晶形的转变及控制方法
- 格式:pdf
- 大小:359.58 KB
- 文档页数:15
晶形的转变及控制方法晶体是指具有规则外形和内部结构的固体物质,晶体的形态表现出多样性,有三角形、立方体、六方、正八面体等等。
晶体的形态受到多种因素的影响,包括成分、温度、溶液浓度、晶体生长速率等等。
控制晶体形态的方法有很多种,下面将介绍几种常见的晶体形态控制方法。
一、溶液方法溶液方法是通过变化溶液的成分、浓度、pH值等来控制晶体的形态。
在溶液中添加一定的添加剂可以改变溶液中晶体生长的速率和方向,从而影响晶体的形态。
例如,在金属晶体的生长过程中,通过调节金属盐的浓度、酸度和温度等条件,可以控制晶体的形貌。
二、模板方法模板方法是利用一个具有特定形状和大小的模板来引导晶体的生长,使晶体的形态与模板一致。
一种常见的模板方法是利用聚合物微球作为模板,通过在微球表面沉积晶体材料,再去除微球模板,得到具有相同形状的晶体。
三、温度和压力方法温度和压力方法是通过调节晶体生长的温度和压力来控制晶体的形态。
当温度和压力变化时,晶体的生长速率和方向也会发生变化,从而导致晶体形态的改变。
例如,在化学气相沉积中,通过调节反应区的温度梯度,可以控制金属氧化物晶体的生长方向,从而改变晶体的形状。
四、表面活性剂方法表面活性剂方法是利用表面活性剂分子在溶液中的吸附作用来控制晶体的形态。
表面活性剂分子吸附在晶体的特定面上,在该面的生长速率较低,导致晶体在该方向上长得较慢,从而形成具有特定形状的晶体。
五、电化学方法电化学方法是利用电场和电流来控制晶体的形态。
通过在晶体生长过程中施加外加电压或电流,可以改变晶体的生长速率和方向,从而控制晶体的形态。
一种常见的电化学方法是电沉积,通过控制电沉积过程中的电流密度和沉积时间等参数,可以得到具有特定形状和尺寸的晶体。
总之,控制晶体的形态有多种方法,可以通过改变溶液条件、利用模板、调节温度和压力、使用表面活性剂和应用电化学方法等来实现。
对于不同的晶体材料和应用需求,选择适合的晶体形态控制方法非常重要,可以实现对晶体形态的精确控制,从而获得具有特定形状和性能的晶体材料。
石英晶形转变存在的特点及其实际生产中应用石英晶形转变存在的特点及其实际生产中应用1.引言石英晶形转变是一个在矿物学与地球化学中非常重要的现象,它不仅影响着石英晶体的物理性质和化学性质,也对石英在实际生产中的应用产生深远影响。
本文将深入探讨石英晶形转变的特点及其在实际生产中的应用。
2.石英晶形转变的特点2.1 热力学性质石英在高温高压条件下会发生晶形转变,其原因主要是石英晶体结构中的硅原子和氧原子重新排列。
石英以α石英和β石英两种晶形存在,α石英具有六方晶系,而β石英则具有三方晶系。
这种晶形转变会导致石英晶体的物理性质和化学性质发生明显变化。
2.2 动力学特性除了受到温度和压力的影响外,石英晶形转变还受到外界应力的影响,这种应力可以促进或抑制石英的晶形转变。
因此在实际生产中,通过控制温度、压力和应力,可以实现对石英晶体晶形转变的精确控制,从而获得具有特定性质的石英晶体。
3.石英晶形转变在实际生产中的应用3.1 电子产品制造由于石英具有优异的压电性能和光学性能,因此被广泛应用于电子产品制造。
石英晶形转变可以改变石英晶体的物理特性,从而使其更加适用于不同的电子产品,如压电陶瓷、石英振荡器等。
3.2 导热材料制备通过控制石英晶形转变,可以获得具有良好导热性能的石英晶体,这对于制备高性能的导热材料非常重要。
在微电子、半导体等领域,这种高导热性能的石英晶体被广泛应用于散热器、散热片等导热材料的制备中。
3.3 岩石学研究石英晶形转变在岩石学研究中也具有重要意义,它可以帮助地质学家了解地球内部的温度、压力和构造变化,从而深入理解地球的演化历程和地质现象。
4.个人观点与理解通过对石英晶形转变的深入研究,我对石英晶体的应用和性质有了更深入的理解。
在实际生产中,通过精确控制石英晶形转变,可以获得具有特定性能的石英晶体,从而拓展了石英在电子产品制造、导热材料制备和岩石学研究中的应用领域。
5.总结与回顾本文深入探讨了石英晶形转变的特点及其在实际生产中的应用。
第二章晶型转变及其控制方法系统中存在的相,可以是稳定、介稳或不稳定的。
其吉布斯自由能如图2–1所示。
当系统的温度、压力或对系统的平衡发生影响的电场、磁场等条件发生改变时,这种介稳或不稳定状态下的自由能会发生改变,相的结构(原子或电子分布)也相应地发生变化。
此外,在一定的条件下,一种稳定相也可以转变成另一种稳定相,此即下文所说的可逆晶型转变。
对某一特定系统而言,相的自由能改变所伴随的结构改变过程,叫做相转变或相变。
图2–1 稳定态、介稳态和不稳定态化学组成相同的固体,在不同的热力学条件下,常会形成晶体结构不同的同质异构体(polymorph)[1, 2]或称为变体(modification),这种现象叫同质多晶或同质多相(polymorphism)[2]现象。
当温度和压力条件变化时,变体之间会发生相互转变,此称为晶型转变。
显然,晶型转变是相变的一种,也是最常见的一种固–固相变形式。
由于晶型转变,晶体材料的力学、电学、磁学等性能会发生巨大的变化。
例如,碳由石墨结构转变为金刚石结构后硬度超强,BaTiO3由立方结构转变为四方结构后具有铁电性。
可见,通过相变改变结构可达到控制固体材料性质的目的。
相律的表达式是自由度f= C–Φ+ 2,C为独立组元(组分)数,Φ为相数,数字2代表温度和压力2个变量。
对于凝聚系统来说,压力的影响可以忽略不计,于是温度成了惟一的外界条件。
在这种情况下,相律可写成f * = C–Φ+ 1,f * 被称为条件自由度。
对于单元(单组分)系统来说,C = 1,f * = 2–Φ。
由于所讨论的系统至少有1个相,所以单元凝聚系统条件自由度数最多等于1,系统的状态仅仅由温度1个独立变量所决定。
于是,在许多情况下,单元系统相变往往用流程图来表示,例如本章§2.3节对BaTiO3晶型转变所采用的表示法。
在另一些场合下,考虑压力变量的影响对讨论问题是有利的。
由于凝聚系统的平衡蒸气压实际上仍比大气压低得多,所以在讨论单元凝聚系统相图时,往往把压力坐标(纵标)加以夸大,画出来的相图中的曲线仅仅表示温度变化时系统中压力变化的大致趋势,这种情况如在本章§2.4~§2.6中所描述的SiO2、ZrO2和Ca2SiO4(C2S)单元系统带有晶型转变的相图。
石英的晶型转变引言石英是一种常见的硅酸盐矿物,具有多种晶型。
晶型转变是指石英晶体在特定条件下由一种晶型转变为另一种晶型的过程。
本文将探讨石英晶型转变的机制、条件和应用。
石英的晶型石英的基本结构石英的化学式为SiO2,其晶体结构为正交晶系。
每个石英晶体分子构成了一个六角形晶胞,其中SiO4四面体是其基本结构单元。
α石英α石英是石英的稳定晶型,在自然界中最常见。
其晶体结构呈现紧密堆积的四面体结构,具有六方晶系特征。
α石英是一种透明无色或淡黄、浅紫色的矿物。
β石英β石英是石英的高温相,结构与α石英有所不同。
它具有三方晶系的特征,晶体结构较松散。
β石英呈现出一种不透明的白色或浅棕色,常见于高温高压的地质环境中。
石英晶型转变的机制石英晶型转变通常发生在高温或高压条件下。
下面探讨两种常见的石英晶型转变机制:α-β石英转变α-β石英转变是指α石英在高温下转变为β石英的过程。
该转变是可逆的,即β-α石英转变也可能发生。
以下是α-β石英转变的机制:1.压力释放机制:高温下,石英晶体内部压力减小,导致原子结构重新排列,形成β石英的晶型。
2.扭曲机制:高温下,由于原子热振动增强,石英晶体扭曲变形,产生β石英的晶型。
β-α石英转变β-α石英转变是指β石英在低温下转变为α石英的过程。
该转变在大气压力下发生。
以下是β-α石英转变的机制:1.形态分解机制:在低温下,β石英晶体内部压力增大,形成石英晶体的特殊形态,同时原子结构重新排列,形成α石英的晶型。
2.析晶机制:低温下,β石英晶体产生裂缝和断裂,最终析晶为α石英的晶型。
石英晶型转变的条件石英晶型转变的条件包括温度、压力和时间。
温度石英晶型转变的温度范围与晶型有关。
α-β石英转变温度约为573°C,而β-α石英转变温度约为870°C。
压力石英晶型转变的压力范围也与晶型有关。
α-β石英转变通常在高压条件下发生,而β-α石英转变在大气压力下发生。
时间石英晶型转变所需的时间取决于温度和压力。
§2.3 BaTiO 3的晶型转变和烧结温度的控制最早的压电陶瓷是BaTiO 3,后来以它为基础衍生出一系列重要的压电材料。
BaTiO 3在不同温度下的晶型转变如式(2–4)所示[7~9]三方单斜278K 四方393K 立方 1 733K六方。
(2–4) §2.4 SiO 2的晶型转变和应用晶态SiO 2有多种变体,它们可分为3个系列,即石英、鳞石英和方石英系列。
在同系列中从高温到低温的不同变体通常分别用α、β和γ表示。
它们之间的转化关系如图2–6所示。
习惯上,把该图中的横向转变,即石英、鳞石英与方石英间的转变,称为一级变体间的转变[5];把图中的纵向转变,即同系列的α、β和γ变体间的转变,称为二级变体间的转变[5],也叫做高低温型转变。
进一步分析可知,SiO 2一级变体间的转变属重构式转变,而它的二级变体间的转变是位移式转变中的一种。
图2–6 SiO2的晶型转变(本书作者对此图作了编辑)[2] SiO2系统相图如图2–7所示。
图2–7 SiO 2系统相图(Fenner, 1913;本书作者修订了此图)[5]从SiO 2相图可看出,当温度达到846 K 时,β–石英应转变为α–石英。
若将α–石英继续加热,到1 143 K 时应转变为α–鳞石英,但是,这一转变速度较慢。
当加热速度较快时,α–石英可能过热,直到1 873 K 时熔融。
如果加热速度较慢,使其在平衡条件下转变,α–石英就可能转变为α–鳞石英,后者可稳定到 1 743 K 。
同样,在平衡条件下,α–鳞石英在1 743 K 会转变为α–方石英,否则也将过热,在1 943 K 下熔融。
不论是α–鳞石英还是α–方石英,当冷却速度不够慢时,都会在不平衡条件下转化为它们自身的低温形态。
这些低温形态(β–鳞石英、γ–鳞石英和β–方石英)虽处于介稳状态,但由于它们转变为稳定状态的速度极慢,实际上可长期保持不变。
例如在耐火材料硅砖中,就存在着β–鳞石英和γ–鳞石英[2]。
固体制剂晶型变化的原因及常用分析方法1前言许多晶型药物因晶格不同而导致某些物理性质(如熔点、溶解度)的不同,稳定性也有可能发生改变(一般是不稳定型和亚稳定型向稳定型的转变)。
药物分子溶解度的改变可能会对制剂特性产生显著影响,最终可能会影响药物在体内的吸收。
因此,固体状态的稳定性是一个化合物能否被开发成药的关键因素之一。
对许多的溶剂化物、水合物和亚稳晶型来说,它们在储存和生产过程中很容易发生转晶现象。
因此,一般会首先考虑将室温条件下最稳定的固体形态开发为临床使用的剂型。
但是,有时稳定晶型可能会存在某些缺陷,如溶解度太差、生物利用度低等,不得不考虑将一些动力学上稳定存在的亚稳晶型作为药用晶型开发上市;而使用亚稳晶型会存在转晶的风险,所以对药物固体状态转晶现象的研究在药物发展过程中也是非常重要的。
2研磨研磨是一种相对比较常用的方法之一,它常被用来减小药物颗粒的尺寸。
在研磨过程中会有热量和振动能产生,再加上其本身带有的机械能,最终可能导致药物晶型的无定形化或发生固态—固态多晶型转变现象。
同一个药物的同种晶型在不同温度下研磨可能会发生不同的转晶过程。
苯基丁氮酮的不同晶型被分别置于4度和35度条件下球磨,在4度下研磨苯基丁氮酮α、β和δ晶型都转变为一种新晶型ζ晶型,接着研磨ζ晶型又转变为ε晶型。
在35度条件下球磨,α晶型先转变为ζ晶型,接着研磨最终转变为δ晶型;β晶型直接转变为δ晶型,而δ晶型则保持不变。
固体药物在研磨过程中除了温度变化会引起转晶外,引入晶种、添加物等有时也会引起晶型改变。
通过研磨的手段,有时会导致药物理化性质的改变,继而影响药物的稳定性和有效性。
3湿法制粒和干燥湿法制粒是固体制剂制备过程中常用的一种制粒方式。
对于晶型中含水的药物分子,在湿法制粒过程中容易产生不同的晶型。
盐酸厄洛替尼是一种新型的口服表皮生长因子受体酪氨酸激酶抑制剂,其存在多种晶型,如A、B、E、L和无定型等多种形式。
晶型B 在热力学上比晶型A更稳定,而晶型E被认为具有和晶型B类似的稳定性,但具更高的溶解度;但晶型E的实际可生产性不强、工业化应用上有一定的局限性,因此,常用的晶型为A和B。
第二章晶型转变及其控制方法系统中存在的相,可以是稳定、介稳或不稳定的。
其吉布斯自由能如图2–1所示。
当系统的温度、压力或对系统的平衡发生影响的电场、磁场等条件发生改变时,这种介稳或不稳定状态下的自由能会发生改变,相的结构(原子或电子分布)也相应地发生变化。
此外,在一定的条件下,一种稳定相也可以转变成另一种稳定相,此即下文所说的可逆晶型转变。
对某一特定系统而言,相的自由能改变所伴随的结构改变过程,叫做相转变或相变。
图2–1 稳定态、介稳态和不稳定态化学组成相同的固体,在不同的热力学条件下,常会形成晶体结构不同的同质异构体(polymorph)[1, 2]或称为变体(modification),这种现象叫同质多晶或同质多相(polymorphism)[2]现象。
当温度和压力条件变化时,变体之间会发生相互转变,此称为晶型转变。
显然,晶型转变是相变的一种,也是最常见的一种固–固相变形式。
由于晶型转变,晶体材料的力学、电学、磁学等性能会发生巨大的变化。
例如,碳由石墨结构转变为金刚石结构后硬度超强,BaTiO3由立方结构转变为四方结构后具有铁电性。
可见,通过相变改变结构可达到控制固体材料性质的目的。
相律的表达式是自由度f= C–Φ+ 2,C为独立组元(组分)数,Φ为相数,数字2代表温度和压力2个变量。
对于凝聚系统来说,压力的影响可以忽略不计,于是温度成了惟一的外界条件。
在这种情况下,相律可写成f * = C–Φ+ 1,f * 被称为条件自由度。
对于单元(单组分)系统来说,C = 1,f * = 2–Φ。
由于所讨论的系统至少有1个相,所以单元凝聚系统条件自由度数最多等于1,系统的状态仅仅由温度1个独立变量所决定。
于是,在许多情况下,单元系统相变往往用流程图来表示,例如本章§2.3节对BaTiO3晶型转变所采用的表示法。
在另一些场合下,考虑压力变量的影响对讨论问题是有利的。
由于凝聚系统的平衡蒸气压实际上仍比大气压低得多,所以在讨论单元凝聚系统相图时,往往把压力坐标(纵标)加以夸大,画出来的相图中的曲线仅仅表示温度变化时系统中压力变化的大致趋势,这种情况如在本章§2.4~§2.6中所描述的SiO2、ZrO2和Ca2SiO4(C2S)单元系统带有晶型转变的相图。
第二章晶型转变及其控制方法系统中存在的相,可以是稳定、介稳或不稳定的。
其吉布斯自由能如图2–1所示。
当系统的温度、压力或对系统的平衡发生影响的电场、磁场等条件发生改变时,这种介稳或不稳定状态下的自由能会发生改变,相的结构(原子或电子分布)也相应地发生变化。
此外,在一定的条件下,一种稳定相也可以转变成另一种稳定相,此即下文所说的可逆晶型转变。
对某一特定系统而言,相的自由能改变所伴随的结构改变过程,叫做相转变或相变。
图2–1 稳定态、介稳态和不稳定态化学组成相同的固体,在不同的热力学条件下,常会形成晶体结构不同的同质异构体(polymorph)[1, 2]或称为变体(modification),这种现象叫同质多晶或同质多相(polymorphism)[2]现象。
当温度和压力条件变化时,变体之间会发生相互转变,此称为晶型转变。
显然,晶型转变是相变的一种,也是最常见的一种固–固相变形式。
由于晶型转变,晶体材料的力学、电学、磁学等性能会发生巨大的变化。
例如,碳由石墨结构转变为金刚石结构后硬度超强,BaTiO3由立方结构转变为四方结构后具有铁电性。
可见,通过相变改变结构可达到控制固体材料性质的目的。
相律的表达式是自由度f= C–Φ+ 2,C为独立组元(组分)数,Φ为相数,数字2代表温度和压力2个变量。
对于凝聚系统来说,压力的影响可以忽略不计,于是温度成了惟一的外界条件。
在这种情况下,相律可写成f * = C–Φ+ 1,f * 被称为条件自由度。
对于单元(单组分)系统来说,C = 1,f * = 2–Φ。
由于所讨论的系统至少有1个相,所以单元凝聚系统条件自由度数最多等于1,系统的状态仅仅由温度1个独立变量所决定。
于是,在许多情况下,单元系统相变往往用流程图来表示,例如本章§2.3节对BaTiO3晶型转变所采用的表示法。
在另一些场合下,考虑压力变量的影响对讨论问题是有利的。
由于凝聚系统的平衡蒸气压实际上仍比大气压低得多,所以在讨论单元凝聚系统相图时,往往把压力坐标(纵标)加以夸大,画出来的相图中的曲线仅仅表示温度变化时系统中压力变化的大致趋势,这种情况如在本章§2.4~§2.6中所描述的SiO2、ZrO2和Ca2SiO4(C2S)单元系统带有晶型转变的相图。
晶相调控方法晶相调控方法指的是在材料科学领域中,利用各种手段和技术对晶体结构和晶相进行控制和调节的一系列方法和技术。
晶相调控方法在材料制备、性能改进和功能开发等方面具有重要意义,对于提高材料的性能和功能化应用具有重要意义。
下面将对晶相调控方法进行详细介绍。
1. 经典晶体生长方法经典晶体生长方法是一种常见的晶相调控方法,它是通过溶液结晶、气-固界面沉积、气相沉积等方式,通过控制温度、浓度、压力等条件来控制晶相的形成和生长。
这种方法广泛应用于硅晶片和半导体材料的生长制备中。
2. 溶液法合成溶液法合成是利用溶液中物质的溶解度和沉积条件来合成晶体材料的方法。
通过控制溶液的温度、pH值、浓度等参数,可以实现对晶体的形貌和晶相结构的调控。
这种方法在金属有机框架材料、钙钛矿材料等的合成中得到了广泛应用。
3. 热处理方法热处理是一种常见的晶相调控方法,通过对材料进行高温处理、快速冷却等方式,可以改变材料的晶相结构和晶粒大小,从而改变材料的性能和应用。
热处理方法在金属材料、合金材料的强化和调控中得到了广泛应用。
4. 外场作用外场作用是指利用外加电场、磁场、声场、光场等方式来对晶体的结构和性质进行调控。
利用电场极化调控铁电材料的极化方向,利用磁场调控磁性材料的磁性方向,利用声场调控压电材料的应变等。
外场作用是一种新型的晶相调控方法,对于功能材料的设计和制备具有重要意义。
5. 控制晶种和晶面生长通过控制晶种的选择和晶面的取向,可以实现对晶体的结构和形貌的精确调控。
在生长单晶材料时选择合适的晶种,可以避免晶格畸变和晶界的出现;在生长纳米材料时选择特定的晶面,可以实现对纳米结构的定向生长和形貌调控。
晶相调控方法是材料科学领域的重要研究内容,随着新材料和功能材料的发展,晶相调控方法也在不断创新和完善。
通过对晶相调控方法的研究和应用,可以实现对材料结构和性能的精确调控,为材料的性能改进和功能化设计提供重要支持。
相信随着科学技术的不断发展,晶相调控方法将会在更多领域展现出其重要价值。
控制晶粒大小的方法
有许多方法可以控制晶粒的大小,以下列举几种常见的方法:
1. 沉淀晶化法:通过调节反应条件、沉淀速率和溶液中的添加剂等方式,可以控制晶体的尺寸和形状。
例如,可以通过控制溶液中添加剂的浓度和类型来控制晶粒的尺寸。
2. 界面扩散法:在材料生长过程中,通过控制界面扩散速率和晶体生长速率之间的比例,可以调控晶体尺寸。
例如,通过改变溶液中的溶质浓度和溶剂浓度之间的差异,可以调节晶体的生长速率,从而控制晶体的尺寸。
3. 界面能控制法:晶体生长的速度和尺寸可以受到界面能的影响。
通过表面处理或添加表面活性剂等方式,可以改变晶体表面的能量,从而控制晶体的生长速率和尺寸。
4. 模板法:利用模板表面的特殊性质,可以在其表面上沉积晶体,从而控制晶体的尺寸和形状。
例如,可以利用纳米颗粒或纳米线作为模板,在其表面沉积晶体,从而获得具有特定尺寸和形状的晶体。
5. 合金化法:在合金中引入不同尺寸的晶体,可以通过晶粒间的界面减小大晶粒尺寸。
例如,通过合金中的冶金处理和退火,可以在晶界形成亚晶粒,从而减小晶粒尺寸。
这些方法可以单独或结合使用,根据具体材料和需要进行选择。
同时,对于不同材料和应用领域,还有其他可行的方法来控制晶粒的大小。
图6 - 20同一晶第六章位错和面缺陷习题1 试分析一般陶瓷材料脆性较高的原因2 图6 - 21是张晶体点阵结构的二维图形,内含一根正刃位错和一根负刃位错。
试回答:(1)若围绕着这两根位错作柏氏回路,最后所得的柏氏欠量如何?(2)若围绕着每根位错作柏氏回路,其结果又分别是怎样?3 试分析NaCI晶体在什么方向上最容易发生滑移?4 请判断在下述情况下位错的类型:(1)柏氏矢量平行于剪切方向并垂直于位错;(2)柏氏矢量垂直于剪切方向并平行于位错⑸。
5 试证明柏氏矢量守恒定律:指向某节点位错的柏氏矢量之和等于离开该点位错的柏氏欠量之和6 请简述螺位错可能的运动方式及其特点。
7 试从位错与晶体的儿何关系、位错的形成原因、引起位错的外加剪切应力分力与柏氏矢量方向的关系、柏氏矢量与位错和滑移面的关系、滑移面与密排面方向的关系等方面,分析刃位错与螺位错的异同点。
8 设晶体中有一根单位长度的位错,两端被钉扎住,在外加应力作用下,从直线段变为半径为的圆弧段。
试求此过程中外力所做功的大小⑻10试分析下述两种位错定义的不足之处:(1)滑移面上己滑移和未滑移部分的分界线;(2)位错是柏氏矢量不为零的线缺陷。
11试分析在拉制单晶的过程中,在工艺上至少要控制哪两个参数,以尽可能地消除晶体中的位错?12试回答:(1)对结晶固体而言,哪种儿何形状的缺陷最常见?为什么?( 2)非化学计量缺陷可能以哪种儿何形状的缺陷出现?为什么?13试解释纳米晶粒结构陶瓷高温蠕变性能较差的原因。
14设某物质在其熔点时结晶,形成边长为IO'6 m的立方体晶粒。
试回答下述两个问题:(1)若晶体在高温时所形成的空位,降温到室温时,聚集在一个晶面上,形成一个空位圆片,以致引起晶体内部的崩塌191, 结果将转变为何种形式的晶格缺陷?( 2)若晶粒为边长为10-6 m的立方体,求此时每个晶粒中的位错密度。
15试分析下述两种表面上看来似乎是相反的效应的成因和条件:(1)位错的存在对材料的延展性有利;(2) 位错的存在大大地提高材料的强度和硬度。
对晶型转变的综述化学组成相同的固体,在不同的热力学条件下,常会形成晶体结构不同的同质异构体(polymorph)[1, 2]或称为变体(modification),这种现象叫同质多晶或同质多相(polymorphism)[2]现象。
当温度和压力条件变化时,变体之间会发生相互转变,此称为晶型转变。
显然,晶型转变是相变的一种,也是最常见的一种固–固相变形式。
由于晶型转变,晶体材料的力学、电学、磁学等性能会发生巨大的变化。
例如,碳由石墨结构转变为金刚石结构后硬度超强,BaTiO3由立方结构转变为四方结构后具有铁电性。
可见,通过相变改变结构可达到控制固体材料性质的目的。
晶型转变有可逆转变与不可逆转变之分。
图1表示具有可逆晶型转变的不同图1 具有可逆晶型转变的某物质内能U与自由能G的关系[2],其中U L>UⅡ>UⅠ,S L>SⅡ>SⅠ变体晶型Ⅰ和晶型Ⅱ以及其液相L之间的热力学关系。
对上述物质进行加热或冷却时,发生了如下的晶型转变:晶型Ⅰ晶型Ⅱ液相。
当晶型Ⅰ过热(超过Ttr)而介稳存在时,其自由能GⅠ的变化以虚线表示,同时,当液相过冷(低于TmⅡ)处于介稳态时,其自由能GL曲线也以虚线表示;与GL和GⅠ有关的两虚线交于TmⅠ,TmⅠ相当于晶型Ⅰ的熔点。
图1的特点是晶型转变温度Ttr低于两种变体的熔点(TmⅠ和TmⅡ)。
也有一些晶体的变体之间不可能发生可逆晶型转变。
图2表示具有不可逆晶型转变的不同变体晶型Ⅰ、晶型Ⅱ及它们的液相L之间的热力学关系。
TmⅠ为晶型Ⅰ的熔点,TmⅡ相当于晶型Ⅱ的熔点。
虽然在温度轴上标出了晶型转变温度Ttr,但事实上是得不到的,因为晶体不可能在超过其熔点的温度下发生晶型转变。
此图的特点是,晶型转变温度Ttr高于两种变体的熔点(TmⅠ和TmⅡ)。
从图2可看出,三种晶型相互转变的过程可由下式表示.晶型Ⅰ熔体晶型Ⅱ先经过中间的另一个介稳相(如晶型Ⅱ),才能最终转变成该温度下的稳定态(晶型Ⅰ)的规律,称为阶段转变定律。