第6章 部分相干理论
- 格式:ppt
- 大小:999.50 KB
- 文档页数:30
迈克尔逊干涉仪原理图
考察迈克尔逊干涉仪中
光波的干涉来时间相干性。
用u (t )表示P 点发出的解析信号P
3
进入探测器D的两路信号分别写作:其中,探测器上的合成解析信号为:C 补偿板
12()()K u t K u t τ+2/h c
τ
=12()()()
D u t K u t K u t τ=++
Q O
Q O
单色光入射到无限大表面上后,光场中一点Q 的复振幅如何表示?(惠更斯菲涅耳原理)如果是非单色光入射?
1exp[2/]
()()()d j r u Q u P K S j r πλθλ∑
=
∫∫假设表面上的光场为u (P ,t )其解析信号为u (P ,t ),假设该面上的光场在Q 点产生的光场为u(Q,t),对应的解析信号为u (Q ,t )可得,该解析信号可表示为
d
(,/)
d (,)()d 2u P t r c t u Q t K S
rc θπΣ
−=∫∫2
Σ*
2)(,)
u Q t
4.7 范西特-策尼克定理
α
β
x
y
Σ2
Σ1
2
Σ
μ
12
v
源的宽度为多少?
x。
Chapter 4部分相干光理论31, May, 2014光源:凡能发光的物体称为光源。
光源的最基本发光单元是分子、原子。
光源的发光机理原子能级及发光跃迁原子从高能量的激发态,返回到较低能量状态时,就把多余的能量以光波的形式辐射出来。
能级跃迁辐射波列波列长称为相干时间1.相干性的基本概念(1)普通光源:自发辐射不同原子发的光波列同一原子先后发的光波列τc L =L独立独立波的独立传播和线性叠加原理),(),(),(21t p E t p E t p E+=221111221E E I I I I I I=⋅++=++=•光波的频率相同•振动方向相同(存在相互平行的振动分量产生干涉的必要条件和补充条件IminImax设代表一实扰动2 实多色场的复数表示——解析信号),(),(),()()(t r iu t r ut r u i r +=)(),()(∞<<-∞t t r ur 则是的解析信号),(t r u ),()(t r u r υπυυd t i r Ut r u r r )2exp(),(),()()(⎰∞∞-=υπυυd t i Ut ur r )2exp()()()()(⎰∞∞-=υπυυυπυυd t i Ud t i Ut ur r r )2exp()()2exp()()(0)(0)()(⎰⎰∞∞-+=对于实函数有)()(t u r )()()()(t ut u r r *=dtt i t uUr r )2exp()()()()(πυυ-=⎰∞∞-又因为)()()()(υυ-=*r r UU 所以(厄米性)⎥⎦⎤⎢⎣⎡=⎰∞υπυυd t i U t u r r )2exp()(Re 2)(0)()(⎥⎦⎤⎢⎣⎡=⎰∞-υπυυd t i U t u r r )2exp()(Re 2)(0)()(或者又[])(Re )()(t u t u r =υπυυd t i U t u r )2exp()(2)(0)(⎰∞=若设)()()()(υυ-=*r r U U[])(exp )()()(υφυυi A U r =由可知)()(υυ-=A A )()(υφυφ--=3 互相干函数用解析信号和分别表示的光场),(11t P u ),(22t P u 到达P 点后的叠加光场用解析信号u12复相干度的辐角光程差引起的相位因子τγ)(()(21221+I P I ,完全相干叠加)(2)1+I P I 此即杨氏双缝干涉场的表达式,完全非相干叠加4 互相干函数的谱表示首先引入截断函数u ),(11t p u T ()(1p u r T 是U t P u T ),(011⎰∞=2),(111υU P U T =⎩⎨⎧=u t p u r r T (),(1114 相干度的测量由可得可见度)()(1+=P I P I V 则若)(1P I =时间相干度的测量4.1 利用迈克尔逊干涉仪(有限谱宽点光源))()()(21t u t u P u ++=τ[])(Re 2)(2)(111τΓ+=P I P I )2(ch =τ)0()()(1111ΓΓ=ττγ复时间相干度c利用杨氏双缝干涉仪(有限谱宽扩展光源))()()(2211P u P u P u +=)()()0()0(211212P I P I Γ==τγ空间相干度的测量4.2 零光程差时5 准单色光场的干涉准单色条件是指:①光的谱线很窄,有效宽度远远小于平均频率②在光路中,从光源到干涉区域所涉及到的最大光程差远小于光的相干长度或cττ<<τi i ⎰∞≈=Γ=Γ01212exp(exp(~)(τ+tτ+t τ+t t tt6 准单色光的传播和衍射对于中心频率为的准单色光场0υ波动方程:),(2-∇t r u ),()(1112t P u +=Γττ1221Γ∇=左边(121u ∇=右边1111))(2(exp )2exp()(ds d c r t i ds d t i K υπυυπυθ⎥⎦⎤⎢⎣⎡---做傅里叶逆变换可得)(K r θ21),ds ds P υ点的光强为]21221121)()()ds ds r K r K r r λθλθ-),()(21Q Q J Q I =8. 范西特---泽尼克定理由互强度定义),(),(),(2121t P u t P u P P J *=122111),,(),,()(ds P Q h P Q h P I ⎰⎰*υυ()()()1212111122--=y y x x y x I y x y x J ,,,;,δ1012011),,(),,ds P Q h P Q *υυ2=ξ∆的均匀强度的准单色圆形光源,其辐射光强分布为傍轴近似条件,有相对于光源中心的张角(x 为远场条件下部分相干光的普遍的衍射公式。
第4章 部分相干理论在前几章讨论光的干涉、衍射以及传播特性时,常假设光源为一几何点,且具有严格的单色性。
这样的光波扰动具有完全的相干性,干涉图的对比度可以达到1。
除此以外则假设光源为完全不相干的,用完全不相干的光源照明得不到干涉条纹,干涉图的对比度为零。
实际光源有一定的大小,发出的光波扰动也不可能是严格单色的。
同时实际光源发出的光波扰动经过一定距离的传播也不可能是完全不相干的。
用实际光源照明做杨氏干涉实验产生的干涉条纹对比度小于1大于0,一般是可以观察到的。
即使用通常认为完全不相干的太阳光来照明,只要两个小孔靠得很近,也能看到杨氏干涉条纹。
这种介乎完全相干和完全不相干之间的情况,就是部分相干理论研究的内容。
4.1 实多色场的复值表示第1`章中已经说明了线性系统的本征函数是形为)exp(t j -πν2的复指数函数。
输入到线性系统的复指数函数产生的输出也是复指数函数,系统的作用仅体现为对幅值和相位的影响。
因此用复指数函数表达一个实值信号来进行线性系统分析常常是方便的。
复数表示的方法是构造一个复指数函数使得其实部为原来的实值信号,这样一来若仅对复值信号做线性运算,在运算的任何一步,只要取复数信号的实部,就可以确定相应的实值信号。
前几章中已经用复指数函数表达单色光场,现在推广到非单色光场。
在非单色光场情况下,对应于原来的实值信号所构造的复指数函数通常称作解析信号。
设实值的非单色光场用()t u r 表示,其傅里叶谱为()υr u~,定义()t u 为()t u r 的解析信号表示()()()υπυt υd j -exp ut u r 22≡⎰∞~ []()()υ t πυυυd j -exp usgn r2+1=⎰∞∞-~ (4.1) 上式定义说明()t u r的解析信号不含有()t u r的负频分量,其正频分量则是()t u r的两倍,即便()υru~在零点之值为δ函数,复数信号()t u 的实部也可保证与原来的实值信号()t u r相同。
信息光学习题答案信息光学习题答案第一章线性系统分析简要说明以下系统是否有线性和平移不变性. g?x??df?x?;g?x???f?x?dx; dx?g?x??f?x?;g?x??????f????h?x????d?;2???f???exp??j2????d? 解:线性、平移不变;线性、平移不变;非线性、平移不变;线性、平移不变;线性、非平移不变。
证明comb(x)exp(j?x)?comb(x) ???comb????x? ?x??1?证明:左边=comb???????n?????(x?2n)??2??(x?2n) ?2?n????2?n????2?n??????x??2?右边?comb(x)?comb(x)exp(j?x)?? ?n?????(x?n)??exp(j?x)?(x?n)n?????n???? ??(x?n)??exp(jn?)?(x?n)n???? n?????(x?n)??(?1)n???n?(x?n)?当n为奇数时,右边=0,当n为偶数时,右边=2所以当n为偶数时,左右两边相等。
n?????(x?2n) (x) 证明??(sin?x)?comb证明:根据复合函数形式的δ函数公式?[h(x)]??i?1n?(x?xi)h?(xi ),h?(xi)?0 式中xi是h(x)=0的根,h?(xi)表示h(x)在x?xi处的导数。
于是??(sin?x)??n?????(x?n)???co mb(x) 1 计算图题所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x≤0时,如图题(a)所示,g(x)??1?x0(1??)(1?x??)d??111?x?x3 326 图题当0 2??2?2??2?2?2?x?2设卷积为g(x),当x≤0时,如图题(a)所示,g(x)??0d??x?2 当0 2 图题g(x)??d??2?x x2?x?1?2,x?0 g(x)?2?x?1?,x?0?2即g(x)?2??? ?x??2?(x)?rect(x)?1已知exp(??x2)的傅立叶变换为exp(???2),试求?exp?x2???exp?x2/2?2解:设y??????????? ?x,z??? 即??exp(??y2)??exp(???2) 1????F?,? 得ab?ab?2坐标缩放性质??f(ax,by)???exp?x2???????exp(?y2/??? exp(??z2)??exp(??2?2)2??exp?x/2???2?????exp??y?/2??2 ? ??2??exp(?2??2z2)?2??exp(?2??2?2)计算积分.????sinc?x?dx?? 4??2?x?cos?xdx?? sinc?解:应用广义巴塞伐定理可得? sinc(x)sinc(x)dx?????2222 ?(?)?(?)d??(1?? )d??(1??)d??????103??021???1?1?1?????s inc(x)cos?xdx????(?)?????d????(?)?????d ??2???2?2????????2?1??1??1??1 ??????????? 2??2??2?? 应用卷积定理求f?x??sinc?x?sinc?2x?的傅里叶变换. 3解:??sinc(x)sinc(2x)????sinc(x)????sinc( 2x)??1???rect(?)?rect?? 2?2?当?31????时,如图题(a)所示,2211??3 G(?)??2du??? 2?12当?11???时,如图题(b)所示,2211??2 G(?)??1du?1 2??2当13???时,如图题(c)所示,22113 G(?)??1du??? 2??222G(ξ)的图形如图题(d)所示,图可知G(?)?3???1?????????? 4?3/2?4?1/2? 图题 4 设f?x??exp??x,??0,求??f?x????解:?exp(??x)???????f?x?dx?? ?0?? ?0??exp(?x)exp(?j2??x)dx??exp(??x)exp(? j2??x)dx ?2??2??(2??)2??? exp(??x)dx?2??2?(2??)2???02? 设线性平移不变系统的原点响应为h?x??exp??x?step?x?,试计算系统对阶跃函数step?x?的响应. 解:阶跃函数定义step(x)??线性平移不变系统的原点响应为h?x??exp??x?step?x??exp??x?,所以系统对解阶跃函数step?x?的响应为g(x)?step(x)?h(x)??1,?0,x?0得x?0x?0 ??0exp[?(x??)]d??1?exp(?x), x?0 有两个线性平移不变系统,它们的原点脉冲响应分别为h1?x??sinc?x?和h2?x??sinc?3x?.试计算各自对输入函数f?x??cos2?x的响应g1?x?和g2?x?. 解:已知一平面波的复振幅表达式为U(x,y,z)?Aexp[j(2x?3y?4z)] 试计算其波长λ以及沿x,y,z方向的空间频率。
迈克尔逊干涉仪原理图
考察迈克尔逊干涉仪中
光波的干涉来时间相干性。
用u (t )表示P 点发出的解析信号P
3
进入探测器D的两路信号分别写作:其中,探测器上的合成解析信号为:C 补偿板
12()()K u t K u t τ+2/h c
τ
=12()()()
D u t K u t K u t τ=++
Q O
Q O
单色光入射到无限大表面上后,光场中一点Q 的复振幅如何表示?(惠更斯菲涅耳原理)如果是非单色光入射?
1exp[2/]
()()()d j r u Q u P K S j r πλθλ∑
=
∫∫假设表面上的光场为u (P ,t )其解析信号为u (P ,t ),假设该面上的光场在Q 点产生的光场为u(Q,t),对应的解析信号为u (Q ,t )可得,该解析信号可表示为
d
(,/)
d (,)()d 2u P t r c t u Q t K S
rc θπΣ
−=∫∫2
Σ*
2)(,)
u Q t
4.7 范西特-策尼克定理
α
β
x
y
Σ2
Σ1
2
Σ
μ
12
v
源的宽度为多少?
x。
第五章 部分相干光理论5.1 证明解析信号的实部u 和虚部u 之间互为希尔伯特变换,即它们之间有下面的关系()t u t r ()()t i ()()⎰∞∞--=ξξξπd )(P.V.1)()()(t u t u r i , ⎰∞∞---=ξξξπd )(.P.V 1)()()(tu t u i r证明:(1)由(5-10)式,解析函数的实部()()0()2Re ()exp(2)d r r u t j t νπνν∞⎡=-⎢⎣⎦⎰U ⎤⎥t (5.1-11)而,比较以上两式,可见有关系式)](Re[)()(t t u r u = (5.1-13)⎰∞-=0)(d )2exp()(2)(νπννt j t r U u 上式可表示为 (5.1-18)⎰∞∞--+=νπνννd )2exp()()sgn 1()()(t j t r U u 又因为 ()()exp(2)d t j νπνν∞-∞=-⎰u U所以有 ()()(1sgn )()r νν=+U νU )r (5.1-19)对上式两边取傅里叶逆变换11()1()()11((){()}{()}{(sgn )()}(){sgn )}{()}r r r t u t ννννν-----==+=+*u U U U U F F F F F ν上式中 1{sgn }jtνπ-=-F 再利用卷积定义⎰⎰∞∞---=*=*ηξηξηξd d ),(),(y x f g f g g f 令 t j f π-= , )()(t j t f -=-ξπξ , , )()(t u g r =)()()(ξξr u g =所以 ⎰∞∞--+=ξξξπd )(..)()()()(t u V P jt ut r r u (5.1-22)可见 ⎰∞∞--=ξξξπd )(..1)()()(t u V P t ur i(2)参考教材中(5.1-10)式的推导过程,对于解析函数的虚部有下式成立(P5.1-1)⎥⎥⎦⎤⎢⎢⎣⎡-=⎰∞)()(d )2exp()(Re 2)(νπννt j t ui i U)](Re[)()(t j t u i u -= (P5.1-2)比较(P5.1-1)和(P5.1-2)式,得到⎰∞-=-0)(d )2exp()(2)(νπννt j t j i U u所以⎰∞-=0)(d )2exp()(2)(νπννt j j t i U u )()sgn 1()()(νννi j U U +=对上式两边取傅里叶逆变换得)}(){sgn )}({)}({)()(1)(11ννννi i j j t U U U u ---+==F F F)()}({}{sgn )()(11t ju j i i +*=--ννU F F )(d )(..1)()(t ju tu V P i i +--=⎰∞∞-ξξξπ所以 ⎰∞∞---=ξξξπd )(..1)()()(t u V P t ui r5.2 考察用宽带光作杨氏干涉实验(1) 证明观察屏上的入射光场可表示为⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=c r t P t c r t P t t Q 222111,d d ,d d ),(u K u K u 其中 iii i i i i i cr A s cr πθπθ2)(d 2)(k k K ≅=⎰⎰个针孔第 2,1=i 而为第个针孔的面积。
第六章光学知识点归纳总结第六章光学知识点归纳总结光学作为自然科学中的一个重要分支,研究光的性质和行为规律,对于我们认识自然世界有着重要的意义。
在学习光学的过程中,我们掌握了一系列基本概念和理论,了解了光的传播规律和光的与物质的相互作用。
在第六章中,我们进一步深入了解了光的干涉和衍射现象的原理和应用,学习了微观世界的光学现象,在本文中,我将对本章的知识点进行归纳总结。
本章主要包括干涉的原理和应用、衍射的原理和应用以及微观世界中的光学现象。
首先我们来介绍干涉现象,干涉是指两束或者多束光波相互干涉所形成的暂时增强或者减弱亮度的现象。
光的干涉分为相干干涉和不相干干涉,相干干涉要求两束光波的相位差为常数,而不相干干涉则无此要求。
在干涉现象的应用方面,最常见的是利用干涉仪进行测量和干涉滤光片的应用。
接下来是衍射现象,光的衍射是指光波在通过一个孔或障碍物后,沿射线方向的传播所产生的一系列干涉效应。
衍射现象的应用广泛,比如在显微镜、望远镜、天文望远镜等光学仪器中,衍射光学起着重要的作用。
在应用方面,我们还可以利用衍射现象进行光栅光谱仪的测量和衍射振镜的制作等。
最后是微观世界中的光学现象,这一部分主要介绍了电子和物质的相互作用以及物质的光学性质。
其中包括电子衍射、物质中的费马原理和光栅衍射等。
微观世界中的光学现象揭示了光与微观粒子的相互关系,对于解释物质的性质和结构具有重要的意义。
对于电子衍射的研究,为原子和分子的结构研究提供了有效的手段。
费马原理则提出了光传播的最速路径原理,解释了光线是如何在媒介中传播的。
光栅衍射则是利用光栅的特殊结构,通过衍射现象来解析光的频谱,广泛应用于光谱仪器等领域。
综上所述,第六章的光学知识点涵盖了干涉、衍射和微观世界中的光学现象。
通过学习这些知识,我们能够更深入地理解光的性质和行为规律,为解决实际问题和应用光学提供理论基础。
随着光学技术的不断发展,光学的应用范围也在不断扩大,对我们的生活和科学研究都产生了深远的影响。
《信息光学》课程标准一、课程概述(一)课程性质信息光学是光电信息科学与工程专业的专业学习领域必修课程,是校企合作开发的基于工作过程专业(理论)课的课程。
信息光学是近40多年迅速发展起来的一门新兴学科,它是在全息术、光学传递函数和激光的基础上,从传统的、经典的波动光学中脱颖而出的。
与其他形态的信号处理相比,光学信息处理具有高度并行、大容量的特点。
信息光学已渗透到科学技术的诸多领域,成为信息科学的重要分支,得到越来越广泛的应用。
(二)课程定位该课程在专业课程体系中属于光电信息科学的理论基础课程,旨在培养未来从事光信息处理和光全息技术人员的专业能力。
该课程使学生能够结合光学信息处理和光全息的相关知识,开拓理论用于实践的方法和创新思路,提高自身解决实际问题的能力。
前导课程:高等数学、普通物理学、物理光学和应用光学后续课程:光纤通信(三)课程设计思路旨在培养学生扎实的光信息理论知识,能够为将来成为高素质应用型光信息处理和光全息技术人才打下基础。
主要包括知识技能和职业应用技能:通过系统学习信息光学的傅立叶变换、基尔霍夫标量衍射理论,使学生掌握一定的光学成像和光学全息特性,空间滤波及光学处理的能力,并能具体运用到实际光学工程问题。
二、课程目标(一)课程工作任务目标本课程是光电信息科学与工程专业的主要专业课程之一,设置本课程的目的是让学生掌握信息光学的基本概念、基础理论及光信息处理的基本方法,了解光信息处理和光全息的发展近况和运用前景。
(二)职业能力目标突出基本职业能力和专业能力培养要求,使学生熟悉光信息处理和光全息的基本技术知识,能够针对具体的光信息工程问题进行分析,并设计和实施解决方案,为今后从事光信息方面的生产,科研和教学工作打下基础。
三、课程教学内容及学时安排(一)课程教学内容(二)学时安排表“学时分配”中,“其他”主要指看录像、现场参观、课堂讨论、习题等教学环节。
四、课程实施针对信息光学的课程特点和教学内容,以讲授法为引导与辅助,以角色扮演法、案例教学法、情境教学法和师生互动为主要内容,形成以学生为主、以教师为辅的教学模式。
第6章电磁场的相干性电磁场的相干性是电磁场的重要性质之一。
本节介绍电磁场相干性的经典理论和量子理论。
将引入光子反聚束这一重要的物理概念。
.1 经典一阶相干函数一阶相干性反映的是在两个时空点光场幅度之间的关联,即,称为一阶关联函数,其中表示两个时空点。
通常引入一阶相干函数:其中为在时空点光场的强度。
下面具体考虑杨氏双缝干涉实验,如图6-1所示。
在满足某些条件时,在接收屏上会观测到干涉条纹。
设光源的频宽为,两条光程之差为,则当时产生干涉条纹。
这里称为光源的相干长度。
称为相干时间。
图6-1 杨氏双缝干涉实验时刻在屏上处的电场来自早些时刻和在两个狭缝处的电场的叠加,即(6-1)其中和是两个依赖于和的几何因子。
为了简单起见,这里我们假设两个场的偏振方向相同。
一般来说,探测器测到的只是平均光强(6-2)这里的平均是对时间平均,即(6-3)根据各态历经假设,时间平均等价于系综平均。
由(6-1)式和(6-2)式可得(6-4)前两项分别表示来自两个狭缝的光强,而第三项引起干涉效应。
在上式中引入了缩写和。
定义经典一阶相干函数(6-5)其中称为经典一阶关联函数。
注意到及,因此有,(6-6)利用和,(6-4)式可以写成(6-7)设,以及(6-8)则有(6-9)其中表示由光程差引起的位相差。
当时将产生干涉。
根据的大小可对相干性进行分类:(一阶完全相干)(6-10)(一阶部分相干)(6-11)(一阶完全不相干)(6-12)定义干涉条纹的对比度(可见度:visibility):(6-13)其中(6-14)于是有(6-15)可见,对完全相干光,对比度取极大值,而对完全不相干光,。
下面考虑经典一阶相干性的几个例子。
首先考虑在空间某固定点光场的时间相干性。
假设有一束单色平面光沿z方向传播,时刻和时刻z处的电场分别为(6-16)(6-17)可求得(6-18)(6-19)因此单色平面光具有完全时间相干性。
然而,绝对的单色光是不存在的。