,AF+CF=CE+CF,即EF=AC=AB,在△AFB与△EDF中,∴△ABF≌△EDF(SAS),∴BF=DF.(1)根据等腰三角形的性质得到AB=AC,求得∠ABC=∠ACB,根据全等三角形的性质得到∠ABC=∠CDE,于是得到结论;(2)根据平行线的性质得到∠A=∠E,根据全等三角形的性质即可得到结论..本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.24.【答案】解:(1)AP=BQ.理由:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠ABQ+∠CBQ=90°.∵BQ⊥AP,∴∠PAB+∠QBA=90°,∴∠PAB=∠CBQ.在△PBA和△QCB中,∠PAB=∠CBQAB=BC∠ABP=∠BCQ,∴△PBA≌△QCB,∴AP=BQ;(2)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,∴QH=BC=AB=3.∵BP=2PC,∴BP=2,PC=1,∴BQ=AP=AB2+PB2=32+22=13,∴BH=BQ2−QH2=13−9=2.∵四边形ABCD是正方形,∴DC∥AB,∴∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,∴∠QBA=∠C′QB,∴MQ=MB.设QM=x,则有MB=x,MH=x-2.在Rt△MHQ中,根据勾股定理可得x2=(x-2)2+32,解得x=134.∴QM的长为134;(3)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,BP=m,PC=n,∴QH=BC=AB=m+n.∴BQ2=AP2=AB2+PB2,∴BH2=BQ2-QH2=AB2+PB2-AB2=PB2,∴BH=PB=m.设QM=x,则有MB=QM=x,MH=x-m.在Rt△MHQ中,根据勾股定理可得x2=(x-m)2+(m+n)2,解得x=m+n+n22m,∴AM=MB-AB=m+n+n22m-m-n=n22m.∴AM的长为n22m.【解析】(1)要证AP=BQ,只需证△PBA≌△QCB即可;(2)过点Q作QH⊥AB于H,如图.易得QH=BC=AB=3,BP=2,PC=1,然后运用勾股定理可求得AP(即BQ)=,BH=2.易得DC∥AB,从而有∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.设QM=x,则有MB=x,MH=x-2.在Rt△MHQ中运用勾股定理就可解决问题;(3)过点Q作QH⊥AB于H,如图,同(2)的方法求出QM的长,就可得到AM 的长.本题主要考查了正方形的性质、全等三角形的判定与性质、勾股定理、轴对称的性质等知识,设未知数,然后运用勾股定理建立方程,是求线段长度常用的方法,应熟练掌握.25.【答案】PD=DE【解析】(1)解:结论:PD=PE.故答案为PD=DE.(2)证明:方法一:如图1-1中,作DF∥AC交BC于F.∵AB=AC,∴∠B=∠ACB,∵DF∥AC,∴∠DFB=∠ACB,∠FDP=∠E,∴∠B=∠DFB,∴BD=DF,∵EC=BD,∴DF=EC,∵∠DPF=∠EPC,∴△DPF≌△EPC(AAS),∴PA=PE.方法二:如图1-2中,作DF⊥BC于F,EG⊥BC交BC的延长线于G.∵AC=AC,∴∠B=∠ACB=∠ECG,∵∠DFB=∠G=90°,BD=EC,∴△DFB≌△EGC(AAS),∴DF=EG,∵∠DFP=∠G=90°,∠DPF=∠EPG,∴△DPF≌△EPG(AAS),∴PD=PE.(3)解:结论:DE=BC.理由:如图2中,∵AD=AC,BC=BA,∴∠ADC=∠ACD,∠BCA=∠BAC,∵∠DAC=∠B=α,∴2∠ACD+α=180°,2∠BAC+α=180°,∴∠ACD=∠BAC,∴CD∥AB,∵DE∥BC,∴四边形DEBC是平行四边形.∴DE=BC.(1)结论:PD=DE.(2)方法一:如图1-1中,作DF∥AC交BC于F.理由全等三角形的性质证明即可.方法二:如图1-2中,作DF⊥BC于F,EG⊥BC交BC的延长线于G.理由全等三角形的性质证明即可.(3)证明四边形DEBC是平行四边形即可解决问题.本题属于三角形综合题,考查了等腰三角形的性质,平行线的性质,全等三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.26.【答案】45 6【解析】解:(1)∵A(0,2),C(2,0),∴OA=2,OC=2,∴OA=OC,∵∠AOC=90°,∴∠ACB=45°,故答案为:45;(2)AF=3,理由:延长AF到G使FG=AF,连接EG,在△ADF与△GEF中,,∴△ADF≌△GEF(SAS),∴GE=AD=2,∠DAF=∠G,∴∠GAE+∠G=∠DAE,∵∠DAE+∠BAC=180°,∴∠G+∠GAE+∠BAC=180°,∵∠G+∠GAE+∠AEG=180°,∴∠BAC=∠AEG,∵点A(0,2),B(-4,0),C(2,0),∴AB==2,AC=2,BC=4+2=6,在△ABC与△EAG中,,∴△ABC≌△EAG(SAS),∴AG=BC=6,∴AF=3;(3)△ADE的面积=△AEG的面积=△ABC的面积=BC•AO=×6×2=6,故答案为:6.(1)根据等腰直角三角形的判定和性质即可得到结论;(2)延长AF到G使FG=AF,连接EG,根据全等三角形的性质得到GE=AD=2,∠DAF=∠G,根据勾股定理得到AB==2,AC=2,BC=4+2=6,根据全等三角形的性质即可得到结论;(3)根据全等三角形的面积公式即可得到结论.本题考查了三角形的内角和,全等三角形的判定和性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.。
A.100°.下列各式中,正确的个数是( )①x4•x2=x8;②x3•x3=A.1个A.AC=DE B.∠.在△ABC中,AB=AC,若∠A.72°B..如图,点B,E,C,F为 ..在平面直角坐标系内,原点为在坐标轴上取一点P,使得△.(8分)先化简,再求值:a−2a+1÷.(8分)如图,在△ABC中,∠B.(9分)(1)如图,在正方形网格上有一个△(不写作法)..(9分)某超市用5000元购进一批新品种苹果进行试销,由于销售状况良好,超市又调拨11000元资金第二次购进该品种苹果.但第二次的进货价比试销时每千克多了元,第二次购进苹果数量是试销时的(1)设试销时该品种苹果的进货价是含x的式子表示))规定图形表示运算,图形表示运算则+= (直接写出答案).(2)证明:∵∠BAC=60°,AD ∴∠BAD=∠DAC=30°,∵∠C=90°,∴AD=2CD,=a−2a +1⋅a +13−a 2+1=a−2(2+a)(2−a),=−12+a 当a 2时,原式.=7−=−12+7−2=−7719.(1)证明:在△BDP 和△CPE 中,{BP =CE,∠B =∠C ,BD =CP ,∴△BDP ≌△CPE (SAS ),∴PD =PE ;(2)解:∵∠A =40°,∠B =∠C ,∴∠B ,=180°−∠A 2=180°−40°2=70°∴∠BDP +∠BPD =180°﹣∠B =180°﹣70°=110°,由(1)知△BDP ≌△CPE ,∴∠BDP =∠CPE ,∴∠CPE +∠BPD =∠BDP +∠BPD =110°,∴∠DPE =180°﹣(∠CPE +∠BPD )=180°﹣110°=70°.20.解:(1)分别作A 、B 、C 关于MN 的对称点A ′,B ′,C ′,顺次连接,如图△A ′B ′C ′即为所求作;(2)此三角形面积为:S △ABC =S 矩形DECF ﹣S △ABD ﹣S △ACF ﹣S △BEC =2×3﹣2×(1×2)1×3=6﹣2;12×−12×−32=52故;52(3)如图:点P 即为所求作..解:(1)设试销时该品种苹果的进货价是故;5000x (2)根据题意,得:11000x +0.5解之得:x =5,经检验:x =5是原方程的解,)+=(.)解:∵|x﹣6|+(y﹣2)2=0,则AF=OG=OB+BG∴∠BCG+∠CBG=90∵∠ACB=90°,∴∠BCG+∠ACF=90同①得:△CBG≌△ACF ∴BG=CF,CG=AF=∵CG+CF=GF=OA=6∴BG﹣2+BG=6,∴BG=4,∵AE⊥BE,∴∠AEB=90°,∵∠ACB=90°=∠AEB ∴∠CBD=∠CAE,则∠BMC=∠ANC=90∵AE⊥BD,∴∠BEN=90°,由①可知,∠CBD=∠∴△BCM≌△ACN(AAS。
辽宁省大连市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)从下图的四张印有品牌标志图案的卡片中任取一张,取出印有品牌标志的图案是轴对称图形的卡片的概率是()A .B .C .D . 12. (2分) (2019八上·陇西期中) 如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A . SSSB . SASC . SSAD . ASA3. (2分) (2018八上·泰州期中) 下列说法正确的是()A . 角是轴对称图形,它的对称轴是角平分线;B . 1,,是勾股数;C . 算术平方根等于它本身的数是0和1;D . 等腰三角形的高、中线、角平分线重合.4. (2分) (2019九上·文登期中) 如图,在直角三角形中,是斜边上的中线,已知则的值是()A .B .C .D .5. (2分) (2019八下·江阴期中) 如果把分式中的m和n都扩大2倍,那么分式的值()A . 扩大4倍B . 缩小2倍C . 不变D . 扩大2倍6. (2分) (2020八上·拱墅期末) 由下列长度的三条线段能组成三角形的是()A . 1cm,2cm,3.5cmB . 4cm,9cm,5cmC . 3cm,7cm,3cmD . 13cm,6cm,8cm7. (2分) (2019八上·长安期中) 若解关于x的方程=会产生增根,则m的值是()A . 2B . 1C . ﹣1D . ﹣28. (2分) (2019八下·温江期中) 下列各式由左边到右边的变形中,是因式分解的是A .B .C .D .9. (2分)运算结果为2mn﹣m2﹣n2的是()A . (m﹣n)2B . ﹣(m﹣n)2C . ﹣(m+n)2D . (m+n)210. (2分) (2020八上·景县期末) 如图,边长为24的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM绕点B逆时针旋转60°得到BN,连结HN则在点M运动过程中,线段HN长度的最小值是()A . 12B . 6C . 3D . 1二、填空题 (共9题;共9分)11. (1分) (2017八下·卢龙期末) 人体中成熟红细胞的平均直径为0.0000077m,用科学记数法表示为________m.12. (1分)(2019·丹阳模拟) 若分式有意义,则实数的取值范围是________.13. (1分) (2017九上·卫辉期中) 如图,△ABC的中位线DE=5cm,把△A BC沿DE折叠,使点A落在边BC 上的点F处,若A.F两点间的距离是8cm,则点A到DE的距离为________cm.14. (1分) (2019八上·长沙期中) 若点A(a,﹣2)与点B(﹣3,b)关于x轴对称,则ab=________.15. (1分) (2019七上·鸡西期末) 如图,AB∥CD,MP∥AB,MN平分∠AMD,∠A=40°,∠D=30°,则∠PMN =________度.16. (1分) (2019八上·涵江月考) 如图,AB、CD相交于点O , AD=CB ,请你补充一个条件,使得△AOD≌△COB ,你补充的条件是________.17. (1分)一小包柠檬茶冲剂,用180克开水可冲泡成浓度为10%的饮料,这包柠檬茶冲剂有________克.18. (1分) (2020八下·张掖期中) 将–x4–3x2+x提取公因式–x后,剩下的因式是________.19. (1分) (2017七下·昌平期末) 如图1,将边长为a的大正方形剪去一个边长为b的小正方形,并沿图中的虚线剪开,拼接后得到图2,这种变化可以用含字母a , b的等式表示为________三、解答题 (共8题;共66分)20. (5分) (2016七下·澧县期末) 已知x﹣ =3,求x2+ 和x4+ 的值.21. (10分) (2020八上·颍州期末) 解方程:(1)(2)22. (5分)(2019·上饶模拟) 先化简,再求值:,其中23. (11分)(2019·合肥模拟) 如图,在平面直角坐标系中,A(0,1),B(4,2),C(2,0).(1)将△ABC沿y轴翻折得到△A1B1C1 ,画出△A1B1C1;(2)将△ABC绕着点(﹣1,﹣1)旋转180°得到△A2B2C2 ,画出△A2B2C2;(3)线段B2C2可以看成是线段B1C1绕着平面直角坐标系中某一点逆时针旋转得到,直接写出旋转中心的坐标为________.24. (10分)(2014·河池) 如图,△ABC是等边三角形,D是BC的中点.(1)作图:①过B作AC的平行线BH;②过D作BH的垂线,分别交AC,BH,AB的延长线于E,F,G.(2)在图中找出一对全等的三角形,并证明你的结论.25. (10分)如图,在△ABC中,∠A=60°,点D是AC边上一点,连接BD,将△ABD沿DB折叠至△EBD,连接EC,且BE=AC+CE.(1)如图1,求证:∠BEC= ∠DEC;(2)如图2,当AD=4EC=4时,在BE上取一点M使MD=MC,求BM的长.26. (5分) (2019八上·高邮期末) 2020年8月高邮高铁将通车,高邮至北京的路程约为900km,甲、乙两人从高邮出发,分别乘坐汽车A与高铁B前往北京.已知A车的平均速度比B车的平均速度慢150km/h,A车的行驶时间是B车的行驶时间的2.5倍,两车的行驶时间分别为多少?27. (10分) (2020八上·兴化月考) 如图,在中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;② ;③ .(1)上述三个条件中,由哪两个条件可以判定是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,说明你的理由.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共9题;共9分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:三、解答题 (共8题;共66分)答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、考点:解析:答案:27-1、答案:27-2、考点:解析:。
辽宁省大连市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七上·北仑期末) 下列说法正确的是()A . 是分数B . 互为相反数的数的立方根也互为相反数C . 的系数是D . 64的平方根是±42. (2分)在平面直角坐标系中,将点A(1,2)的横坐标乘以-1,纵坐标不变,得到点A′,则点A与点A′的关系是()A . 关于x轴对称B . 关于y轴对称C . 关于原点对称D . 将点A向x轴负方向平移一个单位得点A’3. (2分)有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是7的平方根;其中正确的说法有()A . 0个B . 1个C . 2个D . 3个4. (2分) (2017七下·大同期末) 下列实数中,有理数是().A .B .C .D . 3.141595. (2分) (2018八上·辽宁期末) 以下列各组线段为边作三角形,不能构成直角三角形的是()A . 1、、B . 5、12、13C . 2、3、4D . 9、40、416. (2分)(2017·宝坻模拟) 估计2 的值在()A . 1和2之间B . 2和3之间C . 3和4之间D . 4和5之间7. (2分) (2019九上·海曙期末) 如图,圆半径为,弓形高为,则弓形的弦的长为()A .B .C .D .8. (2分)如图所示:数轴上点A所表示的数为a,则a的值是()A . +1B . -+1C . -1D .9. (2分)如图,在锐角△ABC中,AB=4 ,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是().A . 3B . 4C . 5D . 610. (2分) (2017八下·德州期末) 如图,正方形ABCD中,AE垂直于BE,且AE=3,BE=4,则阴影部分的面积是()A . 16B . 18C . 19D . 21二、填空题 (共10题;共11分)11. (1分) (2019七下·海安期中) -27的立方根是________.12. (1分)为筹备2014年元旦晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图所示,已知圆筒高108cm,其横截面周长为36cm,如果在圆筒表面恰好能缠绕油纸4圈,应至少裁剪________cm 的油纸.13. (1分)小红要剪一个面积为40cm2的三角形纸片,它的一边是10cm,那么它这边上的高是________ cm.14. (1分) (2015七下·石城期中) 实数a、b在数轴上的位置如图所示,则化简|a+b|+|b﹣a|=________15. (1分)(2018·娄底模拟) 如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为________.16. (1分) (2018八上·互助期末) 如图中的 B 点的坐标是________.17. (1分)已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为________cm18. (2分)(2019·东台模拟) 如图,已知△ABC的三个顶点均在格点上,则cosA的值为________.19. (1分)(2018·黄冈) 一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为________.20. (1分)(2017·商丘模拟) 如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上,折痕的一端E点在边BC上,BE=10.则折痕的长为________.三、解答题 (共5题;共58分)21. (20分) (2019九上·西城期中) 计算:2cos30°+ sin45°﹣tan260°﹣tan45°.22. (6分) (2017八上·揭阳月考)(1)如图,正方形网格中每个小正方形边长都是 1,小正方形的顶点称为格点,在正方形网格中画出长为的线段 PQ,其中 P 、 Q 都在格点上;(2)如图,正方形网格中有△ABC,若小方格边长为1,请你根据所学的知识,判断△ABC是什么三角形,并说明理由.23. (6分) (2017七上·启东期中) 观察下列三行数:①0,3,8,15,24,…②2,5,10,17,26,…③0,6,16,30,48,…(1)第①行数按什么规律排行?(2)第②行,第③行数与第①行数分别有什么关系?(3)分别从①②③行数中取出第a个数,并计算这三个数的和.(结果用含a的式子表示)24. (15分) (2019九上·偃师期中) 在△ABC中,D、E分别是AB,AC的中点,作∠B的角平分线(1)如图1,若∠B的平分线恰好经过点E,猜想△ABC是怎样的特殊三角形,并说明理由;(2)如图2,若∠B的平分线交线段DE于点F,已知AB=8,BC=10,求EF的长度;(3)若∠B的平分线交直线DE于点F,直接写出AB、BC、EF三者之间的数量关系。
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,DE ⊥AB 于E ,下列结论:①CD=ED ;②AC+BE=AB ;③∠BDE=∠BAC ;④BE=DE ;⑤S BDE :S △ACD =BD :AC ,其中正确的个数( )A .5个B .4个C .3个D .2个2.用不等式表示如图的解集,其中正确的是( )A .2x >B .x≥2C .2x <D .x≤23.16的算术平方根是( ) A .4±B .2±C .4D .24.下列图案中,不是轴对称图形的是( ) A .B .C .D .5.下列四个式子中能因式分解的是( ) A .x 2﹣x +1B .x 2+xC .x 3+x ﹣14D .x 4+16.如图,EB 交AC 于点M ,交FC 于点D ,AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:其中正确的结论有( )①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ;④CD =DN ;⑤△AFN ≌△AEM .A .2个B .3个C .4个D .5个7.下面有4种箭头符号,其中不是轴对称图形的是( ) A .B .C .D .8.九年级二班45名同学在学校举行的“爱心涌动校园”募捐活动中捐款情况如下表 捐款数(元)1020 30 40 50 捐款人数(人)8171622则全班捐款的45个数据,下列错误的 ( ) A .中位数是30元 B .众数是20元C .平均数是24元D .极差是40元9.已知函数1y x=图像上三个点的坐标分别是(11x y ,)、(22x y ,)、(33,x y ),且1230x x x <<<.那么下列关于123、、y y y 的大小判断,正确的是( )A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y <<10.下列四个图案中,是轴对称图形的为( ) A .B .C .D .11.若△ABC 三个角的大小满足条件∠A :∠B :∠C =1:1:3,则∠A =( ) A .30°B .36°C .45°D .60°12.如图,点A ,D ,C ,F 在一条直线上,AB =DE ,∠A =∠EDF ,补充下列条件不能证明△ABC ≌△DEF 的是( )A .AD =CFB .BC ∥EF C .∠B =∠ED .BC =EF二、填空题(每题4分,共24分)13.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为__.14.如图,函数y =ax +b 和y =k x 的图象交于点P ,则二元一次方程组y ax by kx =+=⎧⎨⎩的解是______.15.设三角形三边之长分别为3,7,1a +,则a 的取值范围为______.16.在平面直角坐标系xOy 中,直线l :y =2x ﹣2与x 轴交于点A 1,如图所示,依次作正方形A 1B 1C 1O ,正方形A 2B 2C 2C 1,…,正方形A n B n ∁n C n ﹣1,使得点A 1,A 2,A 3,…A n 在直线l 上,点C 1,C 2,C 3,…∁n 在y 轴正半轴上,则正方形A n B n ∁n C n ﹣1的面积是_____.17.如图,长方体的底面边长分别为3cm 和3cm ,高为5cm ,若一只蚂蚁从A 点开始经过四个侧面爬行一圈到达B 点,则蚂蚁爬行的最短路径长为_____cm .18.如图,在Rt ABC ∆中,90ACB ∠=︒,50A ∠=︒,点D 是AB 延长线上的一点,则CBD ∠的度数是______°.三、解答题(共78分)19.(8分)(1)问题发现:如图(1),已知:在三角形ABC ∆中,90BAC ︒∠=,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点,D E ,试写出线段,BD DE 和CE 之间的数量关系为_________________.(2)思考探究:如图(2),将图(1)中的条件改为:在ABC ∆中, ,,,AB AC D A E =三点都在直线l 上,并且BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由. (3)拓展应用:如图(3),,D E 是,,D A E 三点所在直线m 上的两动点,(,,D A E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF ∆与ACF ∆均为等边三角形,连接,BD CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF ∆的形状并说明理由.20.(8分)(1)如图1,等腰ABC ∆和等腰ADE ∆中,90BAC DAE ∠=∠=︒,B ,E ,D 三点在同一直线上,求证:90BDC ∠=︒;(2)如图2,等腰ABC ∆中,AB AC =,90BAC ∠=︒,D 是三角形外一点,且90BDC ∠=︒,求证:45ADB ∠=︒;(3)如图3,等边ABC ∆中,D 是形外一点,且60BDC ∠=︒, ①ADB ∠的度数为 ;②DA ,DB ,DC 之间的关系是 .21.(8分)解方程组:25,3 6.x y x y +=⎧⎨-=⎩22.(10分)如图,在平面直角坐标系中,点 A ,B 的坐标分别为(0,3),(1,0),△ABC 是等腰直角三角形,∠ABC =90°. (1)图1中,点C 的坐标为 ;(2)如图2,点D 的坐标为(0,1),点E 在射线CD 上,过点B 作BF ⊥BE 交y 轴于点F .①当点E 为线段CD 的中点时,求点F 的坐标;②当点E 在第二象限时,请直接写出F 点纵坐标y 的取值范围.23.(10分)如图,AB AC =,点D 、E 分别在边AB 、AC 上,且BD CE =,请问B C ∠=∠吗?为什么?24.(10分)某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐书量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A ,B ,C ,D ,E 表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数、中位数; (3)估计该单位750名职工共捐书多少本.25.(12分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)26.如图1,把一张长方形的纸片ABCD沿对角线BD折叠,点C落在E处,BE交AD于点F.(1)求证:FB=FD;(2)如图2,连接AE,求证:AE∥BD;(3)如图3,延长BA,DE相交于点G,连接GF并延长交BD于点H,求证:GH 垂直平分BD.参考答案一、选择题(每题4分,共48分)1、C【分析】根据角平分线的性质,可得CD=ED,易证得△ADC≌△ADE,可得AC+BE=AB;由等角的余角相等,可证得∠BDE=∠BAC;然后由∠B的度数不确定,可得BE不一定等于DE;又由CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD =BE:AC.【详解】解:①正确,∵在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,∴CD=ED;②正确,因为由HL可知△ADC≌△ADE,所以AC=AE,即AC+BE=AB;③正确,因为∠BDE和∠BAC都与∠B互余,根据同角的补角相等,所以∠BDE=∠BAC;④错误,因为∠B的度数不确定,故BE不一定等于DE;⑤错误,因为CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD=BE:AC.故选:C.此题考查了角平分线的性质以及全等三角形的判定与性质.此题比较适中,注意掌握数形结合思想的应用. 2、D【解析】解:根据“开口向左、实心”的特征可得解集为x≤2,故选D . 3、D, 4的算术平方根是1,1.故选择:D . 【点睛】本题考查算数平方根的算数平方根问题,掌握求一个数的算术平方根的程序是先化简这个数,再求算术平方根是解题关键. 4、B【解析】根据轴对称图形的概念对各选项分析判断即可得解. 【详解】解:A 、是轴对称图形,故本选项不符合题意; B 、不是轴对称图形,故本选项符合题意; C 、是轴对称图形,故本选项不符合题意; D 、是轴对称图形,故本选项不符合题意. 故选:B . 【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 5、B【分析】直接利用提取公因式法以及因式分解的意义分别判断得出答案. 【详解】解:A 、x 2﹣x +1,不能因式分解,故本选项不合题意;B 、能运用提取公因式法分解因式,()21x x x x +=+,故本选项符合题意;C 、x 3+x ﹣14,不能因式分解,故本选项不合题意; D 、x 4+1,不能因式分解,故本选项不合题意;【点睛】本题考查了因式分解的方法,以及根据因式分解定义判定所给式子能不能进行因式分解,掌握因式分解的方法是解题的关键.6、C【分析】①正确.可以证明△ABE≌△ACF可得结论.②正确,利用全等三角形的性质可得结论.③正确,根据ASA证明三角形全等即可.④错误,本结论无法证明.⑤正确.根据ASA证明三角形全等即可.【详解】∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴BE=CF,AF=AE,故②正确,∠BAE=∠CAF,∠BAE−∠BAC=∠CAF−∠BAC,∴∠1=∠2,故①正确,∵△ABE≌△ACF,∴AB=AC,又∠BAC=∠CAB,∠B=∠C△ACN≌△ABM(ASA),故③正确,CD=DN不能证明成立,故④错误∵∠1=∠2,∠F=∠E,AF=AE,∴△AFN≌△AEM(ASA),故⑤正确,故选:C.【点睛】本题考查三角形全等的判定方法和三角形全等的性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.7、B【解析】根据轴对称图形的概念求解.【详解】A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D 、是轴对称图形,故错误. 故选:B . 【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合. 8、A【解析】经计算平均数是24元,众数是20元,中位数是20元,极差是40元.所以A 选项错误. 9、B【分析】根据图像,利用反比例数的性质回答即可. 【详解】解:画出1y x=的图像,如图当1230x x x <<<时,213y y y <<. 故选:B 【点睛】此题考查了反比例函数图象的性质.反比例函数y=kx(k≠0)的图象是双曲线;当k >0,双曲线的两支分别位于第一、三象限;当k <0,双曲线的两支分别位于第二、四象限.理解和掌握反比例函数的性质是解题的关键.本题通过图像法解题更简单. 10、B【分析】根据轴对称图形的概念判断即可. 【详解】解:A 、不是轴对称图形; B 、是轴对称图形; C 、不是轴对称图形; D 、不是轴对称图形; 故选:B【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.11、B【分析】根据三角形内角和为180º进行计算即可.【详解】∵∠A:∠B:∠C=1:1:3且三角形内角和为180º,∴∠A=1180365︒⨯=︒.故选:B.【点睛】考查了三角形的内角和定理,解题关键是熟记三角形内角和定理:三角形内角和为180º.12、D【分析】利用全等三角形的判定方法即可判断.【详解】解:∵AB=DE,∠A=∠EDF,∴只要AC=DF即可判断△ABC≌△DEF,∵当AD=CF时,可得AD+DC=DC+CF,即AC=DF,当BC∥EF时,∠ACB=∠F,可以判断△ABC≌△DEF,当∠B=∠E时,可以判断△ABC≌△DEF,故选:D.【点睛】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(每题4分,共24分)13、(-12,-12)【解析】试题解析:先过点A作AB′⊥OB,垂足为点B′,由垂线段最短可知,当B′与点B重合时AB最短,∵点B在直线y=x上运动,∴△AOB′是等腰直角三角形,过B′作B′C⊥x轴,垂足为C,∴△B′CO 为等腰直角三角形,∵点A 的坐标为(﹣1,0),∴OC=CB′=12OA=12×1=12, ∴B′坐标为(﹣12,﹣12), 即当线段AB 最短时,点B 的坐标为(﹣12,﹣12). 考点:一次函数综合题. 14、21x y ⎧⎨⎩=-=- 【分析】根据一次函数y=ax+b 和正比例y=kx 的图象可知,点P 就是一次函数y=ax+b 和正比例y=kx 的交点,即二元一次方程组y ax b y kx=+=⎧⎨⎩的解. 【详解】解:根据题意可知,二元一次方程组y ax b y kx =+=⎧⎨⎩的解就是一次函数y=ax+b 和正比例y=kx 的图象的交点P 的坐标,由一次函数y=ax+b 和正比例y=kx 的图象,得二元一次方程组y ax b y kx =+=⎧⎨⎩的解是21x y ⎧⎨⎩=-=- 故答案为:21x y ⎧⎨⎩=-=-. 【点睛】此题很简单,解答此题的关键是熟知方程组的解与一次函数y=ax+b 和正比例y=kx 的图象交点P 之间的联系,考查了学生对题意的理解能力.15、3a 9<<【分析】根据三角形的三边关系,两边之和大于第三边和两边之差小于第三边列出不等式组求出其解即可.【详解】解:由题意,得{a 173a 173+>-+<+,解得:3a 9<<,故答案为3a 9<<.【点睛】考查了根据三角形三边关系建立不等式组解实际问题的运用,不等式组的解法的运用,解答时根据三角形的三边关系建立不等式组是关键.16、2232n -⎛⎫ ⎪⎝⎭【分析】由直线点的特点得到231121212C A OA C A OD DC DC ===,分别可求OA 1=OC 1=1,C 1A 2=32,C 2A 3=94,……,从而得到正方形边长的规律为C n ﹣1A n =132n ,即可求正方形面积.【详解】解:直线l :y =2x ﹣2与x 轴交于点A ₁(1,0),与y 轴交于点D (0,﹣2),∴231121212C A OA C A OD DC DC ===,∵OA 1=OC 1=1,∴A 1B 1C 1O 的面积是1;∴DC 1=3,∴C 1A 2=32,∴A 2B 2C 2C 1的面积是94;∴DC 2=92,∴C 2A 3=94,∴A 3B 3C 3C 2的面积是8116;……∴C n ﹣1A n =132n ,∴正方形A n B n ∁n C n ﹣1的面积是2232n -⎛⎫ ⎪⎝⎭, 故答案为2232n -⎛⎫ ⎪⎝⎭.【点睛】本题考查的是平面直角坐标系中有规律的点的坐标与图形的探索问题,列出前面几步的数据找到点或图形的变化规律是解答关键.17、1【分析】要求长方体中两点之间的最短路径,只需将长方体展开,然后利用两点之间线段最短及勾股定理求解即可.【详解】解:展开图如图所示:由题意,在Rt ADB 中,AD=12cm ,BD=5cm ,∴蚂蚁爬行的最短路径长为:222212513AB AD BD cm +=+=,故答案为1.【点睛】本题主要考查最短路径问题,熟练掌握求最短路径的方法是解题的关键.18、1【分析】根据三角形外角的性质:三角形的外角等于与它不相邻的两个内角之和,即可求出CBD ∠的度数.【详解】解:∵90ACB ∠=︒,50A ∠=︒,CBD ∠是△ABC 的外角∴CBD ∠=ACB ∠+∠A=1°故答案为:1.【点睛】此题考查是三角形外角的性质,掌握三角形的外角等于与它不相邻的两个内角之和是解决此题的关键.三、解答题(共78分)19、(1)DE=CE+BD;(2)成立,理由见解析;(3)△DEF为等边三角形,理由见解析.【分析】(1)利用已知得出∠CAE=∠ABD,进而根据AAS证明△ABD与△CAE全等,然后进一步求解即可;∠=∠=∠=,得出∠CAE=∠ABD,在△ADB与△CEA (2)根据BDA AEC BACα中,根据AAS证明二者全等从而得出AE=BD,AD=CE,然后进一步证明即可;(3)结合之前的结论可得△ADB与△CEA全等,从而得出BD=AE,∠DBA=∠CAE,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF与△EAF全等,在此基础上进一步证明求解即可.【详解】(1)∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠CAE=∠ABD,在△ABD与△CAE中,∵∠ABD=∠CAE,∠BDA=∠AEC,AB=AC,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD,故答案为:DE=CE+BD;(2)(1)中结论还仍然成立,理由如下:∠=∠=∠=,∵BDA AEC BACα∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,在△ADB与△CEA中,∵∠ABD=∠CAE,∠ADB=∠CEA,AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE,即:DE=CE+BD ,(3)DEF ∆为等边三角形,理由如下:由(2)可知:△ADB ≌△CEA ,∴BD=EA ,∠DBA=∠CAE ,∵△ABF 与△ACF 均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF ,∴∠DBA+∠ABF=∠CAE+CAF ,∴∠DBF=∠FAE ,在△DBF 与△EAF 中,∵FB=FA ,∠FDB=∠FAE ,BD=AE ,∴△DBF ≌△EAF(SAS),∴DF=EF ,∠BFD=∠AFE ,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF 为等边三角形.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.20、(1)见解析;(2)见解析;(3)①60ADE ∠=︒,②BD AD CD =+.【分析】(1)如图1,先利用SAS 证明ABE ACD ∆≅∆,得到34∠=∠,进一步可得证90BDC ∠=︒;(2)如图2,过A 作AE AD ⊥交BD 于E ,利用ASA 证明ABE ACD ∆≅∆,得到AE AD =,从而得证45ADB ∠=︒;(3)①如图3-1,在三角形内作60DAE ∠=︒,AE 交BD 于E 点,证得ADE ∆是等边三角形,即可得证;②先利用SAS 证明ABE ACD ∆≅∆,得到BE CD =,再利用等量代换可证得结论.【详解】(1)如图1,90BAC DAE ∠=∠=︒,12∠∠∴=,在ABE ∆和ACD ∆中,12AB AC AE AD =⎧⎪∠=∠⎨⎪=⎩ABE ACD ∴∆≅∆(SAS),34∴∠=∠,3590∠+∠︒=,56∠=∠,4690∴∠+∠=︒,90BDC ∴∠=︒;(2)如图2,过A 作AE AD ⊥交BD 于E ,90BAC DAE ∠=∠=︒,12∠∠∴=,90BAC BDC ∠︒∠==,56∠=∠,34∴∠=∠,在ABE ∆和ACD ∆中,1234AB AC ∠=∠⎧⎪=⎨⎪∠=∠⎩,ABE ACD ∴∆≅∆()ASA ,AE AD ∴=,45ADE AED ∴∠=∠=︒;(3)①如图3-1,在三角形内作60DAE ∠=︒,AE 交BD 于E 点,与(2)同理可证AE AD =,ADE ∴∆是等边三角形,60ADE ∴∠=︒;②BD AD CD =+.理由是:如图3-1,易知BAE CAD ∠=∠,又AB=AC,由①知AE=AD ,ABE ACD ∴∆≅∆(SAS),BE CD ∴=,ADE ∆是等边三角形,DE AD ∴=BD BE ED AD CD ∴=+=+【点睛】本题考查了全等三角形的性质和判定,也考查了等边三角形的性质,添加恰当的辅助线是解第2、3问的关键.21、3,1.x y =⎧⎨=-⎩ 【解析】把①×3+②,消去y ,求出x 的值,再把求得的x 的值代入①求出y 的值即可. 【详解】25,3 6.x y x y +=⎧⎨-=⎩①② 由①×3,得6315x y +=.③ 把③+②,得721x =.解得3x =.把3x =代入①,得65y +=.1y =-.∴原方程组的解是3,1.x y =⎧⎨=-⎩本题考查了二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,当两方程中相同的未知数的系数相等或互为相反数时用加减消元法解方程比较简单.灵活选择合适的方法是解答本题的关键.y<-22、 (1 ) C(4,1);(2)①F( 0 , 1 ),②1【解析】试题分析:()1过点C向x轴作垂线,通过三角形全等,即可求出点C坐标. ()2过点E作EM⊥x轴于点M,根据,C D的坐标求出点E的坐标,OM=2,得到⊥,得到△OBF为等腰直角三角形,即可求出点F的坐===,BE BFOB BM EM1标.()3直接写出F点纵坐标y的取值范围.试题解析:(1 ) C(4,1),(2)法一:过点E作EM⊥x轴于点M,∵C(4,1),D(0,1),E为CD中点,∴CD∥x轴,EM=OD=1,()21∴,,E∴OM=2,()B,10.∴===,OB BM EM1∴∠=︒,EBM45⊥,BE BF∴∠OBF=45°,∴△OBF为等腰直角三角形,∴OF=OB=1.()∴0,1.F法二:在OB的延长线上取一点M.∵∠ABC=∠AOB=90°.∴∠ABO+∠CBM=90° .∠ABO+∠BAO =90°.∴∠BAO=∠CBM .∵C(4,1).又∵CD ∥OM ,CD =4.∴∠DCB =∠CBM.∴∠BAO =∠ECB.∵∠ABC =∠FBE =90°. ∴∠ABF =∠CBE.∵AB =BC.∴△ABF ≌△CBE (ASA).∴AF =CE =12CD =2, ∵A (0,3),OA =3,∴OF =1.∴F (0,1) ,(3) 1y <-.23、B C ∠=∠,证明见解析【分析】根据题意证明△ABE ≌△ACD 即可求解.【详解】B C ∠=∠,证明如下:∵AB AC =,BD CE =∴AB-BD=AC-CE,即AD=AE ,又BAE CAD ∠=∠∴△ABE ≌△ACD (SAS )∴B C ∠=∠.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.24、(1)补图见解析;(2)这30名职工捐书本数的平均数为6,中位数为6;(3)该单位750名职工共捐书约4500本.【分析】(1)根据题意列式计算得到D 类书的人数,补全条形统计图即可.(2)根据加权平均数公式可求得平均数,按从小到大顺序排列好后求得中位数; (3)用捐款平均数乘以总人数即可.【详解】(1)捐D 类书的人数为:3046938----=,补图如图所示;(2)平均数为:()14456697883630x =⨯+⨯+⨯+⨯+⨯=, 30个数据的中位数是第15、16个数据,第15、16个数据都是6本,∴中位数为:6;(3)750×6=4500,答:该单位750名职工共捐书约4500本.【点睛】本题主要考查了中位数,平均数,条形统计图,用样本估计总体;要求平均数只要求出数据之和再除以总个数即可;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.25、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【分析】(1)乙种图书售价每本x 元,则甲种图书售价为每本1.4x 元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;(2)设甲种图书进货a 本,总利润w 元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.【详解】(1)设乙种图书售价每本x 元,则甲种图书售价为每本1.4x 元.由题意得:1400168010 1.4x x ,解得:20x. 经检验,20x 是原方程的解.所以,甲种图书售价为每本1.42028⨯=元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货a 本,总利润w 元,则()()()28203201421200w a a =--+--- 4800a =+.又∵()2014120020000a a +⨯-≤, 解得:16003a ≤. ∵w 随a 的增大而增大,∴当a 最大时w 最大,∴当533a =本时w 最大,此时,乙种图书进货本数为1200533667-=(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.【点睛】本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.26、(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】试题分析:(1)根据矩形的性质和折叠的性质可得:AB =DC=DE ,∠BAD =∠BCD =∠BED=90°,根据AAS 可证△ABF ≌△EDF ,根据全等三角形的性质可证BF=DF ;(2)根据全等三角形的性质可证:FA=FE ,根据等边对等角可得:∠FAE=∠FEA ,根据三角形内角和定理可证:2∠AEF +∠AFE =2∠FBD +∠BFD =180°,所以可证∠AEF=∠FBD ,根据内错角相等,两直线平行可证AE ∥BD ;(3)根据矩形的性质可证:AD=BC=BE ,AB=CD=DE ,BD=DB ,根据SSS 可证:△ABD ≌△EDB ,根据全等三角形的性质可证:∠ABD=∠EDB ,根据等角对等边可证:GB=GD ,根据HL 可证:△AFG ≌△EFG ,根据全等三角形的性质可证:∠AGF=∠EGF ,所以GH 垂直平分BD.试题解析:(1)∵长方形ABCD ,∴AB =DC=DE ,∠BAD =∠BCD =∠BED=90°,在△ABF和△DEF中,{BAD BED AFB EFD AB DE∠=∠∠=∠=∴△ABF≌△EDF(AAS),∴BF=DF.(2)∵△ABF≌△EDF,∴FA=FE,∴∠FAE=∠FEA,又∵∠AFE=∠BFD,且2∠AEF +∠AFE =2∠FBD+∠BFD =180°,∴∠AEF=∠FBD,∴AE∥BD,(3)∵长方形ABCD,∴AD=BC=BE,AB=CD=DE,BD=DB,∴△ABD≌△EDB(SSS),∴∠ABD=∠EDB,∴GB=GD,在△AFG和△EFG中,∠GAF=∠GEF=90°,FA=FE,FG=FG,∴△AFG≌△EFG(HL),∴∠AGF=∠EGF,∴GH垂直平分BD.【方法II】(1)∵△BCD≌△BED,∴∠DBC=∠EBD又∵长方形ABCD,∴AD∥BC,∴∠ADB=∠DBC,∴∠EBD=∠ADB,∴FB=FD.(2)∵长方形ABCD,∴AD=BC=BE,又∵FB=FD,∴FA=FE,∴∠FAE=∠FEA,又∵∠AFE=∠BFD,且2∠AEF +∠AFE =2∠FBD+∠BFD =180°,∴∠AEF=∠FBD,∴AE∥BD,(3)∵长方形ABCD,∴AD=BC=BE,AB=CD=DE,BD=DB,∴△ABD≌△EDB,∴∠ABD=∠EDB,∴GB=GD,又∵FB=FD,∴GF是BD的垂直平分线,即GH垂直平分BD.考点:1.折叠的性质;2.全等三角形的判定与性质;3.平行线的性质与判定;4.矩形的性质.。
辽宁省大连市八年级上学期数学期末考试试卷
姓名:________ 班级:________ 成绩:________
一、选择题(本大题共有6小题,每小题3分,共18分) (共6题;共18分)
1. (3分) (2017七下·南江期末) 下列四个图形中既是轴对称图形又是中心对称图形的是()
A .
B .
C .
D .
2. (3分)某校八年级(3)班体训队员的身高(单位:cm)如下:169,165,166,164,169,167,166,169,166,165,获得这组数据方法是().
A . 直接观察
B . 查阅文献资料
C . 互联网查询
D . 测量
3. (3分)(2017·长清模拟) 如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE 沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为()
A . 2
B .
C . 1
D .
4. (3分) (2017八下·无锡期中) 下列说法正确的是()
A . 为了了解某中学800名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50名学生的视力
B . 若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖
C . 了解无锡市每天的流动人口数,采用抽查方式
D . “掷一枚硬币,正面朝上”是必然事件
5. (3分) (2019八下·宜兴期中) 关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是()
A . 对角线互相平分
B . 对角线互相垂直
C . 对角线相等
D . 对角线平分一组对角
6. (3分)(2017·滦县模拟) 如图,在x轴上方,∠BOA=90°且其两边分别与反比例函数y=﹣、y= 的图象交于B、A两点,则∠OAB的正切值为()
A .
B .
C .
D .
二、填空题(本大题共有10小题,每小题3分,共30分) (共10题;共28分)
7. (2分)在下列事件中:①投掷一枚均匀的硬币,正面朝上;②投掷一枚均匀的骰子,6点朝上;③任意找367人中,至少有2人的生日相同;④打开电视,正在播放广告;⑤小红买体育彩票中奖;⑥北京明年的元旦将下雪;⑦买一张电影票,座位号正好是偶数;⑧到2020年世界上将没有饥荒和战争;⑨抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;⑩在标准大气压下,温度低于0℃时冰融化;⑪如果a , b为实数,那么a +b=b+a;⑫抛掷一枚图钉,钉尖朝上.
确定的事件有________;随机事件有________,在随机事件中,你认为发生的可能性最小的是________,发生
的可能性最大的是________.(只填序号)
8. (2分)(2017·河西模拟) 若y= ,则5x+6y的值为________.
9. (3分)(2018·潜江模拟) 甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是________
10. (3分) (2019八下·武昌月考) 若一直角三角形两边长分别为6和8,则斜边长为________.
11. (3分) (2018七下·钦州期末) 某校共有师生1500人,绘制成如图所示的扇形统计图.则表示教师人数的扇形的圆心角度数为________,学生有________人.
12. (3分) (2017八下·蒙城期末) 如图,一透明的圆柱体玻璃杯,从内部测得底部直径为6cm,杯深8cm.今有一根长为16cm的吸管如图放入杯中,露在杯口外的长度为h,则h的变化范围是:________.
13. (3分)(2017·泾川模拟) 如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是________.
14. (3分) (2017八上·深圳期中) 若一次函数y=kx+b 的图象如图所示,则y<0时自变量 x 的取值范围是________;
15. (3分)(2019·宝鸡模拟) 如图,为矩形对角线,的交点,AB=6,M,N是直线BC上的动点,且,则的最小值是________.
16. (3分) (2019八上·天台期中) 如图所示,在Rt△ABC中,∠C=90°,∠A=30°,AB边中点D到BC边距离为3 cm,现在AC边找点E,使BE+ED值最小,则BE+ED的最小值是________cm.
三、解答题(本大题共有8小题,共72分) (共8题;共72分)
17. (10分) (2018九上·东台期中) 解下列方程:
(1)(x+1)2= 9
(2) x2﹣2x﹣2=0
18. (8分) (2018九上·垣曲期末) 在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y
(1)计算由x、y确定的点(x,y)在函数y=-x+5的图象上的概率.
(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜,这个游戏公平吗?请说明理由;若不公平,请写出公平的游戏规则.
19. (8分) (2017八下·富顺期中) 如图所示,在△ABC中,∠ACB=90°,点D,E分别为AC,AB的中点,点F在BC的延长线上,且∠CDF=∠A.求证:四边形DECF为平行四边形.
20. (8.0分)某中学九年级学生在某次社会实践中,向全市的中小学教师调查他们]的学历情况,
并将调查结果分别用图5①②的扇形统计图和折线统计图(不完整)表示.
(1)求这次调查的教师总数.
(2)补全折线统计图.
21. (8分) (2017八上·永定期末) 已知一次函数 .
(1)若这个函数的图象经过原点,求m的值;
(2)若这个函数的图象经过一、三、四象限,求m的取值范围.
22. (8.0分)如图,在平面直角坐标系中,矩形AOBC在第一象限内,E是边OB上的动点(不包括端点),作∠AEF=90°,使EF交矩形的外角平分线BF于点F,设C(m,n).
(1)若m=n时,如图,求证:EF=AE;
(2)若m≠n时,如图,试问边OB上是否还存在点E,使得EF=AE?若存在,请求出点E的坐标;若不存在,请说明理由.
(3)若m=tn(t>1)时,试探究点E在边OB的何处时,使得EF=(t+1)AE成立?并求出点E的坐标.
23. (10.0分)已知关于x的函数y=ax2﹣2abx+ab2﹣1,直线y=﹣ax+3与y轴交于点A,与x轴的正半轴交于点P,点B的纵坐标为3,且AP⊥BP,AP=BP.
(1)求实数a的值及点B的坐标;
(2)若该二次函数的图象与线段AB只有一个公共点,请结合函数图象,求出实数b的取值范围.
24. (12分)(2017·河南) 如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)
观察猜想
图1中,线段PM与PN的数量关系是________,位置关系是________;
(2)
探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)
拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
参考答案
一、选择题(本大题共有6小题,每小题3分,共18分) (共6题;共18分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
二、填空题(本大题共有10小题,每小题3分,共30分) (共10题;共28分)
7-1、
8-1、
9、答案:略
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16、答案:略
三、解答题(本大题共有8小题,共72分) (共8题;共72分)
17-1、
17-2、
18-1、
18-2、
19、答案:略
20-1、
20-2、
21-1、
21-2、22-1、
22-2、。