初中数学八年级上册《分式方程及其解法》优秀教学设计
- 格式:docx
- 大小:48.00 KB
- 文档页数:2
人教版八年级上册数学《分式方程》(优质教案)一. 教材分析人教版八年级上册数学《分式方程》这一章节是在学生已经掌握了分式的基础知识,如分式的概念、分式的运算等基础上进行讲解的。
本章主要内容是让学生了解分式方程的定义、解法以及应用。
通过本章的学习,学生应能理解分式方程的概念,掌握解分式方程的基本方法,并能够将分式方程应用于解决实际问题。
二. 学情分析学生在学习本章内容之前,已经掌握了分式的基本知识,具备了一定的逻辑思维能力和问题解决能力。
但学生在解分式方程时,可能会遇到理解上的困难,如分式方程的转化、求解过程中的运算等。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。
三. 教学目标1.了解分式方程的定义,理解分式方程与一般方程的区别。
2.掌握解分式方程的基本方法,能够熟练地求解分式方程。
3.能够将分式方程应用于解决实际问题,提高解决实际问题的能力。
四. 教学重难点1.分式方程的定义及其与一般方程的区别。
2.分式方程的解法及其应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,从而掌握分式方程的知识;通过案例分析,让学生了解分式方程在实际问题中的应用;通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.教学PPT:制作有关分式方程的PPT,内容包括:分式方程的定义、解法及应用。
2.案例材料:收集一些实际问题,用于教学过程中的案例分析。
3.练习题:准备一些分式方程的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)利用PPT展示分式方程的定义,引导学生思考:什么是分式方程?分式方程与一般方程有什么区别?2.呈现(15分钟)通过PPT呈现分式方程的解法,主要包括:去分母、去括号、移项、合并同类项、化简等步骤。
同时,结合实际问题,让学生了解分式方程在生活中的应用。
3.操练(15分钟)让学生独立完成PPT上的练习题,教师巡回指导,解答学生的疑问。
人教版数学八年级上册教学设计15.3《分式方程》一. 教材分析《分式方程》是人教版数学八年级上册的教学内容,本节课主要让学生掌握分式方程的定义、解法以及应用。
通过学习,学生能够理解和掌握分式方程的概念,能够熟练运用解法求解分式方程,并能够将分式方程应用于实际问题中。
二. 学情分析学生在七年级时已经学习了分式的相关知识,对分式的概念、性质和运算有一定的了解。
但是,对于分式方程的概念和解法,学生可能还没有完全掌握。
因此,在教学过程中,需要引导学生复习和巩固分式的知识,并通过例题和练习题帮助学生理解和掌握分式方程的解法。
三. 教学目标1.理解分式方程的定义,掌握分式方程的解法。
2.能够将分式方程应用于实际问题中,提高解决问题的能力。
3.培养学生的逻辑思维能力和运算能力。
四. 教学重难点1.分式方程的定义和解法。
2.将分式方程应用于实际问题中。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考和探索;通过案例分析和练习题,让学生理解和掌握分式方程的解法;通过小组合作学习,培养学生的合作意识和团队精神。
六. 教学准备1.PPT课件。
2.练习题和案例。
3.黑板和粉笔。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生复习和巩固分式的知识。
例如:“我们已经学习了分式的哪些知识?分式有哪些性质和运算规则?”2.呈现(15分钟)通过PPT课件展示分式方程的定义和解法,让学生理解和掌握。
同时,通过案例教学法,让学生了解分式方程在实际问题中的应用。
3.操练(15分钟)让学生分组合作,解决一些简单的分式方程问题。
教师巡回指导,解答学生的问题,并给予鼓励和表扬。
4.巩固(10分钟)让学生独立完成一些分式方程的练习题,巩固所学知识。
教师选取部分题目进行讲解和分析,解答学生的问题。
5.拓展(10分钟)让学生思考和探索分式方程在实际问题中的应用,提出一些实际问题,引导学生运用分式方程进行解决。
人教版八年级上册数学《分式方程》(优质教学设计)一. 教材分析人教版八年级上册数学《分式方程》这一节内容,是在学生已经掌握了方程和等式的基本性质的基础上进行教学的。
本节课主要让学生了解分式方程的概念,学会解分式方程的方法,并能够应用分式方程解决实际问题。
教材通过具体的例子,引导学生探究分式方程的解法,并总结解分式方程的一般步骤。
二. 学情分析八年级的学生已经具备了一定的数学基础,对方程和等式有一定的了解。
但是,学生对分式方程的理解和应用还比较薄弱。
因此,在教学过程中,需要通过具体的例子,引导学生理解分式方程的概念,掌握解分式方程的方法,并能够应用分式方程解决实际问题。
三. 教学目标1.让学生了解分式方程的概念,理解分式方程的意义。
2.引导学生掌握解分式方程的方法,并能够熟练运用。
3.通过解决实际问题,培养学生的应用能力。
四. 教学重难点1.重点:分式方程的概念,解分式方程的方法。
2.难点:解分式方程的步骤和技巧。
五. 教学方法采用问题驱动法,通过具体的例子,引导学生探究分式方程的解法,并总结解分式方程的一般步骤。
同时,运用小组合作学习法,让学生在小组内讨论和分享解题经验,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的例题和练习题。
2.准备课件,用于展示和解题过程。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入分式方程的概念。
例如,某商店举行打折活动,原价为100元的商品打八折后,顾客实际支付了72元,求打折的力度。
让学生尝试用方程来解决这个问题,从而引出分式方程的概念。
2.呈现(10分钟)展示几个分式方程的例子,让学生观察和分析。
例如:(1)(=2)(2)(=3)引导学生总结解分式方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1。
3.操练(10分钟)让学生独立完成一些分式方程的练习题,检验学生对分式方程的理解和掌握程度。
教师可适时给予提示和指导。
4.巩固(10分钟)学生进行小组讨论,分享解题经验,总结解分式方程的技巧。
人教版数学八年级上册《分式方程的解法》教学设计1一. 教材分析人教版数学八年级上册《分式方程的解法》是学生在掌握了方程和一元一次方程的解法的基础上进行学习的。
本节课的主要内容是让学生掌握分式方程的解法,并能够灵活运用。
教材通过引入实际问题,让学生在解决问题的过程中自然地引入分式方程的概念,并通过例题和练习让学生掌握解法。
二. 学情分析学生在学习本节课之前,已经掌握了方程和一元一次方程的解法,对解方程的基本思路和方法有一定的了解。
但是,学生对分式的理解和运用还不够熟练,因此在教学过程中需要加强对分式的讲解和练习。
三. 教学目标1.让学生理解分式方程的概念,掌握分式方程的解法。
2.培养学生解决实际问题的能力,提高学生的数学思维能力。
3.培养学生合作学习的习惯,提高学生的团队协作能力。
四. 教学重难点1.重点:分式方程的解法。
2.难点:对分式方程的理解和运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过引入实际问题,激发学生的学习兴趣,引导学生主动探索;通过案例教学,让学生深入了解分式方程的解法;通过小组合作学习,培养学生的团队协作能力。
六. 教学准备1.教学PPT。
2.练习题。
3.教学视频或案例。
七. 教学过程1.导入(5分钟)通过引入实际问题,让学生自然地引入分式方程的概念。
例如,假设有一辆汽车从A地出发,以每小时60公里的速度向B地行驶,同时有一辆自行车从B地出发,以每小时15公里的速度向A地行驶。
问:两车相遇需要多长时间?2.呈现(10分钟)通过PPT展示分式方程的定义和解法步骤。
让学生明确分式方程的概念,以及如何解分式方程。
3.操练(10分钟)让学生独立完成一些分式方程的练习题,巩固所学知识。
教师在旁边指导,解答学生的疑问。
4.巩固(10分钟)通过PPT或教学视频,回顾分式方程的解法步骤,加深学生对知识点的理解。
5.拓展(10分钟)让学生分组讨论,尝试解决更复杂的分式方程问题。
15.3 分式方程
第1课时 分式方程及其解法
1.了解分式方程的概念.(重点)
2.掌握可化为一元一次方程的分式方程的解法,知道转化的思想方法在解分式方程中的应用.(重点)
3.了解增根的概念,会检验一个数是不是分式方程的增根,会根据增根求方程中字母的值.(难点)
一、情境导入
1.什么是方程?
2.什么是一元一次方程?
3.解一元一次方程的一般步骤是什么? 我们今天将学习另外一种方程——分式方程.二、合作探究
探究点一:分式方程的概念
下列关于x 的方程中,是分式方
程的是( )
A.3+x 2=2+x 5
B.2x -17=x
2 C.
x
π+1=2-x 3 D.12+x =1-2x
解析:A 中方程分母不含未知数,故不是分式方程;B 中方程分母不含未知数,故不是分式方程;C 中方程分母不含表示未知数的字母,π是常数;D 中方程分母含未知数
x ,故是分式方程.故选D.
方法总结:判断一个方程是否为分式方
程,主要是看分母中是否含有未知数(注意:
仅仅是字母不行,必须是表示未知数的字
母).
探究点二:分式方程的解法 【类型一】 解分式方程
解方程:
(1)5x =7x -2;(2)1x -2=1-x 2-x -3. 解析:分式方程两边同乘以最简公分母,把分式方程转化为整式方程求解,注意验根. 解:(1)方程两边同乘x (x -2),得5(x -2)=7x ,5x -10=7x ,2x =-10,解得x =-5,检验:把x =-5代入最简公分母,得x (x -2)≠0,∴x =-5是原方程的解;
(2)方程两边同乘最简公分母(x -2),得1=x -1-3(x -2),解得x =2,检验:把x =2代入最简公分母,得x -2=0,∴原方程无解.
方法总结:解分式方程的步骤:①去分母;②解整式方程;③检验;④写出方程的解.注意检验有两种方法,一是代入原方程,二是代入去分母时乘的最简公分母,一般是代入公分母检验.
【类型二】 由分式方程的解确定字母的取值范围
关于x
的方程2x +a
x -1
=1的解是正
数,则a 的取值范围是____________.
解析:去分母得2x +a =x -1,解得x =-a -1,∵关于x 的方程2x +a
x -1=1的解是
正数,∴x >0且x ≠1,∴-a -1>0且-a -
1≠1,解得a<-1且a≠-2,∴a的取值范围是a<-1且a≠-2.
方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.
探究点三:分式方程的增根
【类型一】求分式方程的增根
若方程
3
x-2
=
a
x
+
4
x(x-2)
有增
根,则增根可能为( )
A.0 B.2 C.0或2 D.1
解析:∵最简公分母是x(x-2),方程有增根,则x(x-2)=0,∴x=0或x=2.去分母得3x=a(x-2)+4,当x=0时,2a=4,a=2;当x=2时,6=4不成立,∴增根只能为x=0,故选A.
方法总结:增根是使分式方程的分母为0的根.所以判断增根只需让分式方程的最简公分母为0;注意应舍去不合题意的解.【类型二】分式方程有增根,求字母的值
如果关于x的分式方程
2
x-3
=1-
m
x-3
有增根,则m的值为( )
A.-3 B.-2
C.-1 D.3
解析:方程两边同乘以x-3,得2=x -3-m①.∵原方程有增根,∴x-3=0,即x=3.把x=3代入①,得m=-2.故选B.
方法总结:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
分式方程无解,求字母的值
若关于x的分式方程
2
x-2
+
mx
x2-4=
3
x+2
无解,求m的值.
解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.
解:方程两边都乘以(x+2)(x-2)得2(x+2)+mx=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②方程有增根,则x=2或x=-2,当x =2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;当x=-2时,代入(m-1)x =-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.
方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.
三、板书设计
分式方程及其解法
1.分式方程的概念;
2.分式方程的解法;
3.产生增根的条件.
这节课主要是通过对比有分数系数的整式方程的解法来学习分式方程的解法,从而归纳出分式方程的基本解题步骤.在教学过程中要着重讲解分式方程为什么要检验,要让学生理解增根的由来,从而牢记分式方程在解题后要进行检验,避免解题出错.在完成解题步骤归纳之后,通过例题与练习让学生在出错中找到正确的解法,让学生自己归纳理解解题时容易出错的地方,防止犯错.。