七年级数学辅导资料
- 格式:doc
- 大小:428.00 KB
- 文档页数:20
七年级数学新课标培训资料数学作为一门重要的学科,是培养学生逻辑思维、数学思维和分析解决问题能力的重要途径。
近年来,随着国家教育改革的推进,新课标的实施对于培养学生的数学素养、创新意识以及实际应用能力都提出了更高的要求。
因此,为了帮助七年级学生更好地适应新课标要求和提高数学水平,本文将以新课标为指导,为大家准备了一份七年级数学的培训资料。
一、数的概念与运算在七年级数学课程中,数的概念与运算是基础中的基础,也是其他数学知识的基石。
为了帮助同学们更好地掌握这一部分知识,我们将从以下几个方面进行讲解和练习。
1. 自然数与整数的认识与运算自然数和整数是我们在日常生活中接触最多的数,对于它们的认识和运算是十分重要的。
在这部分内容中,我们将介绍自然数和整数的概念,以及加法、减法的运算规则和性质,并通过一些实际问题进行练习。
2. 分数的认识与运算分数是表示小于1的有理数,它可以用来表示几次相等的部分。
在这部分内容中,我们将介绍分数的概念,以及分数的四则运算规则和性质,并通过练习题来巩固所学知识。
3. 小数的认识与运算小数是表示大于或等于1的有理数,它是分数的一种特殊形式。
在这部分内容中,我们将介绍小数的概念,以及小数的加减乘除运算规则和性质,并给出一些实际应用题供同学们练习。
二、代数与方程代数是数学的一个重要分支,它研究的是用字母表示数的规律和性质。
在七年级数学中,代数与方程是一个相对较难的部分,需要同学们具备一定的逻辑推理和转化能力。
为了更好地掌握这一部分知识,我们将从以下几个方面进行讲解和练习。
1. 代数式的认识与转化代数式是由数字和字母以及运算符号组成的式子,它用来表示数或数之间的关系。
在这部分内容中,我们将介绍代数式的概念,以及代数式的运算规则和性质,并通过练习题来加深理解。
2. 方程的认识与解法方程是用等号连接的两个代数式,它表示两个量相等的关系。
在这部分内容中,我们将介绍方程的概念,以及方程的解法和解的意义,并通过一些实际问题来应用所学知识。
七年级数学刷题资料推荐江西
江西省的七年级数学刷题资料有很多,以下是其中一部分推荐:
1. 《江西中考数学试题集锦》
这本图书是江西省历年中考数学真题的集锦,它可以帮助学生快速了解和掌握江西省中考数学的出题规律和考点,并通过大量的练习题来提高学生对数学的理解和运用能力。
2. 《江西中考数学真题解析》
这本图书详细解析了江西省历年中考数学的真题,包括解题思路、步骤、注意点等,并给出了答案和详细的解析步骤。
这对于提高学生的数学思维能力和解题能力有很大的帮助。
3. 《江西省初中数学同步辅导教材》
这本教材是江西省教育厅编写的一份初中数学同步辅导教材,重点讲解了该省初中数学课程的核心知识点和难点,以及一些常见题型的解题方法和技巧。
它可以帮助学生全面而系统地掌握江西省七年级数学的知识和技能。
4. 《江西省教育厅数学统编教材》
这套教材是江西省的官方数学教材,其编写与教学质量备受推崇。
它不仅符合江西省课程标准,而且采用了现代教育技术手段,其中的练习也是很多学生所推荐的。
以上是我对江西省七年级数学刷题资料的推荐,希望对你有所帮助。
七年级比较好的辅导书是哪些?小编为大家找来了答案,请大家接着往下看吧。
七年级数学辅导书
《典中点》
《新教材完全解读》
《尖子生学案》
《五年中考三年模拟》
《中学教材全解》
《点拨训练》
《五三》
如何选辅导书
如果想要进行结和训练,建议选择一些全面复习的辅导书,比如《五三》、《中考总复习》系列、《龙门新学案》等。
其中有知识辅导,也有中考题库,可以进行针对性训练,查缺补漏。
如果是知识没有掌握好,建议选一些专门进行课本知识辅导的书,比如《点拔》、《初中知识清单》、《初中数理化大全》等。
想要提升成绩,最基本的是要把课本知识学好,在学习课本知识的同时,可以结合例题,如果不会,还可以参考解析,学习解题思路,并运用到实际演练中,这样才能一步一步的提升。
以上就是小编为大家找来的七年级数学相关内容,希望可以帮助到大家。
七年级数学复习资料篇一:七年级数学下册辅导复习资料第五章1、填一填相交线与平行线5.1.1相交线2二、概括归纳1、邻补角概念:,这样的两个角叫互为邻补角;请指出上图中的邻补角:性质:2、.对顶角概念:,这样的两个角叫互为对顶角;三、课堂检测:1、如图,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.EACFDB2、如图,直线AB、CD相交于点O.DA(1)若∠AOC+∠BOD=100°,求各角的度数.(2)若∠BOC比∠AOC的2倍多33°,求各角的度数B5.1.2垂线(一)1、如图,若∠1=60°,那么∠2=、∠3=、∠4=.2、改变上图中∠1的大小,若∠1=90°,请画出这种图形,并求出此时∠2=、∠3=、∠4的大小。
上面所画图形中两条直线的关系是__________,知道两条直线互相________是两条直线相交的特殊情况。
2、用语言概括垂直定义两条直线相交,所成四个角中有一个角是_____时,我们称这两条直线__________其中一条直线是另一条的_____,他们的交点叫做_____。
3、垂直的表示方法:垂直用符号“⊥”来表示,若“直线AB垂直于直线CD,垂足为O”,则记为__________________4、垂直的推理应用:(1)∵∠AOD=90°()∴AB⊥CD()(2)∵AB⊥CD()∴∠AOD=90°()画图实践:1.用三角尺或量角器画已知直线L的垂线.(1)已知直线L,画出直线L的垂线,能画几条LAOD小组内交流,明确直线L的垂线有_________条,即存在,但位置有不______性。
(2)怎样才能确定直线L的垂线位置呢在直线L上取一点A,过点A画L的垂线,能画几条再经过直线L外一点B画直线L的垂线,这样的垂线能画出几条LLB.A从中你能得出什么结论____________________________________________.二、检测:1、如图,直线AB、EF相交于O点,C于O点,DAB,EOD12819BOF,AOFC2、(1)画图:①直线AB、CD②过O点作OE⊥CD于O,并使OE、OB在CD的同侧。
第一章 有理数 课题:1.1 正数和负数正数和负数的表示方法一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的.正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“-”(读作负)号来表示,如上面的-3、—8、-47。
正数、负数的概念1)大于0的数叫做 ,小于0的数叫做 。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【课堂练习】:1.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,—4万元表示________________. 2.已知下列各数:51-,432-,3。
14,+3065,0,—239; 则正数有_____________________;负数有____________________。
3.下列结论中正确的是 …………………………………………( )A .0既是正数,又是负数B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个 B .3个C .4个D .5个【拓展训练】:1.零下15℃,表示为_________,比O℃低4℃的温度是_________.2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为—5米,其中最高处为_______地,最低处为_______地.3.“甲比乙大-3岁”表示的意义是______________________.4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。
我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用__________ 和___________来分别表示它们.例 (1)一个月内,小明体重增加2kg ,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;解:(1)这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________ (2)2001年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%, 法国减少2.4%, 英国减少3.5%, 意大利增长0.2%, 中国增长7。
七年级数学上册辅导资料七年级数学上册辅导资料一、教材解读知识点1有理数加减法统一成加法的意义1.有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-11)-(+7)+(-4)-(-3)=(-11)+(-7)+(-4)+(3)2.在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式:如:(-11)+(-7)+(-4)+(+3)=-11-7-4+33.和式的读法:一是按这个式子表示的意义,读作“-11,-7,-4,+3的和”二是按运算意义读作“负11,减7,减4,加3”.例1把下列各式写成省略加号的和的形式.(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.解:(1)(-26)-(-7)+(-10)-(-3)=-26+(+7)+(-10)+(+3)=-26+7-10+3.(2)(-30)-(-8)+(-12)-(-5)=(-30)+(+8)+(-12)+(+5)=-30+8-12+5.小结:在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.知识点2有理数的加减混合运算的加法和步骤1.运用减法法则将有理数的混合运算中的加减法变化为加法,写成省略加号,括号的代数和.2.利用加法的交换律、结合律简化运算,这里应注意的是:通常把同号(指同正、同负)的结合,整数与整数结合,同分母分数或容易通分的分数结合,互为相反数的结合,几个加数能凑整的结合在一起相加;对于特殊结构的计算题要灵活运用运算律.例2计算:(-47111)-(-5)+(-4)-(+3).8248分析:加减混合运算应注意有条理按步骤进行,下面将具体作法及其根据写在每一步后面的括号里,以便你更好地归纳.解:原式=(-47111)+(+5)+(-4)+(-3)(统一化成加法)82487111+5-4-3(省略加号)82487111=-4-4+5-3(加法交换律)84287111=(-4-4+3)+5(加法结合律)84827111=(-4+4+3)+5(加法法则)848211=-12+5423=-6(加法法则).4=4小结:把同号的数相结合相加,这样可以使计算简便.二、典型题解析(一)基本概念题例1把下列各式写成省略加号的和的形式,并说出它们的两种读法.(1)-2-(+3)-(-5)+(-4);(2)(+8)-(-9)+(-12)+(+5).分析:先把加减法统一成加法;再省略括号和加号.解:(1)-2-(+3)-(-5)+(-4)=-2+(-3)+(+5)+(-4)=-2-3+5-4读作:①负2,负3,正5,负4的和;②负2减3加5减4.(2)(+8)-(-9)+(-12)+(+5)=(+8)+(+9)+(-12)+(+5)=8+9-12+5学习是一个不断深入的过程,他需要我们对每天学习的新知识点及时整理,接下来由为大提供了初一上册数学辅导练习,望大家好好阅读。
第一讲 数的整除一、内容提要:如果整数A 除以整数B (B ≠0)所得的商A /B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.一些数的整除特征 除 数能被整除的数的特征 2或5末位数能被2或5整除 4或25末两位数能被4或25整除 8或125末三位数能被8或125整除 3或9各位上的数字和被3或9整除(如771,54324) 11 奇数位上的数字和与偶数位上的数和相减,其差能被11整除(如143,1859,1287,908270等)7,11,13 从右向左每三位为一段,奇数段的各数和与偶数段的各数和相减,其差能被7或11或13整除.(如1001,22743,17567,21281等)能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除.如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除)能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除)二、例题例1 已知两个三位数328和92x 的和仍是三位数75y 且能被9整除.求x ,y解:x ,y 都是0到9的整数,∵75y 能被9整除,∴y =6.∵328+92x =567,∴x =3.1234能被12整除,求x.例2 己知五位数x解:∵五位数能被12整除,必然同时能被3和4整除,当1+2+3+4+X能被3整除时,x=2,5,8.当末两位4x能被4整除时,x=0,4,8.∴x=8.例3 求能被11整除且各位字都不相同的最小五位数.解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263.三、练习1分解质因数:(写成质因数为底的幂的連乘积)①593②1859③1287④3276⑤10101⑥10296.987能被3整除,那么a=_______________.2若四位数ax能被11整除,那么x=__________.3若五位数123435m能被25整除.4当m=_________时,59610能被7整除.5当n=__________时,n6能被11整除的最小五位数是________,最大五位数是_________.7能被4整除的最大四位数是_____,能被8整除的最小四位数是______.88个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972中,能被下列各数整除的有(填上编号):6________,8__________,9_________,11__________.9从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除但不是5的倍数的共______个.10由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3整除的数共有几个?为什么?1234能被15整除,试求A的值.11己知五位数A12求能被9整除且各位数字都不相同的最小五位数.第二讲倍数约数一、内容提要1.两个整数A和B(B≠0),如果B能整除A(记作B/A),那么A叫做B 的倍数,B叫做A的约数.例如3/15,15是3的倍数,3是15的约数.2.因为0除以非0的任何数都得0,所以0被非0整数整除.0是任何非0整数的倍数,非0整数都是0的约数.如0是7的倍数,7是0的约数.3.整数A(A≠0)的倍数有无数多个,并且以互为相反数成对出现,0,±A,±2A,……都是A的倍数,例如5的倍数有±5,±10,…….4.整数A(A≠0)的约数是有限个的,并且也是以互为相反数成对出现的,其中必包括±1和±A.例如6的约数是±1,±2,±3,±6.5.通常我们在正整数集合里研究公倍数和公约数,几正整数有最小的公倍数和最犬的公约数.6.公约数只有1的两个正整数叫做互质数(例如15与28互质).7.在有余数的除法中,被除数=除数×商数+余数若用字母表示可记作:A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除例如23=3×7+2则23-2能被3整除.二、例题例1写出下列各正整数的正约数,并统计其个数,从中总结出规律加以应用:2,22,23,24,3,32,33,34,2×3,22×3,22×32.解:列表如下:正整数正约数个数计正整数正约数个数计正整数正约数个数计2 1,2 2 31,3 2 2×3 1,2,3,6422 1,2,4 3 32 1,3,32 3 22×3 1,2,3,4,6,12623 1,2,4,84 331,3,32,334 22×321,2,3,4,6,9,12,18,36924 1,2,4,8,165 341,3,32,33,345其规律是:设A=a m b n(a,b是质数,m,n是正整数) 那么合数A的正约数的个是(m+1)(n+1)例如:求360的正约数的个数.解:分解质因数:360=23×32×5,360的正约数的个数是(3+1)×(2+1)×(1+1)=24(个).例2用分解质因数的方法求24,90最大公约数和最小公倍数解:∵24=23×3,90=2×32×5∴最大公约数是2×3,记作(24,90)=6.最小公倍数是23×32×5=360,记作[24,90]=360.例3己知32,44除以正整数N有相同的余数2,求N.解:∵32-2,44-2都能被N整除,∴N是30,42的公约数.∵(30,42)=6,而6的正约数有1,2,3,6.经检验1和2不合题意,∴N=6,3.例4一个数被10余9,被9除余8,被8除余7,求适合条件的最小正整数分析:依题意如果所求的数加上1,则能同时被10,9,8整除,所以所求的数是10,9,8的最小公倍数减去1.解:∵[10,9,8]=360,∴所以所求的数是359.三、练习1.12的正约数有_________,16的所有约数是_________________2.分解质因数300=_________,300的正约数的个数是_________3.用分解质因数的方法求20和250的最大公约数与最小公倍数.4.一个三位数能被7,9,11整除,这个三位数是_________5.能同时被3,5,11整除的最小四位数是_______最大三位数是________ 6.己知14和23各除以正整数A有相同的余数2,则A=________7.写出能被2整除,且有约数5,又是3的倍数的所有两位数.答____8.一个长方形的房间长1.35丈,宽1.05丈要用同一规格的正方形瓷砖铺满,问正方形最大边长可以是几寸?若用整数寸作国边长,有哪几种规格的正方形瓷砖适合?9.一条长阶梯,如果每步跨2阶,那么最后剩1阶,如果每步跨3阶,那么最后剩2阶,如果每步跨4阶,那么最后剩3阶,如果每步跨5阶,那么最后剩4阶,如果每步跨6阶,那么最后剩5阶,只有每步跨7阶,才能正好走完不剩一阶,这阶梯最少有几阶?第三讲 质数 合数一、内容提要1.正整数的一种分类:1⎧⎪⎨⎪⎩质数合数质数的定义:如果一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数(质数也称素数).合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数.2. 根椐质数定义可知① 质数只有1和本身两个正约数,② 质数中只有一个偶数2如果两个质数的和或差是奇数那么其中必有一个是2,如果两个质数的积是偶数那么其中也必有一个是2,3.任何合数都可以分解为几个质数的积.能写成几个质数的积的正整数就是合数.二、例题例1 两个质数的和等于奇数a (a ≥5).求这两个数.解:∵两个质数的和等于奇数, ∴必有一个是2,所求的两个质数是2和a -2.例2 己知两个整数的积等于质数m , 求这两个数.解:∵质数m 只含两个正约数1和m ,又∵(-1)(-m )=m ,∴所求的两个整数是1和m 或者-1和-m .例3 己知三个质数a ,b ,c 它们的积等于30,求适合条件的a ,b ,c 的值.解:分解质因数:30=2×3×5.适合条件的值共有: ⎪⎩⎪⎨⎧===532c b a ⎪⎩⎪⎨⎧===352c b a ⎪⎩⎪⎨⎧===523c b a ⎪⎩⎪⎨⎧===253c b a ⎪⎩⎪⎨⎧===325c b a ⎪⎩⎪⎨⎧===235c b a .应注意上述六组值的书写排列顺序,本题如果改为4个质数a ,b ,c ,d 它们的积等于210,即abcd =2×3×5×7那么适合条件的a ,b ,c ,d 值共有24组,试把它写出来.例4 试写出4个連续正整数,使它们个个都是合数.解:(本题答案不是唯一的)设N 是不大于5的所有质数的积,即N =2×3×5那么N +2,N +3,N +4,N +5就是适合条件的四个合数即32,33,34,35就是所求的一组数.本题可推广到n 个.令N 等于不大于n +1的所有质数的积,那么N +2,N +3,N +4,……N +(n +1)就是所求的合数.三、练习1.小于100的质数共 个,它们是 .2.己知质数P 与奇数Q 的和是11,则P = ,Q = .3.己知两个素数的差是41,那么它们分别是 .4.如果两个自然数的积等于19,那么这两个数是 .如果两个整数的积等于73,那么它们是 .如果两个质数的积等于15,则它们是 .5.两个质数x 和y ,己知xy=91,那么x = ,y = ,或x = ,y= .6. 三个质数a ,b ,c 它们的积等于1990.那么 _______________a b c =⎧⎪=⎨⎪=⎩7.能整除311+513的最小质数是 .8.己知两个质数A 和B 适合等式A +B =99,AB =M .求M 及B A +AB 的值. 9.试写出6个連续正整数,使它们个个都是合数.10.具备什么条件的最简正分数可化为有限小数?11.求适合下列三个条件的最小整数:① 大于1 ②没有小于10的质因数 ③不是质数.12.某质数加上6或减去6都仍是质数,且这三个质数均在30到50之间,那么这个质数是 .13.一个质数加上10或减去14都仍是质数,这个质数是 .第四讲零的特性一、内容提要(一)、零既不是正数也不是负数,是介于正数和负数之间的唯一中性数.零是自然数,是整数,是偶数.1.零是表示具有相反意义的量的基准数.例如:海拔0米的地方表示它与基准的海平面一样高收支平衡可记作结存0元.2.零是判定正、负数的界限.若a>0则a是正数,反过来也成立,若a是正数,则a>0记作a>0 ⇔a是正数读作a>0等价于a是正数b<0 ⇔b是负数c≥0 ⇔c是非负数(即c不是负数,而是正数或0)d≤0 ⇔d是非正数(即d不是正数,而是负数或0)e≠0 ⇔e不是0(即e不是0,而是负数或正数)3.在一切非负数中有一个最小值是0.例如绝对值、平方数都是非负数,它们的最小值都是0.记作:|a|≥0,当a=0时,|a|的值最小,是0,a2≥0,a2有最小值0(当a=0时).4.在一切非正数中有一个最大值是0.例如-|x|≤0,当x=0时,-| x |值最大,是0,(∵x≠0时都是负数),-(x-2)2≤0,当x=2时,-(x-2)2的值最大,是0.(二)、零具有独特的运算性质1.乘方:零的正整数次幂都是零.2.除法:零除以任何不等于零的数都得零;零不能作除数.从而推出,0没有倒数,分数的分母不能是0.3.乘法:零乘以任何数都得零.即a×0=0,反过来如果ab=0,那么a、b中至少有一个是0.要使等式xy=0成立,必须且只需x=0或y=0.4.加法:互为相反数的两个数相加得零.反过来也成立.即a、b互为相反数⇔a+b=0。
初中数学试卷鼎尚图文**整理制作辅导材料一【教学内容】小升初衔接课程——几何初步知识【教学目的】1、掌握直线、射线、线段三者之间的联系和区别;能熟练地辨别垂线与平行线以及常见的几种角;会画已知直线的平行线与垂线。
2、掌握长方形、正方形、平行四边行、三角形、梯形、圆、长方体、正方体、圆柱、圆锥的主要特征;会画长方形、正方形、圆;进一步认识轴对称图形与对称轴。
3、加深对平面图形的周长、面积、体积意义的理解;通过公式的推导,加深对辩证唯物主义事物都是联系的观点,使学生能熟练掌握已学过平面图形的周长、面积、立体图形的表面积体积公式计算,并能应用公式来解答一些实际问题。
【知识讲解】 1、平面图形的认识(1)点——直线——线段——射线用直尺把两点连接起来,就得到一条线段,把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。
(2)直线、射线和线段有什么联系和区别?名 称 图 形特 征 备 注 直 线 没有端点,可以无限延长 不可以度量 射 线 有一个端点,可以向一端无限延长不可以度量 线 段有两个端点,长度是有限的可以度量(3)同一平面里两条直线的位置关系。
平行 —— 平行线锐角(小于90°)两 直角 —— 互相垂直 —— 垂线条 (等于90°)直 相交 —— 角 钝角(大于90°小于180°) 线 平角(等于180°) 周角(等于360°) 重合(4)①角的大小要看两条边叉开的大小,叉开得越大,角越大。
角的大小与角的两边画的长短没有关系。
②两条直线相交成直角时,这两条直线互相垂直。
③在同一个平面内.......,不相交的两条直线叫做平行线,也可以说是互相平行。
锐角三角形 按角分 直角三角形 ①三角形 钝角三角形 (内角和是180°) 不等边三角形 平 按边分 等腰三角形 等边三角形 面 不规则四边形图 平行四边形 长方形 正方形 ②四边形形 (内角和是360°) 等腰梯形 梯形 直角梯形 ③圆、扇形……(6)在同圆、等圆里,所有的直径都相等,所有的半径也相等,直径等于半径的2倍,直径所在的直线是对称轴。
七年级下册数学知识点辅导数学一直是很多学生的难点,七年级下册涉及到的数学知识点也非常多,需要同学们认真复习和掌握。
在这篇文章中,我将详细介绍七年级下册数学知识点的辅导,希望能帮到大家。
1.平面直角坐标系平面直角坐标系是数学中的基础知识之一,也是后续学习中必不可少的。
学生需要掌握平面直角坐标系的构建方法、坐标轴的属性、坐标的表示方法等。
平面直角坐标系在后续的函数、图形等知识点中都有应用。
2.整数的加减法整数的加减法是七年级下册的数学重点,学生需要掌握加减法的计算方法和应用,特别是在解决实际问题时,需要考虑到问题的实际应用意义。
3.分数的加减乘除分数的加减乘除同样也是七年级下册的数学重点,同学们需要掌握分数的基本概念、分数的化简与约分等知识,以及分数的加减乘除的计算方法。
4.小数的加减乘除小数的加减乘除同样是七年级下册数学的重点,在日常生活中也经常应用。
学生需要掌握小数的基本概念、小数的计算方法和应用,例如物价计算、利率计算等。
5.比例与比例关系比例与比例关系也是七年级下册数学的重点,学生需要了解比例的基本概念、比例关系的表示方法和应用、比例的性质等知识。
6.几何图形相关知识七年级下册数学中几何图形相关的知识非常多,在这里简单列举一些,例如:相似三角形、勾股定理、平行四边形、梯形、圆等。
学生们需要掌握这些基本的几何图形知识,为后续学习打下坚实的基础。
以上是七年级下册数学知识点辅导的主要内容,也是同学们需要认真复习和掌握的。
在学习过程中,学生们既要理论有依据,也要有实践应用,例如通过课堂练习、作业练习等方式来提高自己的数学成绩。
希望同学们认真对待每一个知识点,通过不断地学习和练习,取得优异的成绩。
最新人教版 七年级数学上册培优辅导讲义第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米 ⑵收人-50元 ⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量应该包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间15:00,纽约时问是_ ___【例2】在-227,π,0,0.033.3这四个数中有理数的个数( ) A . 1个 B . 2个 C . 3个 D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;(2)按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数,0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0,15,-12,-301,31.25,-18,100,1,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1,-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14,-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007. 【变式题组】01(湖北宜昌)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四个数是17=9+8…观察并猜想第六个数是 .02.(毕节)毕达哥拉斯学派发明了一种“馨折形”填数法,如图则?填____.03.(茂名)有一组数1,2,5,10,17,26…请 观察规律,则第8个数为__ __ .【例4】(2008年河北张家口)若1+m 2的相反数是-3,则m 的相反数是____. 【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫 互为相反数,本题m 2=2,m =4,则m 的相反数-4。
七年级数学辅导资料
学好数理化,走遍天下都不怕,这句话告诉我们一个很直白的道理,学好数学真的很重要,今天,100教育小编来和大家分享一下七年级数学辅导资料。
第一章:有理数
知识要求:
1、有具体情境中,理解有理数及其运算的意义;
2、能用数轴上的点表示有理数,会比较有理数的大小。
3、借助数轴理解相反数与绝对值的意义,会求有理数的相反数与绝对值。
4、经历探索有理数运算法则和运算律的过程;掌握有理数的加、减、乘、除、乘方及简单的混合运算;理解有理数的运算律,并能利用运算律简化运算,及能运用有理数及其运算律解决简单的实际问题。
知识重点:
绝对值的概念和有理数的运算(包括法则、运算律、运算顺序、混合运算)是本章的重点。
知识难点:
绝对值的概念及有关计算,有理数的大小比较,及有理数的运算是本章的难点。
考点:
绝对值的有关概念和计算,有理数的有关概念及混合运算是考试的重点对象。
知识点:
一、有理数的基础知识
1、三个重要的定义:
(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数。
2、有理数的分类:
(1)按定义分类: (2)按性质符号分类:
⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 ⎪⎪⎪⎩
⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0
3、数轴
数轴有三要素:原点、正方向、单位长度。
画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数。
4、相反数
如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数。
0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等。
5、绝对值
(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离。
(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a 表示如下:
⎪⎩
⎪⎨⎧<-=>=)0()0(0)0(a a a a a a
(3)两个负数比较大小,绝对值大的反而小。
二、有理数的运算
1、有理数的加法
(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数。
(2)有理数加法的运算律:
加法的交换律 :a+b=b+a ;加法的结合律:( a+b ) +c = a + (b +c)
用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。
2、有理数的减法
(1)有理数减法法则:减去一个数等于加上这个数的相反数。
(2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数。
(3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算;
3、有理数的乘法
(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
(2)有理数乘法的运算律:交换律:ab=ba ;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac 。
(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a 和b 互为倒数;倒数也可以看成是把分子分母的位置颠倒过来。
4、有理数的除法
有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数。
这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0。
5、有理数的乘法
(1)有理数的乘法的定义:求几个相同因数a 的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“n
a ”其中a 叫做底数,表示相同的因数,n 叫做指数,
表示相同因数的个数,它所表示的意义是n 个a 相乘,不是n 乘以a ,乘方的结果叫做幂。
(2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数
6、有理数的混合运算
(1)进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序。
比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算。
(2)进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力。
7、科学记数法:一般地,一个大于10的数可以表示成 n
a 10⨯的形式,其中a 是只有一位整数位的数,n 是正整数,这种记数法叫做科学记数法。
(a 相当于是把小数点移到第一位即最高位数的后面得到的一个大于等于1小于10的数,n 等于这个原数的整数位减去1,也可以看成是小数点移动的位数。
)
练习:
一、选择题:
1、下列说法正确的是( )
A 、非负有理数即是正有理数
B 、0表示不存在,无实际意义
C 、正整数和负整数统称为整数
D 、整数和分数统称为有理数
2、下列说法正确的是( )
A 、互为相反数的两个数一定不相等
B 、互为倒数的两个数一定不相等
C 、互为相反数的两个数的绝对值相等
D 、互为倒数的两个数的绝对值相等
3、绝对值最小的数是( )
A 、1
B 、0
C 、– 1
D 、不存在
4、计算())2(244-+-所得的结果是( ) A 、0 B 、32 C 、32- D 、16
5、有理数中倒数等于它本身的数一定是( )
A 、1
B 、0
C 、-1
D 、±1
6、(– 3)–(– 4)+7的计算结果是( )
A 、0
B 、8
C 、– 14
D 、– 8
7、(– 2)的相反数的倒数是( )
A 、21
B 、2
1- C 、2 D 、– 2 8、化简:42=a ,则a 是( )
A 、2
B 、– 2
C 、2或– 2
D 、以上都不对
9、若21-++y x ,则y x +=( )
A 、– 1
B 、1
C 、0
D 、3
10、有理数a ,b 如图所示位置,则正确的是( )。