4 部分相干理论
- 格式:ppt
- 大小:1.77 MB
- 文档页数:68
迈克尔逊干涉仪原理图
考察迈克尔逊干涉仪中
光波的干涉来时间相干性。
用u (t )表示P 点发出的解析信号P
3
进入探测器D的两路信号分别写作:其中,探测器上的合成解析信号为:C 补偿板
12()()K u t K u t τ+2/h c
τ
=12()()()
D u t K u t K u t τ=++
Q O
Q O
单色光入射到无限大表面上后,光场中一点Q 的复振幅如何表示?(惠更斯菲涅耳原理)如果是非单色光入射?
1exp[2/]
()()()d j r u Q u P K S j r πλθλ∑
=
∫∫假设表面上的光场为u (P ,t )其解析信号为u (P ,t ),假设该面上的光场在Q 点产生的光场为u(Q,t),对应的解析信号为u (Q ,t )可得,该解析信号可表示为
d
(,/)
d (,)()d 2u P t r c t u Q t K S
rc θπΣ
−=∫∫2
Σ*
2)(,)
u Q t
4.7 范西特-策尼克定理
α
β
x
y
Σ2
Σ1
2
Σ
μ
12
v
源的宽度为多少?
x。
Chapter 4部分相干光理论31, May, 2014光源:凡能发光的物体称为光源。
光源的最基本发光单元是分子、原子。
光源的发光机理原子能级及发光跃迁原子从高能量的激发态,返回到较低能量状态时,就把多余的能量以光波的形式辐射出来。
能级跃迁辐射波列波列长称为相干时间1.相干性的基本概念(1)普通光源:自发辐射不同原子发的光波列同一原子先后发的光波列τc L =L独立独立波的独立传播和线性叠加原理),(),(),(21t p E t p E t p E+=221111221E E I I I I I I=⋅++=++=•光波的频率相同•振动方向相同(存在相互平行的振动分量产生干涉的必要条件和补充条件IminImax设代表一实扰动2 实多色场的复数表示——解析信号),(),(),()()(t r iu t r ut r u i r +=)(),()(∞<<-∞t t r ur 则是的解析信号),(t r u ),()(t r u r υπυυd t i r Ut r u r r )2exp(),(),()()(⎰∞∞-=υπυυd t i Ut ur r )2exp()()()()(⎰∞∞-=υπυυυπυυd t i Ud t i Ut ur r r )2exp()()2exp()()(0)(0)()(⎰⎰∞∞-+=对于实函数有)()(t u r )()()()(t ut u r r *=dtt i t uUr r )2exp()()()()(πυυ-=⎰∞∞-又因为)()()()(υυ-=*r r UU 所以(厄米性)⎥⎦⎤⎢⎣⎡=⎰∞υπυυd t i U t u r r )2exp()(Re 2)(0)()(⎥⎦⎤⎢⎣⎡=⎰∞-υπυυd t i U t u r r )2exp()(Re 2)(0)()(或者又[])(Re )()(t u t u r =υπυυd t i U t u r )2exp()(2)(0)(⎰∞=若设)()()()(υυ-=*r r U U[])(exp )()()(υφυυi A U r =由可知)()(υυ-=A A )()(υφυφ--=3 互相干函数用解析信号和分别表示的光场),(11t P u ),(22t P u 到达P 点后的叠加光场用解析信号u12复相干度的辐角光程差引起的相位因子τγ)(()(21221+I P I ,完全相干叠加)(2)1+I P I 此即杨氏双缝干涉场的表达式,完全非相干叠加4 互相干函数的谱表示首先引入截断函数u ),(11t p u T ()(1p u r T 是U t P u T ),(011⎰∞=2),(111υU P U T =⎩⎨⎧=u t p u r r T (),(1114 相干度的测量由可得可见度)()(1+=P I P I V 则若)(1P I =时间相干度的测量4.1 利用迈克尔逊干涉仪(有限谱宽点光源))()()(21t u t u P u ++=τ[])(Re 2)(2)(111τΓ+=P I P I )2(ch =τ)0()()(1111ΓΓ=ττγ复时间相干度c利用杨氏双缝干涉仪(有限谱宽扩展光源))()()(2211P u P u P u +=)()()0()0(211212P I P I Γ==τγ空间相干度的测量4.2 零光程差时5 准单色光场的干涉准单色条件是指:①光的谱线很窄,有效宽度远远小于平均频率②在光路中,从光源到干涉区域所涉及到的最大光程差远小于光的相干长度或cττ<<τi i ⎰∞≈=Γ=Γ01212exp(exp(~)(τ+tτ+t τ+t t tt6 准单色光的传播和衍射对于中心频率为的准单色光场0υ波动方程:),(2-∇t r u ),()(1112t P u +=Γττ1221Γ∇=左边(121u ∇=右边1111))(2(exp )2exp()(ds d c r t i ds d t i K υπυυπυθ⎥⎦⎤⎢⎣⎡---做傅里叶逆变换可得)(K r θ21),ds ds P υ点的光强为]21221121)()()ds ds r K r K r r λθλθ-),()(21Q Q J Q I =8. 范西特---泽尼克定理由互强度定义),(),(),(2121t P u t P u P P J *=122111),,(),,()(ds P Q h P Q h P I ⎰⎰*υυ()()()1212111122--=y y x x y x I y x y x J ,,,;,δ1012011),,(),,ds P Q h P Q *υυ2=ξ∆的均匀强度的准单色圆形光源,其辐射光强分布为傍轴近似条件,有相对于光源中心的张角(x 为远场条件下部分相干光的普遍的衍射公式。
第4章 部分相干理论在前几章讨论光的干涉、衍射以及传播特性时,常假设光源为一几何点,且具有严格的单色性。
这样的光波扰动具有完全的相干性,干涉图的对比度可以达到1。
除此以外则假设光源为完全不相干的,用完全不相干的光源照明得不到干涉条纹,干涉图的对比度为零。
实际光源有一定的大小,发出的光波扰动也不可能是严格单色的。
同时实际光源发出的光波扰动经过一定距离的传播也不可能是完全不相干的。
用实际光源照明做杨氏干涉实验产生的干涉条纹对比度小于1大于0,一般是可以观察到的。
即使用通常认为完全不相干的太阳光来照明,只要两个小孔靠得很近,也能看到杨氏干涉条纹。
这种介乎完全相干和完全不相干之间的情况,就是部分相干理论研究的内容。
4.1 实多色场的复值表示第1`章中已经说明了线性系统的本征函数是形为)exp(t j -πν2的复指数函数。
输入到线性系统的复指数函数产生的输出也是复指数函数,系统的作用仅体现为对幅值和相位的影响。
因此用复指数函数表达一个实值信号来进行线性系统分析常常是方便的。
复数表示的方法是构造一个复指数函数使得其实部为原来的实值信号,这样一来若仅对复值信号做线性运算,在运算的任何一步,只要取复数信号的实部,就可以确定相应的实值信号。
前几章中已经用复指数函数表达单色光场,现在推广到非单色光场。
在非单色光场情况下,对应于原来的实值信号所构造的复指数函数通常称作解析信号。
设实值的非单色光场用()t u r 表示,其傅里叶谱为()υr u~,定义()t u 为()t u r 的解析信号表示()()()υπυt υd j -exp ut u r 22≡⎰∞~ []()()υ t πυυυd j -exp usgn r2+1=⎰∞∞-~ (4.1) 上式定义说明()t u r的解析信号不含有()t u r的负频分量,其正频分量则是()t u r的两倍,即便()υru~在零点之值为δ函数,复数信号()t u 的实部也可保证与原来的实值信号()t u r相同。
信息光学习题答案第一章 线性系统分析1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dxdx g =(2)()();⎰=dx x f x g (3)()();x f x g = (4)()()()[];2⎰∞∞--=αααd x h f x g(5)()()απξααd j f ⎰∞∞--2exp解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。
1.2 证明)()ex p()(2x comb x j x comb x comb +=⎪⎭⎫ ⎝⎛π证明:左边=∑∑∑∞-∞=∞-∞=∞-∞=-=⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛n n n n x n x n x x comb )2(2)2(2122δδδ∑∑∑∑∑∑∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=--+-=-+-=-+-=+=n nn n n n n n x n x n x jn n x n x x j n x x j x comb x comb )()1()()()exp()()()exp()()exp()()(δδδπδδπδπ右边当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞-∞=-n n x )2(2δ所以当n 为偶数时,左右两边相等。
1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式0)(,)()()]([1≠''-=∑=i ni i i x h x h x x x h δδ式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。
于是)()()(sin x comb n x x n =-=∑∞-∞=πδπππδ1.4 计算图题1.1所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x ≤0时,如图题1.1(a)所示, ⎰+-+=-+-=xx x d x x g 103612131)1)(1()(ααα图题1.1当0 < x ≤1时,如图题1.1(b)所示, ⎰+-=-+-=13612131)1)(1()(xx x d x x g ααα 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤≤--+=其它,010,61213101,612131)(33x x x x x x x g 1.5 计算下列一维卷积。
信息光学习题答案信息光学习题答案第一章线性系统分析简要说明以下系统是否有线性和平移不变性. g?x??df?x?;g?x???f?x?dx; dx?g?x??f?x?;g?x??????f????h?x????d?;2???f???exp??j2????d? 解:线性、平移不变;线性、平移不变;非线性、平移不变;线性、平移不变;线性、非平移不变。
证明comb(x)exp(j?x)?comb(x) ???comb????x? ?x??1?证明:左边=comb???????n?????(x?2n)??2??(x?2n) ?2?n????2?n????2?n??????x??2?右边?comb(x)?comb(x)exp(j?x)?? ?n?????(x?n)??exp(j?x)?(x?n)n?????n???? ??(x?n)??exp(jn?)?(x?n)n???? n?????(x?n)??(?1)n???n?(x?n)?当n为奇数时,右边=0,当n为偶数时,右边=2所以当n为偶数时,左右两边相等。
n?????(x?2n) (x) 证明??(sin?x)?comb证明:根据复合函数形式的δ函数公式?[h(x)]??i?1n?(x?xi)h?(xi ),h?(xi)?0 式中xi是h(x)=0的根,h?(xi)表示h(x)在x?xi处的导数。
于是??(sin?x)??n?????(x?n)???co mb(x) 1 计算图题所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x≤0时,如图题(a)所示,g(x)??1?x0(1??)(1?x??)d??111?x?x3 326 图题当0 2??2?2??2?2?2?x?2设卷积为g(x),当x≤0时,如图题(a)所示,g(x)??0d??x?2 当0 2 图题g(x)??d??2?x x2?x?1?2,x?0 g(x)?2?x?1?,x?0?2即g(x)?2??? ?x??2?(x)?rect(x)?1已知exp(??x2)的傅立叶变换为exp(???2),试求?exp?x2???exp?x2/2?2解:设y??????????? ?x,z??? 即??exp(??y2)??exp(???2) 1????F?,? 得ab?ab?2坐标缩放性质??f(ax,by)???exp?x2???????exp(?y2/??? exp(??z2)??exp(??2?2)2??exp?x/2???2?????exp??y?/2??2 ? ??2??exp(?2??2z2)?2??exp(?2??2?2)计算积分.????sinc?x?dx?? 4??2?x?cos?xdx?? sinc?解:应用广义巴塞伐定理可得? sinc(x)sinc(x)dx?????2222 ?(?)?(?)d??(1?? )d??(1??)d??????103??021???1?1?1?????s inc(x)cos?xdx????(?)?????d????(?)?????d ??2???2?2????????2?1??1??1??1 ??????????? 2??2??2?? 应用卷积定理求f?x??sinc?x?sinc?2x?的傅里叶变换. 3解:??sinc(x)sinc(2x)????sinc(x)????sinc( 2x)??1???rect(?)?rect?? 2?2?当?31????时,如图题(a)所示,2211??3 G(?)??2du??? 2?12当?11???时,如图题(b)所示,2211??2 G(?)??1du?1 2??2当13???时,如图题(c)所示,22113 G(?)??1du??? 2??222G(ξ)的图形如图题(d)所示,图可知G(?)?3???1?????????? 4?3/2?4?1/2? 图题 4 设f?x??exp??x,??0,求??f?x????解:?exp(??x)???????f?x?dx?? ?0?? ?0??exp(?x)exp(?j2??x)dx??exp(??x)exp(? j2??x)dx ?2??2??(2??)2??? exp(??x)dx?2??2?(2??)2???02? 设线性平移不变系统的原点响应为h?x??exp??x?step?x?,试计算系统对阶跃函数step?x?的响应. 解:阶跃函数定义step(x)??线性平移不变系统的原点响应为h?x??exp??x?step?x??exp??x?,所以系统对解阶跃函数step?x?的响应为g(x)?step(x)?h(x)??1,?0,x?0得x?0x?0 ??0exp[?(x??)]d??1?exp(?x), x?0 有两个线性平移不变系统,它们的原点脉冲响应分别为h1?x??sinc?x?和h2?x??sinc?3x?.试计算各自对输入函数f?x??cos2?x的响应g1?x?和g2?x?. 解:已知一平面波的复振幅表达式为U(x,y,z)?Aexp[j(2x?3y?4z)] 试计算其波长λ以及沿x,y,z方向的空间频率。
224第五章 部分相干光理论§5-1 光场的复数表示在第一章中我们介绍过对于一个实值光信号来说常常选择一个复值信号来表示它,方法是使该复值信号的实部等于所要表示的实值信号。
在§4-5节中已经证明了复指数函数exp[()]j f x f y x y 2π+是空间不变线性系统的本征函数。
类似地,复指数函数exp()-j t 2πν是时间不变线性系统的本征函数。
因此,如果对信号只进行若干线性运算,则在运算过程中的任何一步只要取复值信号的实部就可以得到实际所使用信号的表达式。
在光信号的数学处理中引入复数表示方法往往可以使运算得到简化。
一、单色光的复数表示有一频率为ν0的单色光,用一个实值函数来表示它,其形式为)2cos()(0)(t A t u r νπφ-= (5.1-1)式中,A 、φ分别表示该信号的振幅和相位。
相应的复数表达式是u ()exp[()]t A j t =--20πνφ (5.1-2)其复振幅 exp()A j φ=U (5.1-3) 显而易见 u t r ()Re[()]=u (5.1-4) 由(5.1-1)式u t A j j t A j j t r ()()exp()exp()exp()exp()=-+-222200φπνφπν (5.1-5) 实值函数u t r ()()的傅里叶频谱为F u t A j A j r {()}exp()()exp()()()=-++-2200φδννφδνν (5.1-6) 而复值函数u ()t 的傅里叶频谱为F t A j {()}exp()()u =-φδνν0 (5.1-7) u t r ()()和u t ()的傅里叶频谱分别示于图5-1(a)和(b)中。
比较u t r ()()和u ()t 的傅里叶频谱,发现为了得到一个单色光信号的复数表达式的傅里叶频谱,可以使用这样的方法:去掉u t r ()()频谱中的负频分量,而将其正频分量保留并加倍,结果所构造的函数就是u ()t 的频谱。