函数模拟汇编.doc
- 格式:doc
- 大小:1.65 MB
- 文档页数:22
9. 函数)4sin(cos )4cos(sin ππ+++=x x x x y 的值域是 .15.(本小题共13分)如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30 ,相距10海里C 处的乙船.(Ⅰ)求处于C 处的乙船和遇险渔船间的距离;(Ⅱ)设乙船沿直线CB 方向前往B 处救援,其方向与CA 成θ角, 求()x x x f cos cos sin sin 22θ+θ=()R x ∈的值域.解:(Ⅰ)连接BC,由余弦定理得2BC =202+102-2×20×10COS120°=700.∴BC =107.(Ⅱ)∵710120sin 20sin ︒=θ, ∴sin θ =73∵θ是锐角,∴74cos =θ()x x x f cos cos sin sin22θ+θ==()ϕ+=+x x x sin 75cos 74sin 73∴()x f 的值域为⎥⎦⎤⎢⎣⎡-75,75. 15.(本小题共12分)已知函数()sin cos f x x x =+,x R ∈. (Ⅰ)求()4f π的值;(Ⅱ)如果函数()()()g x f x f x =-,求函数()g x 的最小正周期和最大值;解:(Ⅰ)()sin cos 44422f πππ=+=+=(Ⅱ)()()()(sin cos )[sin()cos()]g x f x f x x x x x =-=+-+-北2010A B••C(sin cos )(sin cos )x x x x =+-+22cos sin cos 2x x x =-=x R ∈22T ππ==,()g x 的最小正周期为π1cos 21x ∴-≤≤,因此,函数()g x 的最大值是115.(12分)已知函数f(x)=sin()A x ωϕ+(其中A>0,0,02πωϕ><<)的图象如图所示。
2023年湖北省中考数学模拟题知识点分类汇编:二次函数一.选择题(共12小题)
1.(2022•孝南区三模)已知:二次函数y=﹣x2+x+6,将该二次函数在x轴上方的图象沿x 轴翻折到x轴下方,图象的其余部分不变,得到一个新函数,当直线y=m与新图象有2个交点时,m的取值范围是()
A .
B .或m=0
C .或m=0
D .<m<0
2.(2022•襄州区模拟)抛物线y=ax2+b+c交轴于A(﹣1,0),B(3,0),交轴的负半轴于C,顶点为D.
下列结论:
①2a+b=0;
②2c<3b;
③当m≠1时,a+b<ax2+bm;
④当△ABD是等腰直角三角形时,则a =.
)个.
其中正确的有(
A.1B.2C.3D.4 3.(2022•谷城县二模)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,此图象经过点(2,0),对称轴是直线x=﹣1,有下列结论:①2a﹣b=0;②9a﹣3b+c<0;③a﹣b+c =﹣9a;④若点(﹣2,m)和(0,n)是抛物线上两点,则m=n.其中正确的结论有()个.
第1页(共57页)。
2022学年高三上(编号1-25)函数性质小题汇编(学生版)一、选择题1:(2023届南京市一中高三上学期数学模拟卷1解析第8题)1:已知定义域为R 的函数()f x 满足:,(4)()0x R f x f x ∀∈++-=,(1)f x +为偶函数,(1)1f =,则(2023)f =( ).A 1 .B 1- .C 2 .D 3-2:(2023届南京市高三年级学情调研1解析第8题)公众号中学数学星2:若函数(),()f x g x 的定义域为R ,且()(2)(2022),2()(2)(2024)f x g x f g x f x g +==-,则230(2)(22)k gf kg k ==+∑ ( ) A .28 B .30 C .46 D .483:(2023届湖北省二十一所重点中学高三上第二次联考解析第3题) 3:对任意的1x ,(]21,3x ∈,当12x x <时,1122ln 03x a x x x -->恒成立,则实数a 的取值范围是( )A .[)3,+∞B .()3,+∞C .[)9,+∞D .()9,+∞4:(2023届重庆市巴蜀中学月考卷(一)解析第4题)4:已知函数()f x 是R 上的偶函数,当0x ≥时,()()ln 1f x x x =++,则0x <时,()f x =( )A .()ln 1x x ---B .()ln 1x x --C .()ln 1x x -+-D .()ln 1x x +-5:(2023届江苏省盐城中学8月高三上开学考解析第7题)5:已知函数())x x f x e e x -=-+,则不等式()f(2x 1)0f x +->的解集是 ( ).A (1,)+∞ .B 1(,)3+∞ .C 1(,)3-∞ .D (,1)-∞6:(2023届河北衡水深州中学高三上第一次月考解析第5题) 6:已知函数33,0()e 1,0xx x f x x --+<⎧⎪=⎨+≥⎪⎩,则不等式()(31)f a f a <-的解集为 ( )A .10,2⎛⎫⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭D .1,2⎛⎫-∞- ⎪⎝⎭7:(2023届金太阳联考数学试题解析第6题)7:香农定理是所有通信制式最基本的原理,它可以用香农公式2log (1)SC B N=+来表示,其中C 是信道支持的最大速度或者叫信道容量,B 是信道的带宽()Hz ,S 是平均信号功率()W, N 是平均噪声功率()W .已知平均信号功率为1000W ,平均噪声功率为10W ,在不改变平均噪声功率和信道带宽的前提下,要使信道容量增加到原来的2倍,则平均信号功率需要增加到原来的 ( ).A 1.2倍 .B 12倍 .C 102倍 .D 1002倍8:(2023届河北衡水深州中学高三上第一次月考解析第6题)8:已知定义域为R 函数()f x 满足:对任意的x R ∈,有(2)2()f x f x +=-,且当[0,1]x ∈时,2()1log (1)f x x =++,则(2023)f =( ).A 0.B 1 .C 2 .D 39:(2023届河北衡水深州中学高三上第一次月考解析第7题) 9:已知,a b R ∈,221a b >>,则( ).A ln ln a b a b e e -<- .B ln ln a b b a < .C a b be a-> .D sin sin 1a ba b-<-10:(2023届湖北协作体联考解析第6题)10:定义在R 上的函数()f x 满足()(1)13f x f x +=,且当[0,1)x ∈时,()1|21|f x x =--.若对[,)x m ∀∈+∞,都有()281f x ≤,则m 的取值范围是 ( )A . 10[,)3+∞ B . 11[,)3+∞ C . 13[,)3+∞ D . 14[,)3+∞11:(2023届浙江省A9协作体高三暑假返校考解析第8题)11:已知函数()f x 及其导函数()f x '的定义域都为R ,且(12)f x -为偶函数,(2)f x +为奇函数,则( )A .(1)0f =B .(2)0f '=C .(2022)(2021)0f f '+=D .(2022)(2021)0f f '+=12:(2023届长沙市一中入学摸底考解析第4题)12:已知()f x 是定义在R 上的奇函数,(1)f x -为偶函数,且当01x <时,2()log 2f x x =,则(21)f =( )A .1-B .0C .2log 3D .113:(2022年8月Z20联盟数学解析第7题)13:已知函数()f x 的定义域为R ,且(1)(1)2f x f x ++-=,(2f x +)为偶函数,若(0)0f =,1()111nk f k ==∑,则n 的值为( )A .107B .118C .109D .11014:(2022年8月南京市六校联合体高三联合调研解析第8题)14:定义在R 上的偶函数()f x 满足对任意的∈x R ,都有()()13+=-f x f x ,当[]0,2∈x 时,()24-f x x ()=-y f x kx 在()0,∈+∞x 上恰有3个零点,则实数k 的取值范围为 ( )A . 153⎝⎭B .143⎝⎭C .3515⎝⎭D .3514⎣⎭15:(2023届长沙市一中入学摸底考解析第8题)15:2022年北京冬奥会成功举办,更激发全国人们对冰雪运动的爱好.某地为响应全民冰雪运动的号召,建立了一个滑雪场.该滑雪场中某滑道的示意图如图所示,点,A B 分别为滑道的起点和终点,它们在竖直方向的高度差为20m .两点之间为滑雪弯道,相应的曲线可近似看作某三次函数图像的一部分,综合滑行的安全性与趣味性,在滑道的最陡处,滑雪者的身体与地面所成的夹角约为44.若还要兼顾滑道的美观性与滑雪者的滑雪体验,则,A B 两点在水平方向的距离约为( )A .23mB .25mC .27mD .29m16:(2023届如皋市高三上期初调研解析第3题)16:(2022⋅上海市市辖区⋅期中考试)如果对一切正实数,x y ,不等式29cos sin 4y x a x y-≥-恒成立,则实数a 的取值范围是( )A .4,3⎛⎤-∞ ⎥⎝⎦B .[)3,+∞C .22,22⎡⎤-⎣⎦D .[]3,3-17:(2023届麓山国际实验学校高三上入学考解析第3题)17:已知函数32()f x x bx x =++为定义在[]21,3a a --上的奇函数,则(21)()0f x f x b -+->的解集为( )A .1,43⎛⎤ ⎥⎝⎦B .[]2,4C .1,33⎛⎤ ⎥⎝⎦D .[]2,318:(2023届湖北圆创第一次联合测试解析第5题)18:已知函数sin()(0)()cos(),(0)x a x f x x b x -⎧=⎨->⎩是偶函数,则a ,b 的值可能是( )A .3a π=,3b π=B .23a π=,6b π=C .3a π=,6b π=D .23a π=,56b π=二、填空题1:(2023届广东梅州中学高三上阶段性考试解析第14题)1:写出一个同时具在下列性质①②③,且定义域为实数集R 的函数()f x : . ①最小正周期为1; ②()()f x f x -=; ③无零点.2:(2023届重庆市巴蜀中学月考卷(一)解析第13题)2:化简32541log 5log 88-⎛⎫-⋅= ⎪⎝⎭ .3:(2023届麓山国际实验学校高三上入学考解析第13题)3:若函数()3(0x x f x a a =+>且1)a ≠是偶函数,则函数()f x 的值域为________.4:(2023届南海区摸底考试解析第15题)4:设函数22(1)sin ()1x xf x x ++=+的最大值为M ,最小值为n ,则M n += .5:(2023届长沙市一中入学摸底考解析第13题)5:已知定义在R 上的函数()f x 满足()()()f x y f x f y +=,且当x y >时,()()f x f y >,请你写出符合上述条件的一个函数()f x =6:(2023届如皋市高三上期初调研解析第14题)6:已知()f x 是定义域为R 的函数,(2)f x -为奇函数,(21)f x -为偶函数,则16()i f i ==∑ .7:(2023届湖北九师联盟高三开学考解析第16题)7:已知()f x 是定义域为R 的函数,(2)f x -为奇函数,(21)f x -为偶函数,则16()i f i ==∑ .8:(2023届金太阳联考数学试题解析第15题)8:写出一个同时具有下列性质①②的函数()f x : . ①直线1x =是()f x 图象的对称轴;②()f x 在R 上恰有三个零点.9:(2023届湖北协作体联考解析第15题) 9:函数())6lg 1x f x x e =++的最大值为M ,最小值为N ,则M N +=10:(2023届浙江省A9协作体高三暑假返校考解析第16题)10:已知a R ∈,函数()()11,44,a x x a f x x x ax ⎧-+<⎪=⎨+-≥⎪⎩,若()f x 存在最小值,则a 的取值范围是11:(2023届江苏省盐城中学8月高三上开学考解析第14题)11:已知函数21,0()log ,0x x f x x x +⎧=⎨>⎩,则函数[]()y f f x =的所有零点之和为 .12:(2022年8月福建福安一中高三上第一次检测解析第16题)12:已知()1,0ln ,0x x f x xe x x m x ⎧<⎪=⎨⎪-+>⎩,若()f x 图像上存在关于原点对称的点,则m 的取值范围是13:(2023届重庆市巴蜀中学月考卷(一)解析第14题)13:已知定义在R 上的函数()f x 满足()()2f x f x +=-,()13f =,则()2023f = .14:(2023届重庆市巴蜀中学月考卷(一)解析第16题)14:已知奇函数()f x 的定义域为R ,当0x >讨,()()20f x f x '+>,且()20f =,则不等式()0f x >的解集为 .15:(2023届南京市高三年级学情调研1解析第14题)公众号中学数学星 15:已知函数()ln bf x a x x x=++,()()g x f x ='.若(1)(3)0g g ==,则(2)f = .16:(2023届南京市一中高三上学期数学模拟卷1解析第1题) 16:已知函数21e x y -+=的图象与函数()ln 132x y ---=的图象关于某一条直线l 对称,若P ,Q 分别为它们图象上的两个动点,则这两点之间距离的最小值为 .17:(2023届湖北省二十一所重点中学高三上第二次联考解析第15题)17:函数2()2e x f x a bx =++,其中a ,b 为实数,且(0,1)a ∈.已知对任意24e b >,函数()f x 有两个不同零点,a 的取值范围为 .18:(2023届湖北省九校教研协作体高三起点考试解析第15题)18:已知函数()24ln ln x f x e x mx x e x=-+-存在4个零点,则实数m 的取值范围是 .。
2022年全国高考数学真题及模拟题汇编:函数一.选择题(共7小题)1.函数()3f x lgx x =+-的定义域为( )A .[0,3]B .(0,3]C .[0,)+∞D .(-∞,3]2.函数||22()x y x x R =-∈的大致图象是( )A .B .C .D .3.已知函数()3f x x x =--0.2(3)a f =,3(0.2)b f =,0.2(log 3)c f =,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .c b a >> 4.已知函数212()(5)f x log x ax =-+,在(4,)x ∈+∞单调递减,则a 的取值范围是( )A .(-∞,8]B .21(,)4-∞C .(,8)-∞D .21(,]4-∞5.已知3log 2a =,0.1b e =,0.5ln c e =,则三者大小关系为( )A .a c b <<B .c a b <<C .c b a <<D .a b c << 6.已知12a e =,3log 5b =,6log 8c =(其中e 为自然对数的底数, 2.718)e ≈,下列关系正确的是( )A .a b c >>B .a c b >>C .b a c >>D .c a b >>7.若1a >,则1()x y a=与log a y x =在同一坐标系中的图象大致是( ) A . B .C .D .二.多选题(共3小题) 8.下列函数中,属于奇函数并且值域为R 的有( )A .3y x =B .1y x x =+C .1y x x =-D .22x x y -=+9.下列函数中,值域是(0,)+∞的是( )A .12x y -=B .21y x =C .(1)y ln x =+D .||y x =10.下列函数中,是奇函数且在(,)-∞+∞上是单调递增函数的是( )A .()f x x =B .()||f x x x =C .()22x x f x -=-D .2()f x x =三.填空题(共5小题)11.函数22(1)3(0)f x x x x -=-+>,则f (3)= .12.函数()log (2)2(0a f x x a =+->,且1)a ≠的图象必过定点 .13.已知212x =,21log 3y =,则x y +的值为 . 14.已知函数23(0x y a a -=+>且1)a ≠的图象恒过定点P ,点P 在幂函数()y f x =的图象上,则3log f (3)= .15.若幂函数()f x 的图象经过点1(,4)4,则(2)f -= . 四.解答题(共7小题)16.已知函数()f x 是定义在R 上的奇函数,且当0x <时,2()2f x x x =-+.(1)当0x 时,求函数()f x 的解析式;(2)解关于m 的不等式:(2)(2)23f m f m m +--.17.设函数4()221xx f x =--,0x >. (1)求函数()f x 的值域;(2)设函数2()1g x x ax =-+,若对1[1x ∀∈,2],2[1x ∃∈,2],12()()f x g x =,求正实数a 的取值范围.18.设函数21y mx mx =--.(1)若函数21y mx mx =--有两个零点,求m 的取值范围;(2)若命题:x R ∃∈,0y ,是假命题,求m 的取值范围;(3)若对于[1x ∈,3],2(1)3y m x ++恒成立,求m 的取值范围.19.已知函数()log (2)log (2)a a f x x x =+--,其中0a >,1a ≠.(1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性并给出证明;(3)若(1)1f -<,求a 的取值范围.20.已知函数1()21x f x a =-+为奇函数. (1)求a 的值,并判断函数()f x 的单调性;(2)若x R ∀∈,2(1)()0f x f kx ++<,求实数k 的取值范围.21.计算下列各式.(1)1206310.064()(2021)3π--+-+;(2)2731329log 5log 42log 5log -++. 22.计算:(100.539()()54--++ (2)22log 62222523lg lg -+--2022年全国高考数学真题及模拟题汇编:函数参考答案与试题解析一.选择题(共7小题)1.函数()3f x lgx x =+-的定义域为( )A .[0,3]B .(0,3]C .[0,)+∞D .(-∞,3]【考点】函数的定义域及其求法【分析】由对数式的真数大于0,根式内部的代数式大于等于0联立不等式组求解.【解答】解:要使原函数有意义,则030x x >⎧⎨-⎩,解得03x <. ∴函数()3f x lgx x =+-的定义域为(0,3].故选:B .【点评】本题考查函数的定义域及其求法,是基础题.2.函数||22()x y x x R =-∈的大致图象是( )A .B .C .D .【考点】函数的图象与图象的变换【分析】根据题意分析可得()f x 为偶函数,通过0x =函数的值,排除函数的图象即可.【解答】解:根据题意有||2||2()2()2()x x f x x x f x --=--=-=,所以函数是偶函数,又函数||22x y x =-,当0x =时,1y =,排除C ,故选:A .【点评】本题考查函数的图象分析,注意分析函数的奇偶性,属于基础题.3.已知函数()3f x x x =--0.2(3)a f =,3(0.2)b f =,0.2(log 3)c f =,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .c b a >>【考点】函数单调性的性质与判断【分析】首先求出函数()f x 的单调性,再判断0.2log 3,30.2,0.23的大小关系,从而得出a ,b ,c 的大小关系. 【解答】解:因为函数()3f x x x =-所以30x -,可得3x ,即()f x 的定义域为(-∞,3], 所以()3f x x x =-(-∞,3]单调递增,因为0.20331>=,3000.20.21<<=,0.2log 30<,所以30.20.2log 30.23<<,所以30.20.2(log 3)(0.2)(3)f f f <<,所以c b a <<.故选:A .【点评】本题主要考查函数单调性的性质与判断,考查函数值大小的比较,考查逻辑推理能力,属于基础题.4.已知函数212()(5)f x log x ax =-+,在(4,)x ∈+∞单调递减,则a 的取值范围是( )A .(-∞,8]B .21(,)4-∞C .(,8)-∞D .21(,]4-∞ 【考点】复合函数的单调性【分析】令25t x ax =-+,12log y t =,分析内层函数与外层函数的单调性以及对数真数在所给区间恒为正数,可得出关于a 的不等式组,进而求得实数a 的取值范围.【解答】解:令25t x ax =-+,易知12log y t =在其定义域上单调递减,要使()f x 在(4,)+∞上单调递减,则25t x ax =-+在(4,)+∞单调递增,且250t x ax =-+>,即2424450a a ⎧⎪⎨⎪-+⎩, 所以8214a a ⎧⎪⎨⎪⎩,即214a 因此实数a 的取值范围是(-∞,21]4. 故选:D. 【点评】本题考查复合函数的单调性,考查学生的运算能力,属于中档题.5.已知3log a =0.1b e =,0.5ln c e =,则三者大小关系为( )A .a c b <<B .c a b <<C .c b a <<D .a b c <<【考点】对数值大小的比较【分析】直接利用对数的运算性质化简得答案.【解答】解:33log log 0.5a =<=,0.101b e e =>=,0.50.5ln c e ==,a cb ∴<<.故选:A .【点评】本题考查对数值的大小比较,考查对数的运算性质,是基础题.6.已知12a e =,3log 5b =,6log 8c =(其中e 为自然对数的底数, 2.718)e ≈,下列关系正确的是( )A .a b c >>B .a c b >>C .b a c >>D .c a b >> 【考点】对数值大小的比较【分析】利用对数函数的单调性得到a b >,a c >,再利用对数的运算法则,换底公式,基本不等式得到b c >,求解即可.【解答】解:1232a e =>,33log 5log 3b =<332=, 6443log 8log 81log 22c =<=+=, a b ∴>,a c >,25858583363535lg lg lg lg lg lg lg b c lg lg lg lg lg lg -⋅∴-=->-=⋅ 222222(83)2425555444353535lg lg lg lg lg lg lg lg lg lg lg lg lg +--->=>⋅⋅⋅ 2255035lg lg lg lg -==⋅, b c ∴>,a b c ∴>>,故选:A .【点评】本题考查了对数的运算法则,换底公式,对数函数的单调性,基本不等式的应用,考查了计算能力,属于中档题.7.若1a >,则1()x y a=与log a y x =在同一坐标系中的图象大致是( ) A . B .C .D .【考点】对数函数的图象与性质;指数函数的图象与性质【分析】由指数函数与对数函数的性质依次判断即可. 【解答】解:1()x y a=与log a y x =分别过(0,1),(1,0)点, 又1a >, ∴1()x y a=与log a y x =分别为定义域内的减函数,增函数, 故选:D .【点评】本题考查了指数函数与对数函数的性质应用,属于基础题.二.多选题(共3小题)8.下列函数中,属于奇函数并且值域为R 的有( )A .3y x =B .1y x x =+C .1y x x =-D .22x x y -=+【考点】函数的值域;函数奇偶性的性质与判断【分析】根据题意,依次分析选项是否正确,综合可得答案.【解答】解:根据题意,依次分析选项:对于A ,3()f x x =是奇函数,且值域为R ,符合题意;对于B ,1()f x x x =+,当0x >时,1()2f x x x=+,当0x <时,()2f x -,即()f x 的值域为(-∞,2][2-,)+∞,不符合题意;对于C ,1()f x x x=-,是奇函数,且在(0,)+∞上单调递增,当0x +→时,()f x →-∞,x →+∞时,()f x →+∞,其值域为R ,符合题意;对于D ,()22x x f x -=+,是奇函数,且()2f x (当且仅当0x =时取“= “),其值域不为R ,不符合题意;故选:AC .【点评】本题考查函数奇偶性的判断以及值域的计算,考查逻辑推理能力与运算求解能力,属于中档题.9.下列函数中,值域是(0,)+∞的是( )A .12x y -=B .21y x =C .(1)y ln x =+D .||y x =【考点】函数的值域【分析】利用函数的性质求出值域即可判断.【解答】解:对于:1A x R -∈,120x y -∴=>,故A 正确,对于:0B x ≠,20x ∴>,210y x ∴=>,故B 正确, 对于:10C x +>,(1)(y ln x ∴=+∈-∞,)+∞,故C 错误,对于:D x R ∈,||[0y x ∴=∈,)+∞,故D 错误.故选:AB .【点评】本题主要考查函数值域的求解和判断,结合函数的性质求出函数的值域是解决本题的关键,是基础题.10.下列函数中,是奇函数且在(,)-∞+∞上是单调递增函数的是( )A .()f x x =B .()||f x x x =C .()22x x f x -=-D .2()f x x =【考点】奇偶性与单调性的综合【分析】由常见函数的奇偶性和单调性可得结论.【解答】解:()f x x =为奇函数,且在(,)-∞+∞上是单调递增,故A 符合题意;()||f x x x =满足()()f x f x -=-,()f x 为奇函数,且在[0,)+∞递增,在(-∞,0]也递增,则()f x 在(,)-∞+∞上是单调递增,故B 符合题意;()22x x f x -=-的定义域为R ,满足()()f x f x -=-,()f x 为奇函数,且2x y =和2x y -=-在R 上递增,则()f x 在R 上递增,故C 符合题意;2()f x x =为偶函数,故D 不符题意.故选:ABC .【点评】本题考查函数的奇偶性和单调性的判断,考查运算能力和推理能力,属于基础题.三.填空题(共5小题)11.函数22(1)3(0)f x x x x -=-+>,则f (3)= 5 .【考点】函数的值【分析】令213x -=得2x =,再代入即可.【解答】解:令213x -=得,2x =或2x =-(舍去),故f (3)2(21)f =-22235=-+=,故答案为:5.【点评】本题考查了复合函数函数值的求法,属于基础题.12.函数()log (2)2(0a f x x a =+->,且1)a ≠的图象必过定点 (1,2)-- .【考点】对数函数的图象与性质【分析】令21x +=,解得1x =-,当1x =-时,022y =-=-,即可求解.【解答】解:令21x +=,解得1x =-,当1x =-时,022y =-=-,故函数()log (2)2(0a f x x a =+->,且1)a ≠的图象必过定点(1,2)--.故答案为:(1,2)--.【点评】本题主要考查对数函数的性质,考查定点问题,属于基础题.13.已知212x =,21log 3y =,则x y +的值为 2 . 【考点】对数的运算性质【分析】先把指数式化为对数式,再利用对数的运算性质求解.【解答】解:212x =,2log 12x ∴=,222112log 423x y log log ∴+=+==, 故答案为:2.【点评】本题主要考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.14.已知函数23(0x y a a -=+>且1)a ≠的图象恒过定点P ,点P 在幂函数()y f x =的图象上,则3log f (3)= 2 .【考点】幂函数的概念、解析式、定义域、值域;指数函数的单调性与特殊点【分析】求出(2,4)P ,由幂函数()a y f x x ==过(2,4)P ,求出a ,得到()f x 的解析式,再计算3log f (3)即可.【解答】解:函数23(0x y a a -=+>且1)a ≠的图象恒过定点P ,则(2,4)P ,∴幂函数()a y f x x ==过(2,4)P ,24a ∴=,解得2a =,2()f x x ∴=,3log f ∴(3)3log 92==.故答案为:2.【点评】本题考查函数值的求法,考查函数的性质等基础知识,考查运算求解能力,是基础题.15.若幂函数()f x 的图象经过点1(,4)4,则(2)f -= 12- . 【考点】幂函数的概念、解析式、定义域、值域【分析】设出幂函数的解析式,代入点的坐标,求出函数的解析式,求出(2)f -的值即可.【解答】解:设幂函数的解析式为()f x x α=, 则1()44α=,解得:1α=-, 故1()f x x =,故1(2)2f -=-, 故答案为:12-. 【点评】本题考查了求幂函数的定义,考查函数求值问题,是基础题.四.解答题(共7小题)16.已知函数()f x 是定义在R 上的奇函数,且当0x <时,2()2f x x x =-+.(1)当0x 时,求函数()f x 的解析式;(2)解关于m 的不等式:(2)(2)23f m f m m +--.【考点】函数奇偶性的性质与判断【分析】(1)根据奇函数的性质进行转化求解即可.(2)将不等式进行转化,利用函数奇偶性和单调性的性质进行转化求解即可.【解答】解:(1)函数()f x 是定义在R 上的奇函数,且当0x <时,2()2f x x x =-+. (0)0f ∴=,当0x >,则0x -<,则2()2()f x x x f x -=--=-,即2()2(0)f x x x x =+<,综上2()2(0)f x x x x =+.(2)由(2)(2)23f m f m m +--.得(2)2(2)2(2)2f m m f m m f m m +--+-=-+-. 设()()g x f x x =+,则不等式等价为(2)(2)g m g m -,作出函数()f x 的图象如图:则()f x 在R 上是增函数,则()()g x f x x =+也是增函数, 则由(2)(2)g m g m -,得22m m -,得23m, 即实数m 的取值范围是(-∞,2]3.【点评】本题主要考查函数解析式的求解,根据函数奇偶性和单调性的定义将不等式进行转化是解决本题的关键,是中档题.17.设函数4()221xx f x =--,0x >. (1)求函数()f x 的值域;(2)设函数2()1g x x ax =-+,若对1[1x ∀∈,2],2[1x ∃∈,2],12()()f x g x =,求正实数a 的取值范围.【考点】函数的值域【分析】(1)由已知41()2212121x x x x f x =-=-+--,,利用基本不等式可求函数()f x 的值域;(2)由对1[1x ∀∈,2],2[1x ∃∈,2],12()()f x g x =,可得函数函数()f x 在[1,2]上的值域包含于函数()g x 在[1,2]上的值域,由此可求正实数a 的取值范围.【解答】解:(1)24(2)111()2221212121x x x x x x f x -+=-=-=-+---,0x >,210x ->, 则11()212(21)22121x x x x f x =-+-⋅=--,,当且仅当1x =时取“=”, 所以()[2f x ∈,)+∞,即函数()f x 的值域为[2,)+∞;(2)设21x t =-,[1x ∈,2],[1t ∴∈,3], 函数1y t t=+在[1,3]上单调递增, 则函数()f x 在[1,2]上单调递增,()[2f x ∴∈,10]3, 设[1x ∈,2]时,函数()g x 的值域为A ,由题意知[2,10]3A ⊆, 又因为函数()g x 图象的对称轴为02a x =>, 当12a ,即02a <时,函数()g x 在[1,2]上递增,则(1)210(2)3g g ⎧⎪⎨⎪⎩,解得506a <, 当122a <<时,即24a <<时,函数()g x 在[1,2]上的最大值为g (1),g (2)中的较大者,而g (1)20a =-<且g (2)521a =-<,不合题意,当22a >,即4>时,函数()g x 在[1,2]上递减,则10(1)3(2)2g g ⎧⎪⎨⎪⎩,满足条件的a 不存在. 综上,5(0,]6a ∈. 【点评】本题考查了求函数的值域及分类讨论思想,采用了换元法求值域,换元后对参数t 的范围要进行确认,这是易错点,属于中档题.18.设函数21y mx mx =--.(1)若函数21y mx mx =--有两个零点,求m 的取值范围;(2)若命题:x R ∃∈,0y ,是假命题,求m 的取值范围;(3)若对于[1x ∈,3],2(1)3y m x ++恒成立,求m 的取值范围.【考点】函数恒成立问题;二次函数的性质与图象【分析】(1)利用零点的定义,结合二次方程根的个数问题,求解即可;(2)将问题转化为210mx mx --<对于x R ∀∈恒成立,分0m =和0m ≠两种情况,结合二次函数的图象与性质,列式求解即可;(3)将问题转化为4()m x x-+在[1x ∈,3]恒成立,利用基本不等式求解最值,即可得到答案.【解答】解:(1)因为函数21y mx mx =--有两个零点,所以方程210mx mx --=有两个不同的实数根,则2040m m m ≠⎧⎨=+>⎩,解得4m <-或0m >, 故实数m 的取值范围为(-∞,4)(0-⋃,)+∞;(2)命题:x R ∃∈,0y ,是假命题,则命题:x R ∀∈,0y <,是真命题,则210mx mx --<对于x R ∀∈恒成立,当0m =时,不等式为10-<恒成立,符合题意;当0m ≠时,则2040m m m <⎧⎨=+<⎩,解得40m -<<. 综上所述,实数m 的取值范围为(4-,0];(3)因为对于[1x ∈,3],2(1)3y m x ++恒成立, 即240x mx ++对于[1x ∈,3]恒成立,即4()m x x-+在[1x ∈,3]恒成立, 则4[()]max m x x-+, 因为4424x x x x+⋅=, 当且仅当4x x=,即2x =时取等号, 所以4[()]4max x x -+=-, 则4m -,所以实数m 的取值范围为[4-,)+∞.【点评】本题考查了函数零点的理解与应用,函数与方程的应用,函数与不等式的综合应用,命题真假的应用以及不等式恒成立问题,要掌握不等式恒成立问题的一般求解方法:参变量分离法、数形结合法、最值法等,属于中档题.19.已知函数()log (2)log (2)a a f x x x =+--,其中0a >,1a ≠.(1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性并给出证明;(3)若(1)1f -<,求a 的取值范围.【考点】函数奇偶性的性质与判断【分析】(1)依题意,得2020x x +>⎧⎨->⎩,解之可得函数()f x 的定义域; (2)()f x 为奇函数;利用奇函数的定义证明即可;(3)1(1)13aa f log log a -<⇔<,通过对a 的范围的分类讨论,可求得答案. 【解答】解:(1)()log (2)log (2)a a f x x x =+--,其中0a >,1a ≠,∴202202x x x x +>>-⎧⎧⇒⎨⎨-><⎩⎩, ∴函数()f x 的定义域为(2,2)-;(2)()f x 为奇函数. 证明:22()()022a a x x f x f x log log x x-+-+=+=+-, ()()f x f x ∴-=-,(2,2)x ∈-,()f x ∴为奇函数;(3)(1)1f -<,∴1(1)3a a f log log a -=<, ①01a <<,()f x 单调递减,∴103a <<; ②1a >,()f x 单调递增,∴13a >,1a ∴>; 综上:103a <<或1a >,即(0a ∈,1)(13⋃,)+∞. 【点评】本题考查函数奇偶性的性质与判断,考查分析推理能力与运算求解能力,属于中档题.20.已知函数1()21x f x a =-+为奇函数. (1)求a 的值,并判断函数()f x 的单调性;(2)若x R ∀∈,2(1)()0f x f kx ++<,求实数k 的取值范围.【考点】奇偶性与单调性的综合【分析】(1)由奇函数在R 上有定义,可得(0)0f =,求得a 的值,再由指数函数的单调性可得()f x 的单调性;(2)由奇函数()f x 的单调性可将不等式的两边的“f ”去掉,结合二次不等式恒成立,运用判别式法,解不等式可得所求范围.【解答】解:(1)函数1()21x f x a =-+为奇函数,定义域为R , 可得(0)0f =,即102a -=,解得12a =, 则1112()12212xx xf x -=-=++,满足()()0f x f x -+=, 所以12a =成立; 由2x y =在R 上递增,可得112xy =+在R 上递减, 所以()f x 在R 上为递减函数;(2)x R ∀∈,2(1)()0f x f kx ++<,即为2(1)()()f x f kx f kx +<-=-,因为()f x 在R 上为递减函数,所以21x kx +>-,即210x kx ++>恒成立,则△0<,即240k -<,解得22k -<<,则k 的取值范围是(2,2)-.【点评】本题考查函数的奇偶性和单调性的判断和运用:解不等式,考查转化思想和运算能力、推理能力,属于基础题.21.计算下列各式.(1)1206310.064()(2021)3π--+-+; (2)2731329log 5log 42log 5log -++. 【考点】对数的运算性质;有理数指数幂及根式【分析】(1)利用有理数指数幂的运算性质求解.(2)利用对数的运算性质求解.【解答】解:(1)原式1113662332043132⨯⨯⨯=⋅-++⨯ 23220.49198917255=-++⨯=-++=. (2)原式333log 527log 9log 527211=+++-=++=.【点评】本题主要考查了有理数指数幂的运算性质和对数的运算性质,是基础题.22.计算:(100.539()()54--++(2)22log 62222523lg lg -+-- 【考点】有理数指数幂及根式;对数的运算性质【分析】利用有理指数幂及对数的运算性质依次化简即可.【解答】解:(100.539()()54--++221133e e =-+++;(2)22log 62222523lg lg -+--421100632lg =--⨯ 211=-=.【点评】本题考查了有理指数幂及对数的运算,属于基础题.。
一.基础题组1.【山东省实验中学2017届高三第一次诊,11】已知函数2log ,0,()3,0,x x x f x x >⎧=⎨≤⎩则1()4f f ⎡⎤=⎢⎥⎣⎦.【答案】19考点:分段函数求值2.【湖北省黄石市2017届高三年级九月份调研,4】已知函数()221,1,1x x f x x ax x ⎧+<=⎨+≥⎩,若()()04f f a =,则实数a 等于( ) A .12 B .45C .2D .9 【答案】C 【解析】 试题分析:()()0(2)4242ff f a a a ==+=⇒=,选C.考点:分段函数求值【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么.函数周期性质可以将未知区间上的自变量转化到已知区间上.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值.3.【江西南昌市2017届摸底考试,8】若定义域为R 的函数()f x 在(4,)+∞上为减函数,且函数(4)y f x =+为偶函数,则( )A .(2)(3)f f >B .(2)(5)f f >C .(3)(5)f f >D .(3)(6)f f > 【答案】D考点:函数性质4.【山东省肥城市2017届高三上学期升级统测,9】定义在R 上的函数()f x 满足在区间[)1,1-上,(),102,015x m x f x x x --≤<⎧⎪=⎨-≤<⎪⎩, 其中m R ∈,若5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则()5f m =( ) A .85- B .25- C .35 D .75【答案】B 【解析】试题分析:因为()()11 2.f x f x T +=-⇒=所以59111213()()||22222525f f f f m m ⎛⎫⎛⎫-=⇒-=⇒-=--⇒=- ⎪ ⎪⎝⎭⎝⎭,因此()325(3)(1)1.55f m f f =-=-=-+=-选B. 考点:分段函数性质5.【河南濮阳市一高2017届高三上学期第二次检测,6】“2log (23)1x -<”是“48x >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】试题分析:因为2log (23)1x -<,所以3522x <<,又因为48x >,所以32x > ,所以3522x <<⇒32x >.即“2log (23)1x -<”是“48x >”的充分不必要条件,故选A. 考点:1、对数函数的性质及指数函数的性质;2、充分条件与必要条件.6.【河南濮阳市一高2017届高三上学期第二次检测,6】函数21()log (12)1f x x x =-++的定义域为( ) A .1(0,)2 B .1(,)2-∞ C .1(1,0)(0,)2- D .1(,1)(1,)2-∞-- 【答案】D考点:1、函数的定义域;2、对数函数的.7.【河南濮阳市一高2017届高三上学期第二次检测,3】下列函数中,是偶函数且在(0,)+∞上为增函数的是( )A .cos y x =B .21y x =-+ C .2log ||y x = D .xx y e e -=- 【答案】C【解析】考点:1、函数的奇偶性;2、函数的单调性.8.【河南濮阳市一高2017届高三上学期第二次检测,4】若0.2log 2a =,0.2log 3b =,0.22c =,则( )A .a b c <<B .b a c <<C .b c a <<D .a c b << 【答案】B【解析】试题分析:0.2log y x =是减函数,所以0b a <<,又0c >,所以b a c <<.故选B. 考点:1、对数函数的性质;2、指数函数的性质.9.【河南濮阳市一高2017届高三上学期第二次检测,7】若3x a =,5x b =,则45x 等于( )A . 2abB .2a bC .2a b +D .22a b +【答案】A【解析】试题分析:()22459535x x xx x a b =⨯=⨯=.故选A.考点:指数的运算.10.【河南濮阳市一高2017届高三上学期第二次检测,9】已知函数(12),1,()1log ,13x a ax f x x x ⎧-≤⎪=⎨+>⎪⎩当12x x ≠时,1212()()0f x f x x x -<-,则a 的取值范围是( )A .1(0,]3B .11[,]32C .1(0,]2D .11[,]43【答案】A考点:1、分段函数的解析式;2、分段函数的单调性及数学的转化与划归思想.11.【河南濮阳市一高2017届高三上学期第二次检测,10】若函数2()2(2)||f x x x a x a =+--在区间[-3,1]上不是单调函数,则实数a 的取值范围是 ( )A .[-4,1]B .[-3,1]C .(-6,2)D .(-6,1) 【答案】C考点:1、分段函数的单调性;2、利用导数研究分段函数的极值点.12.【江西九江地区2017届高三七校联考,2】函数229log (1)x y x -=+的定义域是( )A .(1,3)-B .(1,3]-C .(1,0)(0,3)-D .(1,0)(0,3]-【答案】D 【解析】考点:函数定义域13.【江西九江地区2017届高三七校联考,4】幂函数2268()(44)m m f x m m x -+=-+在(0,)+∞为增函数,则m 的值为( )A .1或3B .1 C.3 D .2 【答案】B 【解析】试题分析:22441,6801m m m m m -+=-+>⇒=,选B. 考点:幂函数定义及性质14.【江西九江地区2017届高三七校联考,5】已知函数||()21x f x =-+,定义函数(),0,()(),0.f x x F x f x x >⎧=⎨-<⎩则()F x 是( )A .奇函数B .偶函数C .既是奇函数,又是偶函数D .非奇非偶函数 【答案】A考点:分段函数奇偶性15.【江西九江地区2017届高三七校联考,7】若函数22()log (3)f x x ax a =--在区间(,2]-∞-上是减函数,则实数a 的取值范围是( ) A .(,4)-∞ B .(4,4]- C .(,4)[2,)-∞+∞ D .[4,4)- 【答案】D 【解析】试题分析:由题意得230x ax a -->在区间(,2]-∞-上恒成立且22a≥-,即2(2)(2)30a a ---->且4a ≥-,解得实数a 的取值范围是[4,4)-,选D.考点:复合函数单调性16.【广东海珠区2017届上学期高三综合测试(一),3】设偶函数()f x 的定义域为R ,当[0,)x ∈+∞时,()f x 是增函数,则(2),(),(3)f f f π--的大小关系是( )A .(2)()(3)f f f π-<<-B .()(2)(3)f f f π<-<-C .(2)(3)()f f f π-<-<D .(3)(2)()f f f π-<-< 【答案】C考点:1、函数的奇偶性;2、函数的单调性.17.【河北唐山市2017届上学期高三摸底考,4】设函数(),y f x x R =∈,“()y f x =是偶函数”是“()y f x =的图象关于原点对称”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B .【解析】试题分析:当“()y f x =的图象关于原点对称”时,函数()y f x =为奇函数,所以)()(x f x f -=-,所以)()(x f x f =-,所以()y f x =是偶函数;反过来,当“()y f x =是偶函数”时不能推出“()y f x =的图象关于原点对称”例如:2x y =,此时2x y =是偶函数,其图像不关于原点对称.所以“()y f x =是偶函数”是“()y f x =的图象关于原点对称”的必要不充分条件,故应选B .18.【河北唐山市2017届上学期高三摸底考,8】设0x 是方程13xx ⎛⎫= ⎪⎝⎭的解,则0x 所在的范围是( )A .10,3⎛⎫ ⎪⎝⎭B .11,32⎛⎫ ⎪⎝⎭C .12,23⎛⎫ ⎪⎝⎭D .2,13⎛⎫⎪⎝⎭【答案】B . 【解析】试题分析:构造函数x x f x -⎪⎭⎫ ⎝⎛=31)(,所以01031)0(0>=-⎪⎭⎫⎝⎛=f ,031313131)31(213131>⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-⎪⎭⎫ ⎝⎛=f ,021312131)21(212121<⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=-⎪⎭⎫ ⎝⎛=f ,所以由零点的存在性定理可得函数x x f x-⎪⎭⎫⎝⎛=31)(在11,32⎛⎫ ⎪⎝⎭上存在零点,故应选B .考点:1、函数与方程.19.【广西南宁二中、柳州高中、玉林高中2017届高三8月联考,6】设函数311log (2),1()3,1x x x f x x -+-<⎧=⎨≥⎩,求3(7)(log 12)f f -+=( )A .8B .15C .7D .16 【答案】C 【解析】考点:分段函数.20.【湖南永州市2017届高三第一次模拟,4】若2a =,384b =,ln2c =,则( )A .c b a <<B .c a b <<C .a b c <<D .b a c <<【答案】B考点:基本函数.21.【湖北2017届百所重点校高三联考,5】“11e eb dx x≤⎰”是“函数()2,03,0xx x f x b x ⎧+>=⎨+≤⎩是在R 上的单调函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B 【解析】试题分析:因e e b 1lnln -≤,即2≤b ;因函数()2,03,0x x x f x b x ⎧+>=⎨+≤⎩是在R 上的单调函数,故21≤+b ,即1≤b ,故2≤b 是1≤b 的必要非充分条件,应选B.考点:充分必要条件及运用.【易错点晴】本题是一道函数的单调性和充分必要条件整合在一起的综合问题.求解这类问题时,要充分借助题设条件,先搞清楚判定哪个命题是哪个命题的条件,再将问题转换为判定在一个命题成立的前提下,另一个命题的真假问题.本题求解时,要先将不等式“11eeb dx x≤⎰”翻译成2≤b 成立的前提下,命题“函数()2,03,0x x x f x b x ⎧+>=⎨+≤⎩是在R 上的单调函数”是否成立的问题,当然这里要用到绝对值函数语指数函数的性质.验证必要性时,要考察这个命题的逆命题的真伪.显然命题不真;反之成立,故应选B.22.【江西九江地区2017届高三七校联考,13】若方程210x mx m -+-=有两根,其中一根大于2,另一根小于2的充要条件是__________. 【答案】3m >【解析】考点:二次函数实根分布23.【江西九江地区2017届高三七校联考,15】若函数3211(),22()1log,2xaxf xx x-⎧≤⎪⎪=⎨⎪>⎪⎩(0a>,且1a≠)的值域是R,则实数a的取值范围是________.【答案】2[,1)2考点:分段函数值域【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么.函数周期性质可以将未知区间上的自变量转化到已知区间上.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值.24.【广西南宁二中、柳州高中、玉林高中2017届高三8月联考,14】已知定义在R上的偶函数()f x在[0,)+∞上单调递减,且(1)0f=,则不等式(2)0f x-≤的解集是__________.【答案】(,1][3,)-∞+∞【解析】试题分析:因为()f x在R上为单调递减的偶函数,且(1)0f=,所以不等式(2)0f x-≤等价于|2|1x-≥,解得3x≥或1x≤,所以等式(2)0f x-≤的解集为(,1][3,)-∞+∞.考点:1、函数的奇偶性;2、函数的单调性;3、不等式的解法.25.【江苏南通市如东县、徐州丰县2017届10月联考,2】函数1()lg(1)1f x xx=++-的定义域是▲.【答案】()()1,11,-⋃+∞考点:定义域26.【江苏南通市如东县、徐州丰县2017届10月联考,4】设幂函数()f x kx α=的图象经过点()4,2,则k α+=▲ . 【答案】32【解析】试题分析:由题意得11,422k αα==⇒=∴32k α+=考点:幂函数定义27.【江苏南通市如东县、徐州丰县2017届10月联考,5】计算121(lg lg 25)1004--÷= ▲ .【答案】-20 【解析】试题分析:11211(lg lg 25)100lg 10204100---÷=÷=-考点:对数式运算28.【江苏南通市如东县、徐州丰县2017届10月联考,7】已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .【答案】2- 【解析】试题分析:(4)()T 4f x f x +=⇒=,所以(7)(1)(1) 2.f f f =-=-=-29.【江苏南通市如东县、徐州丰县2017届10月联考,8】已知()f x 为定义在R 上的偶函数,当0x ≥时,()22x f x =-,则不等式()16f x -≤的解集是 ▲ .【答案】[]2,4- 【解析】试题分析:当0x ≥时,()22xf x =-单调递增,又()33226f =-=()16|1|324f x x x ∴-⇒-≤⇒-≤≤≤考点:利用函数性质解不等式30.【四川巴中市2017届“零诊”,14】若31044=+-x x ,则=4log 3x .【答案】1±.考点:对数的运算.二.能力题组1.【山东省实验中学2017届高三第一次诊,10】已知定义在R 上的偶函数()f x 满足(4)()f x f x -=,且(1,3]x ∈-时,21cos ,13,()2,11,x x f x x x π⎧+<≤⎪=⎨⎪-<≤⎩则()()lg ||g x f x x =-的零点个数是( ) A .9 B .10C .18D .20【答案】C 【解析】试题分析:(4)()()4f x f x f x T -==-⇒=,只需考虑(0,10]x ∈上()y f x =与lg y x =交点个数,在第一个周期(0,4]x ∈上有3个交点,第二个周期(4,8]x ∈上有4个交点,在 (8,10]x ∈上有2个交点,共有9个交点,因此零点个数一共是18个,选C. 考点:函数零点【思路点睛】(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.2.【云南省、四川省、贵州省2017届高三上学期百校大联考数学,7】设e 是自然对数的底,0a >且1a ≠,0b >且1b ≠,则“log 2log a b e >”是“01a b <<<”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B3.【河南濮阳市一高2017届高三上学期第二次检测,11】函数2()xf x x a=+的图象可能是( )A .(1)(3)B .(1)(2)(4)C .(2)(3)(4)D .(1)(2)(3)(4) 【答案】C【解析】试题分析:取0a =,可知(4)正确;取4a =-,可知(3)正确;取1a =,可知(2)正确;无论a 取何值都无法作出(1).故选C.考点:1、函数的图象和性质;2、选择题的“特殊值法”.【方法点睛】本题主要考查函数的图象和性质、选择题的“特殊值法”,属于难题.特殊值法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.4.【江西九江地区2017届高三七校联考,6】已知正方体1111ABCD A B C D -的棱长为1,E 、F 分别是边1AA 、1CC 的中点,点M 是1BB 上的动点,过三点E 、M 、F 的平面与棱1DD 交于点N ,设BM x =,平行四边形EMFN 的面积为S ,设2y S =, 则y 关于x 的函数()y f x =的解析式为( )A .23()222f x x x =-+,[0,1]x ∈B .23()222f x x x =-++,[0,1]x ∈ C .3()2f x x =-,[0,1]x ∈ D .3()2f x x =-,[0,1]x ∈【答案】A考点:函数解析式5.【江西九江地区2017届高三七校联考,8】函数221x x e x y e =-的大致图象是( )A .B .C .D .【答案】A 【解析】考点:函数图像与性质【思路点睛】(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.6.【江西九江地区2017届高三七校联考,11】已知函数()f x 和(1)f x +都是定义在R 上的偶函数,若[0,1]x ∈时,1()()2x f x =,则( )A .15()()32f f ->B .15()()32f f -<C .15()()32f f -=D .19()()32f f -<【解析】试题分析:()(),(1)(1)(2)()f x f x f x f x f x f x =-+=-+⇒+=-,所以5111(2)()2,()()()()2233f x f x T f f f f +=⇒==<=-,选A.考点:函数对称性与周期性7.【广东海珠区2017届上学期高三综合测试(一),8】已知函数()ln ||f x x x =-,则()f x 的图象大致为( )【答案】A【解析】试题分析:因为0x <时()()ln f x x x =--,()f x 在(0,)+∞上递增,0x >时,1()ln ,'()1f x x x f x x=-=-,可得()f x 在(0,1)上递减,在(1,)+∞上递增,所以只有选项A 合题意,故选A.考点:1、函数的图象和性质;2、利用导数研究函数的单调性.8.【河北衡水中学2017届上学期一调,6】函数()21cos 1e xf x x ⎛⎫=-⎪+⎝⎭的图象的大致形状是( ) A . B .C .D .【答案】B考点:函数的奇偶性及函数的图象.9.【湖南永州市2017届高三第一次模拟,12】已知函数()()()11 232 [2)x x f x f x x ⎧--∈-∞⎪=⎨-∈+∞⎪⎩,,,则函数()()cos g x f x x π=-在区间[]08,内所有零点的和为( )A .16B .30C .32D .40 【答案】C 【解析】10.【湖北2017届百所重点校高三联考,8】函数2ln x x y x=的图象大致是( )A .B .C .D .【答案】D 【解析】试题分析:从题设中提供的解析式中可以看出1,0±≠x ,且当0>x 时, x x y ln =,由于x y ln 1/+=,故函数x x y ln =在区间)1,0(e 单调递减;在区间),1(+∞e单调递增.由函数图象的对称性可知应选D. 考点:函数图象的性质及运用.11.【湖北2017届百所重点校高三联考,11】设函数()()()211,ln 31f x x g x ax x =-+=-+,若对任意[)10,x ∈+∞,都存在2x R ∈,使得()()12f x g x =,则实数a 的最大值为( ) A .94 B .2 C .92D .4 【答案】A考点:函数的图象和性质及运用.12.【四川巴中市2017届“零诊”,11】定义在R 上的奇函数)(x f 和偶函数)(x g 满足:xe x g xf =+)()(,给出如下结论:①2)(x x e e x f --=且)2()1(0g f <<;②R x ∈∀,总有1)]([)]([22=-x f x g ; ③R x ∈∀,总有0)()()()(=+--x g x f x g x f ; ④R x ∈∃0,使得)()(2)2(000x g x f x f >. 其中所有正确结论的序号是( )A .①②③B .②③C .①③④D .①②③④ 【答案】A. 【解析】试题分析:由题意得,()()()2()()()()()2x x x x x xe ef x f xg x e f x g x f x g x e e eg x ---⎧+=⎪⎧+=⎪⎪⇒⎨⎨-+-=-+=+⎪⎩⎪=⎪⎩,①:1220(1)(2)222e e e e e f g ---+<=<<=,故①正确;②:2222[()][()]()()122x x x x e e e e g x f x --+--=-=,故②正确;③:()()()()()()()()0f x g x f x g x f x g x f x g x --+=-+=,故③正确;④:000000220002()()2(2)222x x x x x x e e e e e e f x g x f x ----+-=⋅⋅==,故④错误,即正确的结论为①②③,故选A.考点:函数的性质.13.【江西九江地区2017届高三七校联考,16】给出下列四个命题:①函数()log (21)1a f x x =--的图象过定点(1,0);②已知函数()f x 是定义在R 上的偶函数,当0x ≤时,()(1)f x x x =+,则()f x 的解析式为2()||f x x x =-;③函数1||1y x =-的图象可由函数1||y x =图象向右平移一个单位得到;④函数1||1y x =-图象上的点到点(0,1)距离的最小值是3.其中所有正确命题的序号是_________. 【答案】②④考点:函数性质14.【河北省衡水中学2017届高三上学期第三次调,16】已知函数()()2lg ,064,0x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,若关于x的方程()()210fx bf x -+=有8个不同根,则实数b 的取值范围是______________.【答案】1724b <≤考点:1、分段函数;2、函数的图象;3、方程的根.【方法点睛】方程解的个数问题解法:研究程)(x g 0=的实根常将参数移到一边转化为值域问题.当研究程)(x g 0=的实根个数问题,即方程)(x g 0=的实数根个数问题时,也常要进行参变分离,得到)(x f a =的形式,然后借助数形结合(几何法)思想求解;也可将方程化为形如)()(x h x f =,常常是一边的函数图像是确定的,另一边的图像是动的,找到符合题意的临界值,然后总结答案即可.15.【江苏南通市如东县、徐州丰县2017届10月联考,10】已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ . 【答案】43【解析】试题分析:因为1a b >>,所以log 1b a >,又101101log log log log 33log 33a b b b b b a a a a +=⇒+=⇒=或(舍),因此3a b =,因为b a a b =,所以3333,13,33b b b b b b b b a =⇒=>⇒==43a b +=考点:指对数式运算16.【山东省肥城市2017届高三上学期升级统测,15】已知函数()()log 01a f x x a a =>≠且和函数()sin2g x x π=,若()f x 与()g x 的图象有且只有3个交点, 则a 的取值范围是 .【答案】()11,5,973⎛⎫⎪⎝⎭考点:函数交点【思路点睛】(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.17.【湖北2017届百所重点校高三联考,16】设函数()f x 对任意实数x 满足()()1f x f x =-+,且当01x ≤≤时,()()1f x x x =-,若关于x 的方程()f x kx =有3个不同的实数根,则k 的取值范围是___________. 【答案】(){}526,1322--+【解析】试题分析:因()()1f x f x =-+,故)()2(x f x f =+,即函数)(x f 是周期为2的周期函数,画出函数函数]1,0[),(∈=x x f y 的图象,再借助函数满足的条件()()1f x f x =-+及图象的对称性,画出函数)(x f y =的图象如图,结合图象可得12+=-kx x x ,故04)1(2>-+=∆k k ,解之可得1625<<-k 或223+-=k ,故应填(){}526,1322--+.y=kx+1yx-2-1O -2-12121考点:函数的图象等有关知识的综合运用.【易错点晴】函数图象和性质是高中数学教与学中的重点和难点之一,也是高考和各级各类考试的热点内容.本题以函数零点的个数的形式将二次函数与一次函数的零点问题进行有机地整合,有效地考查和检测学生综合运用所学知识去分析问题解决问题的能力.求解时,先探求函数的周期性,再画出函数的图象,然后借助函数的图象进行分析探求建立不等式,进而求得实数k 的取值范围是(){}526,1322--+.18.【河南濮阳市一高2017届高三上学期第二次检测,15】若“m a >”是“函数11()()33x f x m =+-的图象不过第三象限”的必要不充分条件,则实数a 能取的最大整数为__________. 【答案】1-三.拔高题组1.【河北省衡水中学2017届高三摸底联考,11】已知函数()()()()()52log 11221x x f x x x -<⎧⎪=⎨--+≥⎪⎩,则关于x 的方程()()fx a a R =∈实根个数不可能为 ( )A . 2个B .3个C . 4个D .5 个 【答案】D考点:函数与方程.【名师点睛】本题考查函数与方程,属中档题;函数与方程是最近高考的热点内容之一,解决方法通常是用零点存在定理或数形结合方法求解,如本题就是将方程转化为两个函数图象交点,通过观察图象交点的个数研究方程根的个数的.2.【河北衡水中学2017届上学期一调,10】已知()11,01,22,1,x x x f x x -⎧+≤<⎪=⎨⎪≥⎩存在210x x >≥,使得()()12f x f x =,则()12x f x 的取值范围为( )A .2112⎫-⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .24⎫⎪⎪⎣⎭D .2212⎫-⎪⎪⎣⎭【答案】A 【解析】考点:对数函数的图象及二次函数的性质.3.【河南百校联考2017届高三9月质检,9】已知()1145279722,,,log 979x x f x a b c --⎛⎫⎛⎫=-=== ⎪ ⎪⎝⎭⎝⎭,则()()(),,f a f b f c 的大小顺序为( )A .()()()f b f a f c <<B .()()()f c f b f a <<C .()()()f c f a f b <<D .()()()f b f c f a << 【答案】B 【解析】试题分析:()22xxf x -=-为单调递增函数,而11144527997,log 09779a b c -⎛⎫⎛⎫⎛⎫==>==< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()()()f c f b f a <<,选B.考点:比较大小4.【河北邯郸2017届9月联考,12】已知函数42412sin4()22x x x f x x +++=+,则122016()()()201720172017f f f +++=( ) A .2017 B .2016 C .4034 D .4032 【答案】D .考点:1、函数的基本性质;2、函数的奇偶性;3、函数的综合应用.【思路点睛】本题主要考查了函数的基本性质、函数的奇偶性和函数的综合应用,考查学生综合知识能力,属中档题.其解题的一般思路为:首先将已知条件进行化简并得到222sin 2)21(xx x x f ++=+,并令222sin )21(xx x x g +=+,进而可判断出其奇偶性,再由奇函数的图像与性质可得出所求的结果即可.其解题的关键是正确的化简变形并判断出函数的奇偶性.5.【河南濮阳市一高2017届高三上学期第二次检测,21】(本小题满分12分)已知函数()22xxf x -=+. (1)求方程5()2f x =的根; (2)求证:()f x 在[0,)+∞上是增函数;(3)若对于任意[0,)x ∈+∞,不等式(2)()f x f x m ≥-恒成立,求实数m 的最小值. 【答案】(1)1x =或1x =-;(2)证明见解析;(3)0.(2)证明:设120x x ≤<,则211211221212(22)(12)()()22(22)022x x x x x x x x x x f x f x +-----=+-+=<, ∴12()()f x f x <,∴()f x 在[0,)+∞上是增函数. (3)由条件知2222(2)22(22)2(())2xx x x f x f x --=+=+-=-.因为(2)()f x f x m ≥-对于[0,)x ∈+∞恒成立,且()2f x ≥,2()(2)()[()]2m f x f x f x f x ≥-=-+.又0x ≥,∴由(2)知()f x 最小值为2, ∴()2f x =时,m 最小为2-4+2=0.考点:1、简单的指数方程;2、单调性的证明方法及不等式恒成立问题.【方法点晴】本题主要考查、简单的指数方程、单调性的证明方法及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合(()y f x =图象在()y g x =上方即可);③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题(3)是利用方法①求得m 的最小值的.6.【河南濮阳市一高2017届高三上学期第二次检测,18】(本小题满分12分)设222()(log )2log (0)f x x a x b x =-+>.当14x =时,()f x 有最小值-1. (1)求a 与b 的值;(2)求满足()0f x <的x 的取值范围. 【答案】(1)23a b =-⎧⎨=⎩;(2)11(,)82x ∈.考点:1、二次函数配方法求最值;2、简单的对数不等式.7.【江西九江地区2017届高三七校联考,17】(本小题满分10分)设()log (1)log (3)(0,1)a a f x x x a a =++->≠,且(1)2f =. (1)求a 的值及()f x 的定义域; (2)求()f x 在区间3[0,]2上的值域. 【答案】(1)2a =,(2)215[log ,2]4【解析】试题分析:(1)由(1)2f =的log 42a =,解得2a =(2)因为22()log [(1)4]f x x =--+,所以当(1,1]x ∈-时,()f x 是增函数;当(1,3)x ∈时,()f x 是减函数.因此()f x 在区间3[0,]2上的值域是考点:函数定义域与值域8.【江西九江地区2017届高三七校联考,19】(本小题满分12分)已知二次函数()f x 的对称轴2()x f x =-,的图象被x 轴截得的弦长为3(0)1f =. (1)求()f x 的解析式;(2)若1(())2x f k >对[1,1]x ∈-恒成立,求实数k 的取值范围. 【解析】试题分析:(1)由题意可得二次函数两个零点,所以用零点式设()(23)(23)f x a x x =++,再根据(0)1f =解得1a =(2)不等式恒成立问题一般转化为对应函数最值问题min 1(())2x f k >,而求函数最值,先确定内函数值域11()[,2]22x t =∈,即为外函数定义域,再根据二次函数对称轴与定义区间位置关系得最小值由(0)11f a =⇒=,∴2()(23)(23)41f x x x x x =++=++;………………6分(2)当[1,1]x ∈-时,11()[,2]22xt =∈,………………8分 ∵()f x 开口向上,对称轴为2x =-.∴()f t 在1[,2]2t ∈上单调递增.………………9分 ∴min113()()24f t f ==.所以实数k 的取值范围是13(,)4-∞.………………12分 考点:二次函数解析式及最值【思路点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.9.【江苏南通市如东县、徐州丰县2017届10月联考,16】(本小题满分14分)已知函数()33x x f x λ-=+⋅()R λ∈(1) 当1λ=时,试判断函数()33x x f x λ-=+⋅的奇偶性,并证明你的结论;【答案】(1) 偶函数(2) 27λ-≤考点:函数奇偶性,不等式恒成立问题【思路点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.10.【江苏南通市如东县、徐州丰县2017届10月联考,19】(本小题满分16分)已知函数()133x x af x b+-+=+.(1) 当1a b ==时,求满足()3x f x =的x 的取值;①存在R t ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围;②若函数()g x 满足()()()12333x xf xg x -⋅+=-⎡⎤⎣⎦,若对任意x R ∈,不等式(2)()11g x m g x ⋅-≥恒成立,求实数m 的最大值. 【答案】(1) 1x =- (2) ①()1,-+∞,②6 【解析】试题分析:(1)根据+1333x x =⋅ ,可将方程()3xf x =转化为一元二次方程:()2332310x x ⋅+⋅-=,再根据指数函数范围可得133x= ,解得1x =- (2) ①先根据函数奇偶性确定a b ,值:1,3a b ==,再利用单调性定(2) 因为()f x 是奇函数,所以()()0f x f x -+=,所以1133033x x x x a ab b-++-+-++=++ 化简并变形得:()()333260x xa b ab --++-=要使上式对任意的x 成立,则30260a b ab -=-=且解得:1133a a b b ⎧==-⎧⎪⎨⎨==-⎪⎩⎩或,因为()f x 的定义域是R ,所以13a b =-⎧⎨=-⎩舍去 所以1,3a b ==, 所以()13133x x f x +-+=+ ………………………………………6分①()131********x x x f x +-+⎛⎫==-+ ⎪++⎝⎭对任意1212,,x x R x x ∈<有: ()()()()211212121222333331313131x x x x x x f x f x ⎛⎫-⎛⎫⎪-=-=⎪ ⎪++++⎝⎭⎝⎭因为12x x <,所以21330x x ->,所以()()12f x f x >,因此()f x 在R 上递减. ………………………………………8分因为()()2222f t t f t k -<-,所以2222t t t k ->-,所以440t ∆=+>,解得:1t >-,所以k 的取值范围为()1,-+∞ ………………………………………10分 ②因为()()()12333x xf xg x -⋅+=-⎡⎤⎣⎦,所以()()3323x x g x f x --=-考点:利用函数性质解不等式,不等式恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。
2020高考模拟试题三角函数部分解答题汇编(含答案)1.(2020•巩义市模拟)已知△ABC中,角A,B,C的对边分别为a,b,c,C=120°.(1)若a=2b,求tan A的值;(2)若∠ACB的平分线交AB于点D,且CD=1,求△ABC的面积的最小值.2.(2020•东湖区校级模拟)已知各项都不相等的等差数列{a n}中,,又a1,a2,a6成等比数列.(I)求数列{a n}的通项公式;(II)若函数,0<φ<π,的一部分图象如图所示,A(﹣1,a1),B(3,﹣a1)为图象上的两点,设∠AOB=θ,其中O为坐标原点,0<θ<π,求cos(θ+φ)的值.3.(2020•兴庆区校级四模)如图,考虑点A(1,0),P1(cosα,sinα),P2(cosβ,﹣sinβ),P(cos(α+β),sin(α+β)),从这个图出发.(1)推导公式:cos(α+β)=cosαcosβ﹣sinαsinβ;(2)利用(1)的结果证明:,并计算sin37.5°cos37.5°的值.4.(2020•德阳模拟)在三角形△ABC中,内角A、B、C对应的边分别为a、b、c,已知b cos C+c cos B=2,b sin C=a.(1)求△ABC的面积;(2)若b:c=:1,求A.5.(2020•南岗区校级模拟)已知△ABC的内角A,B,C所对的边分别为a,b,c,cos(A ﹣C)+cos B=,且函数f(x)=P sin(ωx﹣A)(P、ω>0)的部分图象如图所示:(Ⅰ)求∠C的大小;(Ⅱ)若sin B<sin C,点D为线段AB上的点,且CD=2,求△ACD面积的最大值.6.(2020•柯桥区二模)已知函数.(1)求f(x)的对称中心;(2)若为f(x)的一个零点,求cos2x0的值.7.(2020•雨花区校级模拟)已知a,b,c分别是锐角△ABC三个内角A,B,C所对的边,向量,,设.(Ⅰ)若f(A)=2,求角A;(Ⅱ)在(Ⅰ)的条件下,若,,求三角形ABC的面积.8.(2020•西湖区校级模拟)设函数f(x)=+a的最小值是﹣1.(1)求a的值及f(x)的对称中心;(2)将函数f(x)图象的横坐标压缩为原来的一半(纵坐标不变),再向右平移个单位,得到g(x)的图象.若,求x的取值范围.9.(2020•南岗区校级模拟)已知△ABC的内角A,B,C所对的边分别为a,b,c,且△ABC 只能满足以下三个条件中的两个:①;②函数f(x)=P sin(ωx﹣A)(P、ω>0)的部分图象如图所示:③,满足.(Ⅰ)请指出△ABC满足哪两个条件,并证明;(Ⅱ)若sin B<sin C,点D为线段AB上的点,且CD=2,求△ACD面积的最大值.10.(2020•滨州三模)如图,半圆O的直径AB=2,点C在AB的延长线上,BC=1,点P 为半圆上异于A,B两点的一个动点,以点P为直角顶点作等腰直角△PCD,且点D与圆心O分布在PC的两侧,设∠P AC=θ.(1)把线段PC的长表示为θ的函数;(2)求四边形ACDP面积的最大值.11.(2020•启东市校级模拟)如图,点P0是锐角α的终边与单位圆的交点,OP0逆时针旋转得OP1,OP1逆时针旋转得OP2,…,OP n﹣1逆时针旋转得OP n.(1)若P0的坐标为,求点P1的横坐标;(2)若点P2020的横坐标为,求的值.12.(2020•龙凤区校级模拟)已知,将f(x)的图象向右平移个单位后,再保持纵坐标不变,横坐标变为原来的2倍,得到函数g(x)的图象.(1)求函数g(x)在上的值域及单调递增区间;(2)若,且,,求△ABC的面积.13.(2020•衡阳三模)如图平面四边形ABDC,△ABC的内角A,B,C的对边分别为a,b,c,已知2c cos2a sin C=0.(1)求∠CAB;(2)若AB=AC,BD=1,CD=2,求四边形ABDC面积的最大值.14.(2020•香坊区校级一模)在△ABC中,设边a,b,c所对的角分别为A,B,C,且.(Ⅰ)若,求tan A的值.(Ⅱ)若△ABC的面积为,求a+b的值.15.(2020•沙坪坝区校级模拟)在△ABC中,角A,B,C的对边分别为a,b,c,.(1)求C;(2)若,△ABC的面积为,求c.16.(2020•湖北模拟)在△ABD中,角A,B,C所对的边分别为a,b,c,且2a cos C+c=2b.(1))求角A的大小;(2)设D是边AC的中点,若c=1,,求a.17.(2020•汉阳区校级模拟)在△ABC中,角A,B,C的对边分别是a,b,c,b=2a cos C.(1)判断△ABC的形状;(2)若b=2,△ABC的面积为,BC的中点为D,求AD的长.18.(2020•庐阳区校级模拟)在△ABC中,,.(1)求tan B;(2)若△ABC的面积,求△ABC的周长.19.(2020•吉林模拟)已知△ABC的内角A,B,C满足(sin A+sin B)(sin A﹣sin B)=(sin C ﹣sin B)sin C,△ABC的面积为10.(1)求sin2A;(2),求△ABC的周长.20.(2020•西安三模)在△ABC中角A,B,C所对的边分别为a、b、c,满足2cos2=1﹣cos A•cos B+2sin A cos B.(1)求cos B的值;(2)设△ABC外接圆半径为R,且R(sin A+sin C)=1,求b的取值范围.21.(2020•梅河口市校级模拟)已知a,b,c分别是△ABC的内角A,B,C的对边,a(sin A ﹣sin C)=b sin B﹣c sin C,点D在边AB上,BD=1,且.(1)求角B的大小;(2)若△BCD的面积为,求b的值.22.(2020•新华区校级模拟)△ABC的内角A,B,C所对的边分别为a,b,c,已知2a=2b cos C+c sin B.(Ⅰ)求tan B;(Ⅱ)若,且△ABC的面积为6,求a.23.(2020•红岗区校级模拟)在锐角△ABC中,,_______.(1)求角A;(2)求△ABC的周长l的范围.注:在①,,且,②cos A(2b﹣c)=a cos C,③,这三个条件中任选一个,补充在上面问题中并对其进行求解.如果选择多个条件分别作答,按第一个解答积分.24.(2020•雨花区校级模拟)在锐角△ABC中,角A,B,C的对边分别为a,b,c,已知sin(A﹣B)=cos C.(1)求B的值;(2)求的取值范围.25.(2020•九龙坡区模拟)已知函数f(x)=2sin x cos x+2sin(x+)cos(x+).(Ⅰ)求函数f(x)的对称轴方程;(Ⅱ)在ABC中,角A,B,C所对的边分别为a,b,c,且f(+)=,a+c=1,求b的取值范围.26.(2020•马鞍山三模)在△ABC中,角A,B,C的对边分别为a,b,c,△ABC的面积为S,且S=(a2+b2﹣c2).(1)求角C;(2)若3a=2b,求sin A.27.(2020•来宾模拟)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知sin B+2sin C =3sin A,a sin C=2c sin B.(1)求cos A的值;(2)若|﹣|=2,求△ABC的面积.28.(2020•七星区校级模拟)已知△ABC的三个内角A,B,C的对边分别为a,b,c,a+c=3,.(1)求b的最小值;(2)若a<b,b=2,求的值.29.(2020•运城模拟)△ABC的内角A,B,C的对边分别为a,b,c.(1)求证:;(2)若△ABC是锐角三角形,,求c的范围.30.(2020•新乡三模)在△ABC中,角A,B,C的对边分别为a,b,c.已知b sin A=a(2﹣cos B).(1)求B;(2)若a=2,b=,求△ABC的面积.31.(2020•道里区校级模拟)已知△ABC的内角A,B,C的对边分别为a,b,c.满足2c =a+2b cos A.(1)求B;(2)若a+c=5,b=3,求△ABC的面积.32.(2020•金安区校级模拟)△ABC的内角A,B,C的对边分别为a,b,c且满足a=2,a cos B=(2c﹣b)cos A.(1)求角A的大小;(2)求△ABC周长的范围.33.(2020•桃城区校级模拟)已知△ABC的内角A,B,C的对边分别为a,b,c,且满足a cos B+b cos A=2c cos C.(1)求C;(2)若b=2,△ABC的面积为,求△ABC的周长.34.(2020•靖远县四模)在△ABC中,角A,B,C所对的边分别为a,b,c.已知4c=b+4a cos B.(1)求sin A;(2)若a=4,且b+c=6,求△ABC的面积.35.(2020•雨花区校级模拟)已知a,b,c分别是三角形ABC三个内角A,B,C所对的边,.(Ⅰ)若f(A)=3,求角A;(Ⅱ)在(Ⅰ)的条件下,若,,求三角形ABC的面积.36.(2020•黄州区校级二模)如图,在△ABC中,内角A,B,C所对的边分别为a,b,c,若a=2,.(1)求A;(2)若AD是BC边的中线,,求△ABC的面积.37.(2020•九龙坡区模拟)在△ABC中,内角A,B,C所对的边长分别为a,b,c,sin2B+2sin C cos A=sin(C﹣A).(1)求B;(2)若a=2,c=4,D是AC边的中点,求BD的长.38.(2020•河南模拟)在△ABC中,角A,B,C的对边分别为a,b,c(a,b,c互不相等),且满足b cos C=(2b﹣c)cos B.(1)求证:A=2B;(2)若,求cos B.39.(2020•武昌区校级模拟)已知函数的周期为π.(1)求函数f(x)的单调递增区间;(2)若,求x的取值范围.40.(2020•闵行区校级模拟)将函数f(x)=2sin2x的图象向右平移φ(φ>0)个长度单位,得到的图象,再把g(x)的图象上各点的横坐标缩小到原来的(纵坐标不变),得到函数h(x)的图象.(1)求φ的最小值和h(x)的解析式;(2)当时,求函数h(x)的单调递减区间.1.【解答】解:(1)因为a=2b,由正弦定理得sin A=2sin B.又C=120°,故A+B=60°,∴sin A=2sin(60°﹣A)=cos A﹣sin A,∴cos A=2sin A,∴tan A=.(2)由题意知S△ACD+S△BCD=S△ABC,∴,则a+b=ab,由,得ab≥4,则S△ABC=ab,当且仅当a=b时等号成立.2.【解答】解:(I)设等差数列{a n}的公差为d(d≠0),则a4=a1+3d=①,∵a1,a2,a6成等比数列,∴=a1•a6,即=a1•(a1+5d)②,由①②解得,a1=,d=.∴a n=a1+(n﹣1)d=n﹣(n∈N*).(II)由(I)知,a1=,∴A(﹣1,),B(3,﹣),把A(﹣1,)代入函数y=sin(x+φ),得φ=+2kπ,k∈Z.∵0<φ<π,∴φ=.∵A(﹣1,),B(3,﹣),∴AO=2,BO=,AB=.在△AOB中,由余弦定理知,cos∠AOB=,即cosθ==.又0<θ<π,∴θ=.∴cos(θ+φ)=cos(+)=cos cos﹣sin sin=()×()﹣×=.3.【解答】解:(1)∵|P A|=|P1P2|,∴(cos(α+β)﹣1)2+sin2(α+β)=(cosα﹣cosβ)2+(sinα+sinβ)2,即2﹣2cos(α+β)=2﹣2cosαcosβ+sinαsinβ,所以cos(α+β)=cosαcosβ﹣sinαsinβ.(2)∵cos(α+β)=cosαcosβ﹣sinαsinβ.cos(α﹣β)=cosαcosβ+sinαsinβ,∴cosαcosβ=[cos(α+β)+cos(α﹣β)],∴sin37.5°cos37.5°=sin75°=sin(45°+30°)=(sin45°cos30°+cos45°sin30°)=()=.4.【解答】解:(1)∵b cos C+c cos B=2,∴由余弦定理可得:b•+c•=2,∴=2,解得a=2,∵b sin C=a=,∴S△ABC=ab sin C==.(2)由(1)及条件和余弦定理可得:,化简可得:,消去c,可得:sin A+cos A=2,即sin(A+)=1,因为:A∈(0,π),可得:A+=,可得A=.5.【解答】解:(Ⅰ):①,整理得,所以,解得.②函数f(x)=P sin(ωx﹣A)(P、ω>0)的部分图象如图所示:得到:P=2,,故T=π,所以ω=.所以f(x)=2sin(2x﹣A).当x=时,,由于A∈(0,π),所以,所以,解得A=.所以C=或C=.(Ⅱ)由于sin B<sin C,所以b<c,整理得B<C.所以C=,由于A=,C=,,在△ADC中,由余弦定理,所以,所以.此时b=AD=.此时的最大值为.6.【解答】解:(1)函数=+sin2x+(sin x+cos x)•(sin x﹣cos x)=﹣cos2x+sin2x+(sin2x﹣cos2x)=﹣cos2x+sin2x﹣cos2x=+sin2x﹣cos2x=+2sin(2x﹣);令2x﹣=kπ,k∈Z;解得x=+,k∈Z;所以f(x)的对称中心为(+,),k∈Z;(2)若为f(x)的一个零点,则+2sin(2x0﹣)=0,所以sin(2x0﹣)=﹣;由x0∈[0,]知,2x0﹣∈[﹣,],所以2x0﹣∈[﹣,0];所以cos(2x0﹣)==,所以cos2x0=cos[(2x0﹣)+]=cos(2x0﹣)cos﹣sin(2x0﹣)sin=×﹣(﹣)×=.7.【解答】解:(Ⅰ)因为f(A)=2,即,所以或(舍去)(Ⅱ)由(I)可得A=,因为,则,所以cos B+cos C=2cos A=1,又因为,所以cos B+cos()==1.所以sin(B+)=1,因为B为三角形内角,所以所以三角形ABC是等边三角形,由,所以面积S==.8.【解答】解(1)f(x)=+a =cos2x﹣sin2x+sin2x+a=sin2x+cos2x+a=sin(2x+)+a,因为函数f(x)的最小值是﹣1,所以a=0,所以f(x)=sin(2x+).令2x+=kπ,k∈Z,解得x=﹣,k∈Z,故f(x)的对称中心为(﹣,0),k∈Z,(2)由题意可得g(x)=sin[4(x﹣)+]=sin4x,若,即sin4x≥﹣,则2kπ﹣≤4x≤2kπ+,k∈Z,解得﹣≤x≤+,k∈Z,即x的取值范围为[﹣,+],k∈Z,9.【解答】解:(Ⅰ)满足①②两个条件,证明如下:①,整理得,所以,解得.②函数f(x)=P sin(ωx﹣A)(P、ω>0)的部分图象如图所示:得到:P=2,,故T=π,所以ω=.所以f(x)=2sin(2x﹣A).当x=时,,由于A∈(0,π),所以,所以,解得A=.所以C=或C=③,满足.所以,整理得.所以满足①②两个条件.(Ⅱ)由于sin B<sin C,所以b<c,整理得B<C.所以C=,由于A=,C=,,在△ADC中,由余弦定理,所以,所以.此时b=AD=.此时的最大值为.10.【解答】解:(1)依题设知△APB是以∠APB为直角的直角三角形.又AB=2,∠P AB=θ,∴P A=2cosθ,在△P AC中,AC=3,∠P AC=θ,由余弦定理得:PC2=P A2+AC2﹣2P A•AC•cosθ=4cos2θ+9﹣12cos2θ=9﹣8cos2θ.∴PC=,定义域为{θ|0<θ<};(2)设四边形ACDP面积为S.则S=S△APC+S△PCD=====sin(2θ+φ)+,其中cosφ=,sinφ=,∴当sin(2θ+φ)=1时,S取得最大值为.11.【解答】解:(1)因为点P0为,根据三角函数的定义可得sinα=,cosα=;根据题意可知点P1的横坐标为cos(α+)=cosαcos﹣sinαsin=×﹣×=;(2)根据题意可知点P2020的横坐标为cos(α+)=cos()=,所以cos()=﹣;又因为α是锐角,所以α+∈(,),所以sin()=;所以=2sin()cos()=﹣.12.【解答】解:(1)=2cos2x(cos2x+sin2x)﹣1=2cos22x+2sin2x cos2x﹣1=cos4x+sin4x=sin(4x+)将f(x)的图象向右平移个单位后,再保持纵坐标不变,横坐标变为原来的2倍,得到函数g(x)的图象则可得g(x)=sin(2x﹣),x∈,则2x﹣∈[﹣,],则sin(2x﹣)∈[﹣,1],∴g(x)的值域为[﹣1,].令2kπ﹣≤2x﹣≤2kπ+,k∈Z,则kπ﹣≤x≤kπ+,k∈Z,k=0时,﹣≤x≤,所以g(x)在上的单调递增区间为[0,];(2)g()=sin(B﹣)=,解得B=,由,可得C=,则sin A=sin(B+C)=sin B cos C+cos B sin C=×﹣×=,由正弦定理得=,即,解得c=2故△ABC的面积S=bc sin A=×2×2×=﹣1.13.【解答】解:(1)法1:因为,由正弦定理可得,即,即,又0<A<π,所以,即.法2:因为,由正弦定理可得,由于sin C>0,则,又,可得,又0<A<π,所以.(2)当AB=AC,又,所以△ABC为正三角形,在△BDC中,令∠CDB=θ(0<θ<π),由余弦定理可得:BC2=12+22﹣2×1×2cosθ=5﹣4cosθ,所以=,由,所以最大值为1,故当时,.14.【解答】解:(Ⅰ)∵,∴,∵,∴a=2,∵a2+b2﹣3a cos C=6,∴cos C=0,∵C∈(0,π),∴,∴.(Ⅱ)∵,∴,∵a2+b2﹣3a cos C=6,且,∴,∵sin2C+cos2C=1,∴,∴b=1或,当b=1时,,∴,当时,,∴.15.【解答】解:(1)∵=,∴∵C∈(0,π),∴.(2)∵,∴,∴.16.【解答】解:(1)由正弦定理可知:a=2R sin A,b=2R sin B,c=2R sin C,由2a cos C+c =2b,可得:2sin A cos C+sin C=2sin B,又sin B=sin(A+C)=sin A cos C+cos A sin C,∴sin C=cos A sin C,∵sin C≠0,∴cos A=.又∵A∈(0,π),∴A=.(2)∵A=,c=1,,∴在△ABD中,设AD=x,由余弦定理可得:3=1+x2﹣2×,可得x2﹣x﹣2=0,解得x=2,或﹣1(舍去),∵D是边AC的中点,∴b=2x=4,∴在△ABC中,由余弦定理可得a===.17.【解答】解:(1)由正弦定理b=2a cos C,可化为sin B=2sin A cos C.又B=π﹣(A+C).所以sin(A+C)=2sin A cos C,可得sin A cos C+cos A cos C=2sin A cos C,可得sin A cos C+cos A cos C=0,可得sin(A﹣C)=0.因为0<A<π,0<C<π,所以﹣π<A﹣C<π,所以A﹣C=0.A=C.所以为等腰三角形;(2)由(1)知a=c,在△ABC中,取AC的中点E,连接BE,则BE⊥AC,.又△ABC的面积为,所以,根据sin2C+cos2C=1,得,所以a=3,.(解法一)在△ADC中,由余弦定理,得,所以.(解法二)在△ABC中,有,所以=.18.【解答】解:(1)∵0<A<π,∴,,∴,∴.(2)∵,0<B<π,∴,,∵,∴,∴.不妨设A.B.C所对的边分别为a、b、c,则.令a=2x,则,又∵,∴x=1,∴△ABC的周长为.19.【解答】解:(1)设内角A,B,C的对边分别为a,b,c,∵(sin A+sin B)(sin A﹣sin B)=(sin C﹣sin B)sin C,可得(a+b)(a﹣b)=(c﹣b)c,化简可得,b2+c2﹣bc=a2,由余弦定理可得,cos A==,∵0<A<π,∴A=,∴sin2A=.(2)因为,,所以b+c=•2R=.由10=bc sin A,∴bc=40,因为b2+c2﹣bc=a2,∴(b+c)2﹣3bc=a2,∴()2﹣120=a2,∴a=7,所以△ABC的周长为7+13=20.20.【解答】解:(1)因为2cos2=1﹣cos A•cos B+2sin A cos B,所以cos C+cos A cos B=2sin A cos B,所以﹣cos(A+B)+cos A cos B=2sin A cos B,即sin A sin B=2sin A cos B,因为sin A≠0,所以sin B=2cos B>0,又因为sin2B+cos2B=1,解得cos B=.(2)因为a=2R sin A,c=2R sin C,所以a+c=2,可得c=2﹣a,由余弦定理可得:b2=a2+c2﹣2ac cos B=a2+c2﹣ac=a2+(2﹣a)2﹣a(2﹣a)=(a ﹣1)2+,因为0<a<2,所以≤b<2,所以b的取值范围为[,2).21.【解答】解:(1)由于△ABC的内角A,B,C的对边分别为a,b,c,已知a(sin A﹣sin C)=b sin B﹣c sin C.则a2﹣ac=b2﹣c2,所以cos B==,由于0<B<π,则B=.(2)△ABC中,∵B=,点D在边AB上,BD=1,且,∴S△BCD=BD•BC•sin=BC×=,∴BC=2,∴由余弦定理可得CD2=BD2+BC2﹣2BD•BC•cos B=1+4﹣2×1×2×=3,∴CD=,可得DA=DC=3,BA=BD+DA=1+3=4,∴b===2.22.【解答】解:(Ⅰ)法一:由2a=2b cos C+c sin B,及正弦定理,得:2sin A=2sin B cos C+sin B sin C,又A=π﹣(B+C)⇒sin A=sin(B+C),∴2sin(B+C)=2sin B cos C+sin B sin C.即2sin B cos C+2cos B sin C=2sin B cos C+sin B sin C,∴2cos B sin C=sin B sin C由sin C≠0,∴2cos B=sin B,即tan B=2.法二:由2a=2b cos C+c sin B,及余弦定理得:,整理得a2+c2﹣b2=ac sin B,又a2+c2﹣b2=2ac cos B,则2ac cos B=ac sin B,即2cos B=sin B,即tan B=2.(Ⅱ)法一:由tan B=2,B∈(0,π),因此,,又,所以,因为,所以,又△ABC面积为6,即,即,解得a=.法二:过A作AH⊥BC于H,设AH=x,在Rt△ABH中,因为tan B=2,所以,在Rt△ACH中,又,则tan C=1,由CH=x,则,即,因为△ABC的面积为6,即,,即a=.23.【解答】解:(1)若选①,∵,,且,∴,∴∵,∴,(2)∵,∴,∴,∵锐角△ABC且,∴,∴,l∈(6+2,6],∴(1)若选②,∵cos A(2b﹣c)=a cos C,∴2b cos A=a cos C+c cos A=a,∴2b cos A=b,∴,∵,∴,(2)∵,∴,∴,∵锐角△ABC且,∴,∴,∴l∈(6+2,6],(1)若选③=,==,∵∴,∵,∴,(2)∵,∴,∴,∵锐角△ABC且,∴,∴,∴l∈(6+2,6]24.【解答】解:(1)由sin(A﹣B)=cos C,得.∵△ABC是锐角三角形,故A﹣B,均在区间内,又函数y=sin x在区间上单调递增,∴,即,①又A+B+C=π,②由②﹣①,得(2)由(1)知,∴,即.∴.∵△ABC是锐角三角形,∴,∴,∴,∴.故的取值范围为(﹣1,1).25.【解答】解:(Ⅰ)f(x)=2sin x cos x+2sin(x+)cos(x+)=sin2x+sin(2x+)=sin2x+cos2x=2sin(2x+),令2x+=kπ+,k∈Z,解得x=kπ+,k∈Z,可得函数f(x)的对称轴方程为x=kπ+,k∈Z.(Ⅱ)由于f(+)=2sin(B++)=2cos B=,可得cos B=,∵a+c=1,即c=1﹣a,∴由余弦定理得:b2=a2+c2﹣2ac•cos B,即b2=a2+c2﹣ac=(a+c)2﹣ac=1﹣a (1﹣a)=(a﹣)2﹣,∵0<a<1,∴0<b2<,则b∈(0,).26.【解答】解:(1)因为S=(a2+b2﹣c2).所以sin C=.解得tan C=,又C∈(0,π),故C=;(2)设a=2t,b=3t(t>0)则所以sin A=.27.【解答】解:(1)∵sin B+2sin C=3sin A,∴由正弦定理可得b+2c=3a,又∵a sin C=2c sin B,∴ac=2cb,可得a=2b,∴c=,∴cos A===.(2)∵|﹣|=2,∴(﹣)2=2+2﹣2•=4,∴b2+a2﹣2ab cos C=4,∵由(1)可得a=2b,c=,∴cos C===﹣,可得sin C==,∴b2+4b2﹣2×2b×b×(﹣)=4,解得b=,a=,∴S△ABC=ab sin C==.28.【解答】解:(1)由可得b cos C=2a cos B﹣c cos B,由正弦定理可得,sin B cos C+sin C cos B=2sin A cos B,所以sin(B+C)=2sin A cos B=sin A,因为sin A≠0,所以cos B=,B=,由余弦定理可得,b2=a2+c2﹣ac=(a+c)2﹣3ac=9﹣3ac=,当且仅当a=c=时取等号,故b的最小值;(2)由正弦定理可得,a=,c=,∴3=a+c=+=,整理可得,sin(A+)=,由a<b可得A,故,所以cos(A+)=.29.【解答】(1)证明:由正弦定理,知==,由余弦定理,知cos A=,cos B=,∴====.故命题得证.(2)解:由(1)知,c==(sin A+sin B)=[sin(B+)+sin B]=4sin(B+).∵△ABC是锐角三角形,∴A=B+<,∴0<B<,又A+B>,∴B++B>,即B>,∴<B<,∴<B+<,∴<sin(B+)<,∴<c<,符合c>a﹣b.故c的取值范围是(,).30.【解答】解:(1)∵b sin A=a(2﹣cos B),∴由正弦定理可,得sin B sin A=sin A(2﹣cos B),∴sin(B+)=1,∵B∈(0,π),B+∈(,),∴B=.(2)∵B=,a=2,b=,∴()2=(2)2+c2﹣2×cos,可得c2﹣6c+5=0,解得c=1或5当c=1时,S△ABC=ac sin B==;当c=5时,S△ABC=ac sin B==;31.【解答】解:(1)由题知2sin C=sin A+2sin B cos A,……………………………………(2分)则2sin(A+B)=sin A+2sin B cos A,则2sin A cos B=sin A,在△ABC中,sin A≠0,所以cos B=,………………………(4分)则B=.………………(6分)(2)由余弦定理,得b2=a2+c2﹣2ac cos B,从而得:9=a2+c2﹣ac=(a+c)2﹣3ac,……………………………………(9分)又a+c=5,所以ac=,所以△ABC的面积为.…………………………(12分)32.【解答】解:(1)解法一:由已知,得a cos B+b cos A=2c cos A.由正弦定理,得sin A cos B+sin B cos A=2sin C cos A.(1分)即sin(A+B)=2sin C cos A,因为sin(A+B)=sin C.(3分)所以sin C=2sin C cos A.(4分)因为sin C≠0,所以,(5分)因为0<A<π,所以.(6分)解法二:结合余弦定理,即b2+c2﹣a2=bc.(3分)所以.(5分)因为0<A<π,所以.(6分)(2)解法一:由余弦定理a2=b2+c2﹣2bc cos A,得bc+4=b2+c2(7分)即(b+c)2=3bc+4.(8分)因为(9分)所以.即b+c≤4(当且仅当b=c=2时等号成立).(11分)又∵b+c>a,所以4<a+b+c≤6.(12分)解法二:,且a=2,,所以,,(8分)所以(9分)因为,所以4<a+b+c≤6(12分)33.【解答】解:(1)由题意及正弦定理,得sin A cos B+sin B cos A=2sin C cos C,即sin(A+B)=2sin C cos C,即sin C=2sin C cos C.又因为0<C<π,所以sin C≠0,所以,所以.(2)因为,又由(1),得,所以,解得a=3,又由余弦定理,得,所以,所以△ABC的周长为.34.【解答】解:(1)因为4c=b+4a cos B,所以4sin C=sin B+4sin A cos B,…………………………………(2分)所以4sin(A+B)=sin B+4sin A cos B,所以4cos A sin B=sin B,……………………………………(4分)因为sin B≠0,所以,所以.…………………………………………………………(6分)(2)由余弦定理可得a2=b2+c2﹣2bc cos A=(b+c)2﹣2bc (1+cos A),………………………………(8分)因为a=4,b+c=6,所以,所以bc=8.…………………………………………………(10分)故△ABC的面积为.………………………………………………………(12分)评分细则:(1)在第一问中,也可以用角转化成边,得到,从而求出,不予扣分;(2)在第二问中,先由正弦定理求出△ABC外接圆的半径r,再由余弦定理求出bc的值,最后通过三角形的面积公式,求出△ABC的面积,只要计算正确,不予扣分;(3)若用其他解法,参照评分标准按步给分.35.【解答】解:(Ⅰ)∵=,∴,∴.(Ⅱ)由,得,所以cos B+cos C=2cos A=1,又因为,所以,所以三角形ABC是等边三角形,又,所以面积为.36.【解答】解:(1)∵,∴,∴,∴,∵0<A<π,∴.(2)∵,由三角形的内角和定理,得,在三角形ABD中,,在三角形ADC中,,两式相除得,∴sin2B=sin2C,∴(舍去)或者B=C.∵,∴.由正弦定理得,于是.故三角形ABC的面积.37.【解答】解:(1)∵sin2B+2sin C cos A=sin(C﹣A),∴2sin B cos B+2sin C cos A=sin C cos A﹣cos C sin A,可得2sin B cos B+sin C cos A=﹣cos C sin A,∴2sin B cos B+sin(A+C)=2sin B cos B+sin B=1,∵B∈(0,π),∴sin B≠0,∴解得cos B=﹣,∴B=.(2)∵D是AC边的中点,∴=+,∴||2=++=++=3.∴BD=.38.【解答】解:(1)证明:因为b cos C=(2b﹣c)cos B,由正弦定理,得sin B cos C=2sin B cos B ﹣sin C cos B,所以sin(B+C)=sin2B,所以sin A=sin2B.(2分)又因为0<A<π,0<2B<2π,所以A=2B或A+2B=π.(4分)若A+2B=π,又A+B+C=π,所以B=C,与a,b,c互不相等矛盾,所以A=2B.(6分)(2)解:由(1)知C=π﹣(A+B)=π﹣3B,所以.因为,所以,则,可得.(8分)又因为sin3B=sin(2B+B)=sin2B cos B+cos2B sin B=2sin B cos2B+2sin B cos2B﹣sin B=3sin B ﹣4sin3B,所以.因为,所以sin B>0,所以,所以,(10分)解得,又,得.(12分)39.【解答】解:(1)因为,所以f(x)=sin2ωx cos﹣cos2ωx sin+cos2ωx+1=sin2ωx+cos2ωx+1=sin (2ωx+)+1,所以f(x)的最小正周期T=,解得ω=1,f(x)=sin(2x+)+1,令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z,可得函数f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z.(2)由(1)得f(x)=sin(2x+)+1,可得sin(2x+)≥﹣,可得2x+∈[2kπ﹣,2kπ+],k∈Z,可得x∈[kπ﹣,kπ+],k∈Z.40.【解答】解:(1)∵将函数f(x)=2sin2x的图象向右平移φ(φ>0)个长度单位,得到=2sin(2x﹣2φ)的图象,∴2φ=+2kπ,即φ=kπ+,k∈Z,故φ的最小值为.再把g(x)的图象上各点的横坐标缩小到原来的(纵坐标不变),得到函数h(x)=2sin(2•x﹣)=2sin(3x﹣)的图象.故h(x)=2sin(3x﹣).(2)当时,3x﹣∈[﹣,],故当3x﹣∈[﹣,]时,即x∈[0,],函数h(x)单调递增,故当3x﹣∈[,]时,即x∈[,],函数h(x)单调递减,故h(x)的递减区间为。
北京各区2019-2021年高三年级数学一模二模试题汇编两角和与差的三角函数一.选择题(共11小题) 1.(2019•西城区模拟)已知12cos 13α=,(,0)2πα∈−,则cos()(4πα−= )A B C D 2.(2019•北京模拟)如图,在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,终边分别是射线OA 和射线OB .射线OA ,OC 与单位圆的交点分别为34(,)55A ,(1,0)C −.若6BOC π∠=,则cos()βα−的值是( )A B C D3.(2019•丰台区二模)已知3(,)22ππα∈,且tan αsin (α= )A .B .C D4.(2019•延庆区一模)函数()sin 22f x x x =在区间[,]22ππ−上的零点之和是( )A .3π−B .6π−C .6πD .3π5.(2019•西城区模拟)sincos1212ππ+的值为( )A B C D .126.(2019•北京模拟)已知tan()16πα+=,则tan()(6πα−= )A .2B .2C .2−D .2−+7.(2020•海淀区校级模拟)若()sin cos f x x x =−在[a −,]a 上是增函数,则a 的最大值是( )A .6πB .4πC .3πD .2π8.(2020•北京模拟)函数()sin 2cos 2f x x x =+的最小正周期是( ) A .2πB .πC .2πD .4π9.(2021•丰台区模拟)sin 69cos9sin 21sin 9(︒︒−︒︒= )A .B .12−C D .1210.(2021•门头沟区一模)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于x 轴对称.若cos α=cos()(αβ−= ) A .35−B .35C .1D .3411.(2021•北京模拟)cos24cos36sin 24cos54︒︒−︒︒的值等于( )A .0B .12C D .12−二.填空题(共8小题)12.(2019•海淀区校级模拟)若角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线3y x =上,则tan()4πθ−=13.(2019•北京模拟)已知3cos 5α=,(0,)2πα∈,则cos()3πα+=14.(2021•北京模拟)设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+= .15.(2020•北京模拟)已知函数()sin f x a x x =−的一条对称轴为12,()()06x f x f x π=−+=,且函数()f x 在1(x ,2)x 上具有单调性,则12||x x +的最小值为 .16.(2020•北京模拟)已知(2πα∈,)π,4sin 5α=,则tan()4πα+= . 17.(2021•丰台区二模)函数()sin cos f x x x =+的值域为 .18.(2021•顺义区二模)已知α是任意角,且满足cos()sin 6k παα+⋅=,则常数k 的一个取值为 .19.(2021•海淀区校级三模)已知()sin())f x x x θθ=−++是偶函数,且[0θ∈,]π,则θ= . 三.解答题(共1小题)20.(2021•丰台区一模)已知函数()sin (0)f x x x ωωω=>.(Ⅰ)当1ω=时,求()6f π的值;(Ⅱ)当函数()f x 图象的两条相邻对称轴之间的距离是2π时,______.从①②③中任选一个,补充到上面空格处并作答.①求()f x 在区间[0,]2π上的最小值;②求()f x 的单调递增区间; ③若()0f x ,求x 的取值范围.参考答案与试题解析一.选择题(共11小题)1.【分析】由已知结合同角平方关系可求sin α,然后结合两角差的余弦公式可求. 【解答】解:12cos 13α=,(,0)2πα∈−, 5sin 13α∴=−,则7cos()sin )413πααα−+=故选:D .【点评】本题主要考查了同角平方关系及两角和的余弦公式在求解三角函数值中的简单应用,属于基础试题. 2.【分析】由三角函数的定义可知,3cos 5α=,4sin 5α=,56πβ=,然后结合两角差的余弦公式即可求解【解答】解:由三角函数的定义可知,3cos 5α=,4sin 5α=,56πβ=,55314cos()cos cos sin sin 66525ππβααα∴−=+=+⨯=故选:C .【点评】本题主要考查了三角函数的定义及两角差的余弦公式的简单应用,属于基础试题 3.【分析】直接利用三角函数的定义的应用求出结果.【解答】解:已知3(,)22ππα∈,且tan α则:sin3α==−. 故选:B .【点评】本题考查的知识要点:三角函数关系式的变换,主要考查学生的运算能力和转换能力,属于基础题题型.4.【分析】利用两角和差的三角公式化简函数的解析式,再根据函数零点的定义、正弦函数的零点,求出在区间[,]22ππ−上的零点,可得结论.【解答】解:令函数()sin 222sin(2)03f x x x x π=−=−=,可得23x k ππ−=,求得26k x ππ=+,k Z ∈.根据x ∈区间[,]22ππ−,可得3x π=−,6π, 故函数在区间[,]22ππ− 上的零点之和为366πππ−+=−, 故选:B .【点评】本题主要考查函数零点的定义,两角和差的三角公式,正弦函数的零点,属于基础题. 5.【分析】可利用辅助角公式将sincos1212ππ+sin()1243πππ+=,从而可得答案. 【解答】解:sin cos2())121221221212432πππππππ++=+==, sincos1212ππ∴+. 故选:A .【点评】本题考查两角和与差的正弦函数,关键是辅助角公式的熟练应用及逆用两角和的正弦,属于中档题. 6.【分析】由题意利用两角和差的正切公式求得tan α的值,再利用两角和差的正切公式求得要求式子的值. 【解答】解:已知tan tantan 6tan()1631tan tan 163πααπαπαα++===−−,tan 2α∴==则tan tantan()2633παπαα−−==, 故选:D .【点评】本题主要考查两角和差的正切公式的应用,属于基础题.7.【分析】由辅助角公式可得())4f x x π−,再根据正弦函数的单调性,即可得解.【解答】解:()sin cos )4f x x x x π=−=−,令[242x k πππ−∈−+,2]2k ππ+,k Z ∈,则[24x k ππ∈−+,32]4k ππ+,k Z ∈, ∴函数()f x 的单调递增区间为[24k ππ−+,32]4k ππ+,k Z ∈, 又()f x 在[a −,]a 上是增函数,∴取0k =,()f x 的单调递增区间为[4π−,3]4π,此时对应的a 的最大值为4π.故选:B .【点评】本题考查三角恒等变换与三角函数的综合,熟练掌握辅助角公式、正弦函数的单调性是解题的关键,考查逻辑推理能力和运算能力,属于基础题.8.【分析】函数y 变形,利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值代入周期公式即可求出最小正周期.【解答】解:函数sin 2cos22y x x x =++, 2ω=,T π∴=.故选:B .【点评】此题考查了两角和与差的正弦函数公式,以及三角函数的周期性及其求法,将函数解析式化为一个角的正弦函数是解本题的关键.9.【分析】直接利用三角函数的关系式的变换求出结果.【解答】解:sin 69cos9sin 21sin9cos21cos9sin 21sin9cos30︒︒−︒︒=︒︒−︒︒=︒ 故选:C .【点评】本题考查的知识要点:三角函数的关系式的变换,主要考查学生的运算能力和数学思维能力,属于基础题.10.【分析】由任意角的三角函数知cos cos αβ=,sin sin αβ=−,再根据两角差的余弦公式,即可得解. 【解答】解:由题意得,cos cos αβ=,sin sin αβ=−, 2223cos()cos cos sin sin cos sin 2cos 15αβαβαβααα∴−=+=−=−=. 故选:B .【点评】本题考查两角和差的余弦公式,同角三角函数的平方关系,考查学生的逻辑推理能力和运算能力,属于基础题.11.【分析】由题意利用诱导公式、两角和的余弦公式,计算求得结果. 【解答】解:cos24cos36sin24cos54cos24cos36sin24sin36︒︒−︒︒=︒︒−︒︒ 1cos(2436)cos602=︒+︒=︒=,故选:B .【点评】本题主要考查诱导公式、两角和的余弦公式,属于基础题. 二.填空题(共8小题)12.【分析】利用任意角的三角函数的定义求得tan θ的值,再利用两角和差的正切公式求得要求式子的值. 【解答】解:角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线3y x =上,tan 3θ∴=,则tan 11tan()41tan 2πθθθ−−==+,故答案为:12. 【点评】本题主要考查任意角的三角函数的定义,两角和差的正切公式的应用,属于基础题.13.【分析】利用同角三角函数的基本关系求得sin α的值,再利用两角和的余弦公式求得cos()3πα+的值.【解答】解:3cos 5α=,(0,)2πα∈,4sin 5α∴=,则1334343cos()cos cos sin sin 333252510πππααα−+=−=−=,故答案为:310−. 【点评】本题主要考查同角三角函数的基本关系,两角和的余弦公式的应用,属于基础题.14.【分析】已知等式利用两角和与差的正切函数公式及特殊角的三角函数值化简,求出tan θ的值,再根据θ为第二象限角,利用同角三角函数间的基本关系求出sin θ与cos θ的值,即可求出sin cos θθ+的值.【解答】解:tan 11tan()41tan 2πθθθ++==−,1tan 3θ∴=−,而222221cos 1cos sin cos tan θθθθθ==++,θ为第二象限角,cos θ∴==,sin θ则sin cos θθ+==.故答案为:【点评】此题考查了两角和与差的正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.15.【分析】利用辅助角公式化简,对称为6x π=−,12()()0f x f x +=,且函数()f x 在1(x ,2)x 上具有单调性,可得对称中心,即可求出最小值.【解答】解:函数()(),f x asinx x tan θθ=−+=其中, 函数()f x 的一条对称轴为6x π=−,可得1()62f a π−=−−=2a =. ∴3πθ=−;对称中心横坐标由()(),33x k k z x k k z ππππ−=∈=+∈可得;又12()()0f x f x +=,且函数()f x 在1(x ,2)x 上具有单调性,∴12||2||3x x k π+=+,当0k =时,可得122||3x x π+=. 故答案为:23π. 【点评】本题考查了正弦函数的最值和单调性的综合应用,属于中档题. 16.【分析】直接利用三角函数关系式的定义和和角公式的应用求出结果.【解答】解:4(,),sin 25παπα∈=,则:3cos 5α=−,所以:4tan 3α=−,则:41tan tan134tan()4471tan tan 143παπαπα−+++===−−+, 故答案为:17−.【点评】本题考查的知识要点:三角函数关系式的变换,和角公式的应用,主要考查学生的运算能力和转换能力,属于基础题型.17.【分析】利用辅助角公式,化简函数的解析式,然后求解即可.【解答】解:函数()sin cos )[4f x x x x π=+=+∈.故答案为:[.【点评】本题考查了辅助角公式和三角函数的值域的求法,是基础题.18.【分析】由已知结合诱导公式进行化简即可求解.【解答】解:因为cos()sin 6k παα+⋅=,令62k ππ⋅=−,则3k =−.故答案为:3−(答案不唯一).【点评】本题主要考查了诱导公式,属于基础题.19.【分析】正弦函数的图象关于y 轴对称,从而当0x =时,函数取得最值,代入函数后,结合正弦函数对称轴处取得函数最值可求.【解答】解()sin())f x x x θθ=−+是偶函数,故函数的图象关于y 轴对称,根据正弦函数的对称性可知,当0x =时,()f x 取得最值,故sin 2θθ−=±,所以sin 2θθ=±,即12(sin )22θθ=±,所以sin()13πθ−=±,因为[0θ∈,]π, 则56πθ=, 故答案为:56π. 【点评】本题主要考查了正弦函数对称性的应用,解题的关键是正弦函数在对称轴处取得最值条件的应用. 三.解答题(共1小题)20.【分析】()I 把1ω=代入可求()f x ,即可求解()6f π,()II 由已知先求出()2sin(2)3f x x π=+,选①:由02x π得42333x πππ+,然后结合正弦函数的性质可求; ②令222232k x k πππππ−++,解不等式可求函数的单调递增区间;③若()0f x ,结合正弦函数的图象及性质可求.【解答】解:()1I ω=时,()sin f x x x =+,故1()262f π=+=,()()2sin()3II f x x πω=+,由函数()f x 图象的两条相邻对称轴之间的距离是2π得T π=,2ω=,故()2sin(2)3f x x π=+,选①:由02x π得42333x πππ+,所以sin(2)13x π+,所以()f x 在区间[0,]2π上的最小值②求()f x 的单调递增区间, 令222232k x k πππππ−++,得51212k x k ππππ−+,k Z ∈,故函数()f x 的单调递增区间5[12k ππ−,]12k ππ+,k Z ∈, ③若()0f x ,则2223k x k ππππ++,k Z ∈,解得63k x k ππππ−+,k Z ∈, 故x 的取值范围[6k ππ−,]3k ππ+,k Z ∈.【点评】本题主要考查了正弦函数的周期性,单调性,最值求解,解题的关键是正弦函数性质的灵活应用.。
专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.83(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.24(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1B.23-1C.32D.1-35(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.46(新高考天津卷)已知函数f x =sin3ωx +π3 ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.327(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x8(新课标全国Ⅱ卷)对于函数f (x )=sin2x 和g (x )=sin 2x -π4,下列说法正确的有()A.f (x )与g (x )有相同的零点B.f (x )与g (x )有相同的最大值C.f (x )与g (x )有相同的最小正周期D.f (x )与g (x )的图像有相同的对称轴9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tan α+tan β=4,tan αtan β=2+1,则sin (α+β)=.10(全国甲卷数学(文))函数f x =sin x -3cos x 在0,π 上的最大值是.一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.22(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.783(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.4(2024·山东济宁·三模)已知函数f (x )=(3sin x +cos x )cos x -12,若f (x )在区间-π4,m 上的值域为-32,1,则实数m 的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π125(2024·江西景德镇·三模)函数f x =cos ωx x ∈R 在0,π 内恰有两个对称中心,f π =1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若f α +g α =35,则cos 4α+π3=()A.725B.1625C.-925D.-19256(2024·安徽马鞍山·三模)已知函数f (x )=sin2ωx +cos2ωx (ω>1)的一个零点是π2,且f (x )在-π6,π16 上单调,则ω=()A.54 B.74C.94D.1147(2024·山东临沂·二模)已知函数f x =sin 2x +φ ϕ <π2图象的一个对称中心为π6,0 ,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称8(2024·广东广州·二模)已知函数f(x)=2sin(ωx+φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f(x)的图象向右平移θ(θ>0)个单位后所得曲线关于y轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π29(2024·四川雅安·三模)已知函数f x =sinωx+3cosωx(ω>0),则下列说法中正确的个数是()①当ω=2时,函数y=f x -2logπx有且只有一个零点;②当ω=2时,函数y=f x+φ为奇函数,则正数φ的最小值为π3;③若函数y=f x 在0,π3上单调递增,则ω的最小值为12;④若函数y=f x 在0,π上恰有两个极值点,则ω的取值范围为136,256 .A.1B.2C.3D.410(2024·河北保定·二模)已知tanα=3cosαsinα+11,则cos2α=()A.-78B.78C.79D.-7911(2024·河北衡水·三模)已知sin(3α-β)=m sin(α-β),tan(2α-β)=n tanα,则m,n的关系为()A.m=2nB.n=m+1m C.n=mm-1D.n=m+1m-112(2024·辽宁沈阳·三模)已知tan α2=2,则sin2α2+sinα的值是()A.25B.45C.65D.8513(2024·贵州黔东南·二模)已知0<α<β<π,且sinα+β=2cosα+β,sinαsinβ-3cosαcosβ=0,则tanα-β=()A.-1B.-32C.-12D.12二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-30815(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-1219(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数D.h x 在区间0,2π 上的图象过3个定点21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为1222(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.25(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.。
2021北京初中数学中考模拟汇编:二次函数(1)一.解答题(共16小题)1.(2021•大兴区一模)在平面直角坐标系xOy中,抛物线y=x2﹣2bx+b2﹣2(b>0)经过点A(m,n).(1)用含b的代数式表示抛物线顶点的坐标;(2)若抛物线经过点B(0,2),且满足0<m<3,求n的取值范围;(3)若3≤m≤5时,n≤2,结合函数图象,直接写出b的取值范围.2.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=﹣x2+(2a﹣2)x﹣a2+2a上,其中x1<x2.(1)求抛物线的对称轴(用含a的式子表示);(2)①当x=a时,求y的值;②若y1=y2=0,求x1的值(用含a的式子表示).(3)若对于x1+x2<﹣4,都有y1<y2,求a的取值范围.3.(2021•房山区一模)在平面直角坐标系xOy中,抛物线y=ax2﹣2ax+c(a≠0)被x轴截得的线段长度为4.(1)求抛物线的对称轴;(2)求c的值(用含a的式子表示);(3)若点M(x1,3),N(x2,3)为抛物线上不重合两点(其中x1<x2),且满足x1(x2﹣5)≤0,求a的取值范围.4.(2021•海淀区一模)在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax+a﹣2(a>0).分别过点M(t,0)和点N(t+2,0)作x轴的垂线,交抛物线于点A和点B.记抛物线在A,B之间的部分为图象G(包括A,B两点).(1)求抛物线的顶点坐标;(2)记图象G上任意一点的纵坐标的最大值与最小值的差为m.①当a=2时,若图象G为轴对称图形,求m的值;②若存在实数t,使得m=2,直接写出a的取值范围.5.(2021•平谷区一模)已知关于x的二次函数y=x2﹣2mx﹣3.(1)当抛物线过点(2,﹣3)时,求抛物线的表达式,并求它与y轴的交点坐标;(2)求这个二次函数图像的对称轴(用含m的式子表示);(3)若抛物线上存在两点A(a,a)和B(b,﹣b),当a<0,b>0时,总有a+b>0,求m的取值范围.6.(2021•海淀区校级模拟)在平面直角坐标系xOy中,抛物线y=﹣x2+2mx+4﹣m2与x轴交于A、B两点,点A在点B的左侧.(1)若点B的坐标为(3,0).①求此时二次函数的解析式;②当2≤x≤n时,函数值y的取值范围是﹣n﹣1≤y≤3,求n的值;(2)将抛物线在x轴上方的部分沿x轴翻折,其他部分保持不变,得到一个新的函数图象,若当﹣2≤x≤﹣1时,这个新函数的函数值y随x的增大而增大,结合函数图象,求m的取值范围.7.(2021•石景山区一模)在平面直角坐标系xOy中,点A是抛物线y=﹣x2+2mx﹣m2+2m+1的顶点.(1)求点A的坐标(用含m的代数式表示);(2)若射线OA与x轴所成的锐角为45°,求m的值;(3)将点P(0,1)向右平移4个单位得到点Q,若抛物线与线段PQ只有一个公共点,直接写出m的取值范围.8.(2021•丰台区一模)在平面直角坐标系xOy中,抛物线y=ax2﹣(a+1)x.(1)若抛物线过点(2,0),求抛物线的对称轴;(2)若M(x1,y1),N(x2,y2)为抛物线上两个不同的点.①当x1+x2=﹣4时,y1=y2,求a的值;②若对于x1>x2≥﹣2,都有y1<y2,求a的取值范围.9.(2021•朝阳区一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+a﹣4(a≠0)的对称轴是直线x=1.(1)求抛物线y=ax2+bx+a﹣4(a≠0)的顶点坐标;(2)当﹣2≤x≤3时,y的最大值是5,求a的值;(3)在(2)的条件下,当t≤x≤t+1时,y的最大值是m,最小值是n,且m﹣n=3,求t的值.10.(2021•门头沟区一模)在平面直角坐标系xOy中,已知关于x的二次函数y=x2﹣2tx+1.(1)求该二次函数图象的对称轴;(2)若点M(t﹣2,m),N(t+3,n)在抛物线y=x2﹣2tx+1上,试比较m、n的大小;(3)P(x1,y1),Q(x2,y2)是抛物线y=x2﹣2tx+1上的任意两点,若对于﹣1≤x1<3且x2=3,都有y1≤y2,求t的取值范围.11.(2021•大兴区一模)已知抛物线y=x2﹣4x+c经过点(﹣1,8).(1)求抛物线的解析式;(2)求抛物线与x轴交点的坐标.12.(2021•西城区一模)在平面直角坐标系xOy中,抛物线y=ax2﹣2a2x+1(a≠0)与y轴交于点A,过点A作x轴的平行线与抛物线交于点B.(1)直接写出抛物线的对称轴;(2)若AB=4,求抛物线所对应的函数解析式;(3)已知点P(a+4,1),Q(0,a+1),如果抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.13.(2021•通州区一模)已知二次函数y=ax2﹣2ax+1(a≠0).(1)求此二次函数图象的对称轴;(2)设此二次函数的图象与x轴交于不重合两点M(x1,0),N(x2,0)(其中x1<x2),且满足x1<6﹣2x2,求a的取值范围.14.(2021•顺义区一模)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a(a>0)与y轴交于点A.(1)求点A和抛物线顶点的坐标(用含a的式子表示);(2)直线y=﹣ax+3a与抛物线y=ax2﹣4ax+3a围成的区域(不包括边界)记作G.横、纵坐标都为整数的点叫做整点.①当a=1时,结合函数图象,求区域G中整点的个数;②当区域G中恰有6个整点时,直接写出a的取值范围.15.(2021•北京一模)在平面直角坐标系xOy中,已知抛物线y=x2﹣2mx+m2﹣1.(1)当m=2时,求抛物线的顶点坐标;(2)①求抛物线的对称轴(用含m的式子表示);②若点(m﹣1,y1),(m,y2),(m+3,y3)都在抛物线y=x2﹣2mx+m2﹣1上,则y1,y2,y3的大小关系为;(3)直线y=x+b与x轴交于点A(﹣3,0),与y轴交于点B,过点B作垂直于y轴的直线l与抛物线y=x2﹣2mx+m2﹣1有两个交点,在抛物线对称轴左侧的点记为P,当△OAP为钝角三角形时,求m的取值范围.16.(2021•延庆区一模)在平面直角坐标系xOy中,直线l1:y=﹣2x+6与y轴交于点A,与x轴交于点B,二次函数的图象过A,B两点,且与x轴的另一交点为点C,BC=2;(1)求点C的坐标;(2)对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2>2时,总有y1>y2.①求二次函数的表达式;②设点A在抛物线上的对称点为点D,记抛物线在C,D之间的部分为图象G(包含C,D两点).若一次函数y=kx﹣2(k≠0)的图象与图象G有公共点,结合函数图象,求k的取值范围.2021北京初中数学中考模拟汇编:二次函数(1)参考答案与试题解析一.解答题(共16小题)1.(2021•大兴区一模)在平面直角坐标系xOy中,抛物线y=x2﹣2bx+b2﹣2(b>0)经过点A(m,n).(1)用含b的代数式表示抛物线顶点的坐标;(2)若抛物线经过点B(0,2),且满足0<m<3,求n的取值范围;(3)若3≤m≤5时,n≤2,结合函数图象,直接写出b的取值范围.【分析】(1)把抛物线的解析式化成顶点式即可;(2)把点B坐标代入抛物线的解析式,求出抛物线的解析式,结合图形,再求当0<m<3时,n的取值范围;(3)分别讨论m和b的大小关系,根据n≤2,求出b的取值范围.【解答】解:(1)∵y=x2﹣2bx+b2﹣2=(x﹣b)2﹣2,∴顶点坐标为(b,﹣2);(2)把(0,2)代入y=x2﹣2bx+b2﹣2(b>0),得b=2,或b=﹣2(舍去),∴b=2,∴解析式为:y=x2﹣4x+2,对称轴为x=2;顶点坐标为(2,﹣2),结合函数图象可得,在顶点处n取得最小值﹣2;当x=0时,y=2,∴当0<m<3时,﹣2≤n<2.(3)如图,①若3≤m≤5≤b时,y max=(3﹣b)2﹣2≤2,∴1≤b≤5,矛盾,不成立;②若3≤b≤5时,则当x=3时,y=(3﹣b)2﹣2≤2,得1≤b≤5,且当x=5时,y=(5﹣b)2﹣2≤2,得3≤b≤7,∴3≤b≤5;③当b≤3≤m≤5时,y max=(5﹣b)2﹣2≤2,得3≤b≤7,矛盾;综上,b的取值范围为3≤b≤5.【点评】本题主要考查二次函数的取值范围问题,涉及待定系数法求解析式,数形结合思想等,利用数形结合思想结合图象求取值范围是常见方法.2.(2021•杭州二模)在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=﹣x2+(2a﹣2)x﹣a2+2a 上,其中x1<x2.(1)求抛物线的对称轴(用含a的式子表示);(2)①当x=a时,求y的值;②若y1=y2=0,求x1的值(用含a的式子表示).(3)若对于x1+x2<﹣4,都有y1<y2,求a的取值范围.【分析】(1)抛物线的对称轴x=﹣,计算即可;(2)①将x=a代入y=﹣x2+(2a﹣2)x﹣a2+2a,计算即可;②若y1=y2=0,则﹣x2+(2a﹣2)x﹣a2+2a=0,解方程并根据x1<x2,即可得出x1的值.(3)由题意得出x1<﹣2,则只需讨论x1<a﹣1的情况,分两种情况:①当a≥﹣1时,又有两种情况:x1<x2<a﹣1,x1<a﹣1<x2,分别结合二次函数的性质及x1+x2<﹣4计算即可;②当a<﹣1时,令x1=a﹣1,x2=﹣2,此时x1+x2<﹣4,但y1>y2,不符合题意.【解答】解:(1)抛物线的对称轴为直线x=﹣=a﹣1;(2)①当x=a时,y=﹣a2+(2a﹣2)a﹣a2+2a=﹣a2+2a2﹣2a﹣a2+2a=0;②当y1=y2=0时,﹣x2+(2a﹣2)x﹣a2+2a=0,∴x2﹣(2a﹣2)x+a2﹣2a=0,∴(x﹣a+2)(x﹣a)=0,∵x1<x2,∴x1=a﹣2;(3)①当a≥﹣1时,∵x1<x2,x1+x2<﹣4,∴x1<﹣2,只需讨论x1<a﹣1的情况.若x1<x2<a﹣1,∵x<a﹣1时,y随着x的增大而增大,∴y1<y2,符合题意;若x1<a﹣1<x2,∵a﹣1≥﹣2,∴2(a﹣1)≥﹣4,∵x1+x2<﹣4,∴x1+x2<2(a﹣1).∴x1<2(a﹣1)﹣x2.∵x=2(a﹣1)﹣x2时,y1=y2,x<a﹣1时,y随着x的增大而增大,∴y1<y2,符合题意.②当a<﹣1时,令x1=a﹣1,x2=﹣2,此时x1+x2<﹣4,但y1>y2,不符合题意;综上所述,a的取值范围是a≥﹣1.【点评】本题考查了二次函数的图象与系数的关系、二次函数图象上的点的坐标特点、二次函数与一元二次方程的关系及一元一次不等式等知识点,熟练掌握二次函数图象上的点的坐标特点及二次函数的性质是解题的关键.3.(2021•房山区一模)在平面直角坐标系xOy中,抛物线y=ax2﹣2ax+c(a≠0)被x轴截得的线段长度为4.(1)求抛物线的对称轴;(2)求c的值(用含a的式子表示);(3)若点M(x1,3),N(x2,3)为抛物线上不重合两点(其中x1<x2),且满足x1(x2﹣5)≤0,求a的取值范围.【分析】(1)由二次函数的对称轴公式,求出对称轴x=1;(2)根据对称轴求出抛物线于x轴的交点坐标,即可得出结论;(3)先判断出点,M,N关于抛物线的对称轴对称,再用x1(x2﹣5)≤0,判断出x1≤﹣3或0≤x1≤1,再用判别式判断出a>0或a<﹣,用a表示出x1,再分两种情况解不等式(组),即可得出结论.【解答】解:(1)∵y=ax2﹣2ax+c(a≠0),∴函数的对称轴为直线x=﹣=1;(2)由(1)知,抛物线的对称轴为直线x=1,∵抛物线y=ax2﹣2ax+c(a≠0)被x轴截得的线段长度为4,∴抛物线与x轴的交点为(﹣1,0),(3,0),∴y=a(x+1)(x﹣3)=ax2﹣2ax﹣3a,∴c=﹣3a;(3)∵点M(x1,3),N(x2,3)为抛物线上不重合两点(其中x1<x2),∴点M,N关于对称轴x=1对称,∴=1,∴x2=2﹣x1,∵x1(x2﹣5)≤0,∴x1(2﹣x1﹣5)≤0,∴﹣x1(x1+3)≤0,∴x1(x1+3)≥0,∴x1≤﹣3或x1≥0,∵x1<x2,∴x1<1,∴x1≤﹣3或0≤x1<1,∴x1、x2是方程ax2﹣2ax+c=3的根,即ax2﹣2ax﹣3a﹣3=0的两个根,∴△=16a2+12a=4a(4a+3)>0,∴a>0或a<﹣,∴x==,当a>0时,解不等式≤﹣3得,0≤a≤;即0<a≤;当a<﹣时,解不等式组0≤<1得,a≥﹣1,∴﹣1≤a<﹣即0<a≤或﹣1≤a<﹣.【点评】此题主要考查了抛物线的对称轴公式,抛物线的性质,确定出点M,N关于对称轴对称是解本题的关键.4.(2021•海淀区一模)在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax+a﹣2(a>0).分别过点M(t,0)和点N(t+2,0)作x轴的垂线,交抛物线于点A和点B.记抛物线在A,B之间的部分为图象G(包括A,B两点).(1)求抛物线的顶点坐标;(2)记图象G上任意一点的纵坐标的最大值与最小值的差为m.①当a=2时,若图象G为轴对称图形,求m的值;②若存在实数t,使得m=2,直接写出a的取值范围.【分析】(1)y=ax2﹣2ax+a﹣2变形为y=a(x﹣1)2﹣2,即可得到顶点坐标;(2)①a=2时,抛物线对称轴x=1,由图象G为轴对称图形,可得t的值,从而求出A、B坐标,得到m的值;②分四种情况讨论:t≤﹣1,﹣1<t≤0,0<t<1,t≥1,根据m=2分别列出方程,由t的范围即可求出a的范围.【解答】解:(1)y=ax2﹣2ax+a﹣2=a(x﹣1)2﹣2,∴抛物线y=ax2﹣2ax+a﹣2的顶点为(1,﹣2);(2)①当a=2时,y=2x2﹣4x,抛物线对称轴x=1,∵图象G为轴对称图形,M(t,0),N(t+2,0),∴1﹣t=t+2﹣1,∴t=0,∵过点M(t,0)和点N(t+2,0)作x轴的垂线,交抛物线于点A和点B,∴A(0,0),B(2,0),∵顶点为(1,﹣2),∴m=0﹣(﹣2)=2;②∵过点M(t,0)和点N(t+2,0)作x轴的垂线,交抛物线于点A和点B,∴A(t,at2﹣2at+a﹣2),B(t+2,a(t+2)2﹣2a(t+2)+a﹣2),又a>0,抛物线对称轴x=1,(一)当t+2≤1,即t≤﹣1时,图象G上A的纵坐标的值最大,B的纵坐标的值最小,(at2﹣2at+a﹣2)﹣[a(t+2)2﹣2a(t+2)+a﹣2]=2,解得t=﹣,∴﹣≤﹣1,∴a≤;(二)当t<1<t+2,且t+2﹣1≤1﹣t,即﹣1<t≤0时,图象G上A的纵坐标的值最大,顶点纵坐标的值最小,∴(at2﹣2at+a﹣2)﹣(﹣2)=2,∴a=,又﹣1<t≤0,∴<a≤2;(三)当t<1<t+2,且t+2﹣1>1﹣t,即0<t<1时,图象G上B的纵坐标的值最大,顶点纵坐标的值最小,∴a(t+2)2﹣2a(t+2)+a﹣2﹣(﹣2)=2,∴a=,又0<t<1,∴<a<2;(四)当t≥1时,图象G上B的纵坐标的值最大,A的纵坐标的值最小,∴a(t+2)2﹣2a(t+2)+a﹣2﹣(at2﹣2at+a﹣2)=2,∴t=,又t≥1,∴a≤,综上所述,若存在实数t,使得m=2,则0<a≤2.【点评】本题考查二次函数知识的综合应用,难度较大,解题的关键是分类讨论图象G上纵坐标的最大值与最小值列方程.5.(2021•平谷区一模)已知关于x的二次函数y=x2﹣2mx﹣3.(1)当抛物线过点(2,﹣3)时,求抛物线的表达式,并求它与y轴的交点坐标;(2)求这个二次函数图像的对称轴(用含m的式子表示);(3)若抛物线上存在两点A(a,a)和B(b,﹣b),当a<0,b>0时,总有a+b>0,求m的取值范围.【分析】(1)根据待定系数法即可求得抛物线的解析式,令x=0,求得函数值,即可求得抛物线与y轴的交点;(2)利用对称轴公式求得即可;(3)由题意可知|a|<|b|,即可判断抛物线的对称轴在y轴的右侧,即m>0.【解答】解:(1)∵抛物线过点(2,﹣3),∴﹣3=4﹣4m﹣3,∴m=1,∴抛物线为:y=x2﹣2x﹣3,令x=0,则y=﹣3,∴抛物线与y轴交点(0,﹣3);(2)∵二次函数y=x2﹣2mx﹣3,∴对称轴x=﹣=m;(3)∵a+b>0,∴b>﹣a,∵a<0,b>0,∴|a|<|b|,∵点A(a,a)和B(b,﹣b)是抛物线y=x2﹣2mx﹣3上的两点,∴抛物线的对称轴在y轴的右侧,∴m>0.【点评】本题考查了抛物线与系数的关系、二次函数图象上点的坐标特征,待定系数法求二次函数的解析式,熟练掌握二次函数的性质是解题的关键.6.(2021•海淀区校级模拟)在平面直角坐标系xOy中,抛物线y=﹣x2+2mx+4﹣m2与x轴交于A、B两点,点A在点B的左侧.(1)若点B的坐标为(3,0).①求此时二次函数的解析式;②当2≤x≤n时,函数值y的取值范围是﹣n﹣1≤y≤3,求n的值;(2)将抛物线在x轴上方的部分沿x轴翻折,其他部分保持不变,得到一个新的函数图象,若当﹣2≤x≤﹣1时,这个新函数的函数值y随x的增大而增大,结合函数图象,求m的取值范围.【分析】(1)①先根据二次函数为y=﹣x2+2mx+4﹣m2=﹣(x﹣m)2+4,得到对称轴为x=m,把x=3代入解析式求得m=1或m=5,根据题意点B在对称轴右侧,即m<3,则m=1,即可求得抛物线的解析式;②根据开口方向和对称轴顶点当x=2时,函数取得最大值3,当x=n时,函数取得最小值﹣n2+2n+3=﹣n﹣1,在n>2范围内,解得n=4;(2)令y=0,得﹣(x﹣m)2+4=0,解得x1=m﹣2,与x2=m+2,根据题意得到①﹣1≤m﹣2,②m≤﹣2且﹣1≤m+2,即可求得m的取值范围是﹣3≤m≤﹣2或m≥1.【解答】解:(1)①∵二次函数为y=﹣x2+2mx+4﹣m2=﹣(x﹣m)2+4,对称轴为x=m,令x=3,则﹣(m﹣3)2+4=0,解得:m=1或m=5,∵B(3,0)为该二次函数图象与x轴靠右侧的交点,∴点B在对称轴右侧,∴m<3,故m=1,∴二次函数解析式为y=﹣x2+2x+3.(或y=﹣(x﹣1)2+4);②由于二次函数开口向下,且对称轴为x=1,∴2≤x≤n时,函数值y随x的增大而减小,∴当x=2时,函数取得最大值3,当x=n时,函数取得最小值﹣n2+2n+3=﹣n﹣1,∴在n>2范围内,解得n=4;(2)令y=0,得﹣(x﹣m)2+4=0,解得x1=m﹣2,与x2=m+2,将函数图象在x轴上方的部分向下翻折后,新的函数图象增减性情况为:当x≤m﹣2时,y随x的增大而增大,当m﹣2<x≤m时,y随x的增大而减小当m<x≤m+2时,y随x的增大而增大,当x>m+2时,y随x的增大而减小因此,若当﹣2≤x≤﹣1时,y随x的增大而增大,结合图象有:①﹣1≤m﹣2,即m≥1时符合题意,②m≤﹣2且﹣1≤m+2,即﹣3≤m≤﹣2时符合题意,综上,m的取值范围是﹣3≤m≤﹣2或m≥1.【点评】本题考查了抛物线与x轴的交点,二次函数图象与系数的关系,二次函数的性质,二次函数图象与几何变换,分类讨论是解题的关键.7.(2021•石景山区一模)在平面直角坐标系xOy中,点A是抛物线y=﹣x2+2mx﹣m2+2m+1的顶点.(1)求点A的坐标(用含m的代数式表示);(2)若射线OA与x轴所成的锐角为45°,求m的值;(3)将点P(0,1)向右平移4个单位得到点Q,若抛物线与线段PQ只有一个公共点,直接写出m的取值范围.【分析】(1)直接将解析式配成顶点式,可以求得点A坐标;(2)因为OA与x轴夹角为45°,则点A到坐标轴距离相等,所以需要分类讨论,即横坐标与纵坐标相等,或者横坐标与纵坐标互为相反数,同时,也可以发现点A在直线y=2x+1上运动;(3)先由平移知识,可以得到Q点坐标,且PQ∥x轴,画出草图,可以发现,顶点A所在直线y=2x+1也经过P点,并且当A与P重合时,此时m取得最小值,当A沿直线y=2x+1向上运动时,m值越来越大,最大值位置是当抛物线刚好经过Q点时,同时,要注意排除抛物线与直线PQ的两个交点均落在线段PQ上的特殊情况.【解答】解:(1)∵y=﹣x2+2mx﹣m2+2m+1=﹣(x﹣m)2+2m+1,∴顶点A(m,2m+1);(2)设x=m,y=2m+1,消掉m,得y=2x+1,∴A在直线y=2x+1上运动,∴A所在象限可能为第一、第二、第三象限,∵射线OA与x轴所成的夹角为45°,∴可以分两类讨论,①当A在第一、第三象限时,m=2m+1,解得m=﹣1,②当A在第二象限时,m+2m+1=0,解得m=,∴m=﹣1或;(3)当P(0,1)向右平移4个单位长度得到Q,则Q(4,1),且PQ∥x轴∵抛物线与线段PQ只有一个交点,且抛物线顶点A在直线y=2x+1上运动,∴由图1可得,当顶点A与P点重合时,符合条件,此时m=0,由图2,数形结合,当顶点A沿直线y=2x+1向上运动时,抛物线与直线PQ均有两个交点,当抛物线经过Q点时,即当x=4,y=1时,﹣(4﹣m)2+2m+1=1,∴m=2或8,当m=2时,抛物线为y=﹣(x﹣2)2+5,它与线段PQ的交点为P和Q,有两个交点,不合题意,舍去,当m=8时,抛物线对称轴右侧的部分刚好经过点Q,符合题意,∴当0≤m≤8,且m≠2时,抛物线与线段PQ只有一个交点【点评】此题考查的是二次函数综合题,主要考查的是数形结合思想,根据题意,充分挖掘题目中的数据参数,是画图的关键,根据图像,判断临界位置,即可解决问题.8.(2021•丰台区一模)在平面直角坐标系xOy中,抛物线y=ax2﹣(a+1)x.(1)若抛物线过点(2,0),求抛物线的对称轴;(2)若M(x1,y1),N(x2,y2)为抛物线上两个不同的点.①当x1+x2=﹣4时,y1=y2,求a的值;②若对于x1>x2≥﹣2,都有y1<y2,求a的取值范围.【分析】(1)把点(2,0)代入抛物线y=ax2﹣(a+1)x,求出解析式,再利用对称轴公式计算即可;(2)当x1+x2=﹣4时,y1=y2,说明M(x1,y1)与N(x2,y2)对称,根据对称轴公式计算a即可;(3)利用二次函数的性质,即可求得.【解答】解:(1)∵函数图象过点(2,0),∴0=4a﹣2(a+1),∴a=1,∴y=x2﹣2x,对称轴x=﹣=﹣=1,∴二次函数的对称轴为直线x=1.(2)①∵x1+x2=﹣4时,y1=y2,二次函数的对称轴为直线x=﹣2,∴,∴.②由题意可知,对于任意的x≥﹣2,y随x的增大而减小,从而:,解得:.【点评】本题考查了二次函数的性质,掌握性质是解题的关键.9.(2021•朝阳区一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+a﹣4(a≠0)的对称轴是直线x=1.(1)求抛物线y=ax2+bx+a﹣4(a≠0)的顶点坐标;(2)当﹣2≤x≤3时,y的最大值是5,求a的值;(3)在(2)的条件下,当t≤x≤t+1时,y的最大值是m,最小值是n,且m﹣n=3,求t的值.【分析】(1)利用x=﹣求得a和b的关系,再将其代入原解析式即可;(2)分两种情况讨论,利用抛物线的对称性即可求解;(3)分类讨论,利用二次函数的性质求解即可.【解答】解:(1)将x=1代入抛物线y=ax2+bx+a﹣4得,y=a+b+a﹣4=2a+b﹣4,∵对称轴是直线x=1.∴﹣=1,∴b=﹣2a,∴y=2a+b﹣4=2a﹣2a﹣4=﹣4,∴抛物线y=ax2+bx+a﹣4(a≠0)的顶点坐标为(1,﹣4);(2)①a<0时,抛物线开口向下,y的最大值是﹣4,∵当﹣2≤x≤3时,y的最大值是5,∴a<0不合题意;②a>0时,抛物线开口向上,∵对称轴是直线x=1.1到﹣2的距离大于1到3的距离,∴x=﹣2时,y的值最大,∴y=4a﹣2b+a﹣4=5a﹣2b﹣4=5,将b=﹣2a代入得,a=1;(3)①t<0时,∵a=1,∴b=﹣2a=﹣2,∴y的最大值是m=t2﹣2t+1﹣4=t2﹣2t﹣3,最小值是n=(t+1)2﹣2(t+1)﹣3,∵m﹣n=3,∴t2﹣2t﹣3﹣[(t+1)2﹣2(t+1)﹣3]=3,解得:t=﹣1;②≤t<1时,∴y的最大值是m=(t+1)2﹣2(t+1)﹣3,最小值是n=﹣4,∵m﹣n=3,∴(t+1)2﹣2(t+1)﹣3﹣(﹣4)=3,解得:t=±(不成立);③0<t≤时,y的最大值是m=t2﹣2t+1﹣4=t2﹣2t﹣3,最小值是n=﹣4,m﹣n=t2﹣2t﹣3﹣(﹣4)=3,解得:t=±+1(不成立);④t≥1时,∴y的最大值是m=(t+1)2﹣2(t+1)﹣3,最小值是n=t2﹣2t﹣3,m﹣n=(t+1)2﹣2(t+1)﹣3﹣(t2﹣2t﹣3)=3,解得:t=2;综上,t的值为﹣1或2.【点评】本题考查的是二次函数的最值,要求学生非常熟悉函数与坐标轴的交点、顶点等点所代表的意义、图象上点的坐标特征等.10.(2021•门头沟区一模)在平面直角坐标系xOy中,已知关于x的二次函数y=x2﹣2tx+1.(1)求该二次函数图象的对称轴;(2)若点M(t﹣2,m),N(t+3,n)在抛物线y=x2﹣2tx+1上,试比较m、n的大小;(3)P(x1,y1),Q(x2,y2)是抛物线y=x2﹣2tx+1上的任意两点,若对于﹣1≤x1<3且x2=3,都有y1≤y2,求t的取值范围.【分析】(1)把解析式化成顶点式即可求得;(2)根据二次函数的性质即可判断;(3)当t≤1时,此时﹣1≤x1<3,x2=3都有y1≤y2,当t>1时,令x1=﹣1时,y1>y2,不符合题意,由此即可解决问题.【解答】解:(1)∵y=x2﹣2tx+1=(x﹣t)2﹣t2+1,∴抛物线的对称轴为直线x=t;(2)抛物线开口向上,对称轴为直线x=t,∴点M(t﹣2,m)关于对称轴的对称点为(t+2,m),t<t+2<t+3,∴m<n,故答案为<;(3)当t≤﹣1时,此时﹣1≤x1<3,x2=3都有y1≤y2,符合题意;只要满足x1到对称轴距离小于3到对称轴距离,从而取﹣1与3的中点1,即可得之.综上所述:t≤1.【点评】本题考查了二次函数的性质,掌握性质是解题的关键.11.(2021•大兴区一模)已知抛物线y=x2﹣4x+c经过点(﹣1,8).(1)求抛物线的解析式;(2)求抛物线与x轴交点的坐标.【分析】(1)将(﹣1,8)代入抛物线表达式得:8=(﹣1)2+4+c,即可求解;(2)令y=x2﹣4x+3=0,解得x=1或3,即可求解.【解答】解:(1)将(﹣1,8)代入抛物线表达式得:8=(﹣1)2+4+c,解得c=3,故抛物线的表达式为y=x2﹣4x+3;(2)令y=x2﹣4x+3=0,解得x=1或3,故抛物线和x轴的交点坐标为(1,0),(3,0).【点评】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.12.(2021•西城区一模)在平面直角坐标系xOy中,抛物线y=ax2﹣2a2x+1(a≠0)与y轴交于点A,过点A作x轴的平行线与抛物线交于点B.(1)直接写出抛物线的对称轴;(2)若AB=4,求抛物线所对应的函数解析式;(3)已知点P(a+4,1),Q(0,a+1),如果抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.【分析】(1)根据抛物线对称轴公式即可的;(2)根据题意求得a=±2,即可求得抛物线所对应的函数解析式;(3)根据点P(a+4,1),Q(0,a+1),如果抛物线与线段PQ恰有一个公共点,结合函数图象,即可求a的取值范围.【解答】解:(1)∵抛物线y=ax2﹣2a2x+1(a≠0),∴抛物线的对称轴为直线x=﹣=a;(2)由题意可知抛物线的对称轴为直线x=±2,∴a=±2,∴抛物线所对应的函数解析式为y=2x2﹣8x+1或y=﹣2x2﹣8x+1;(3)当a>0时,抛物线过点P(a+4,1)时,则=a,解得a=4,∴Q(0,5),此时,抛物线与线段PQ有一个公共点.当a<0时,抛物线过点P(a+4,0)时,a+4=0,解得a=﹣4,此时,Q(0,0),抛物线与线段PQ有一个公共点;综上所述,当0<a≤4或﹣4≤a<0时,抛物线与线段PQ恰有一个公共点.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,能对a进行分类讨论,并能数形结合解决函数与线段的交点问题是解题的关键.13.(2021•通州区一模)已知二次函数y=ax2﹣2ax+1(a≠0).(1)求此二次函数图象的对称轴;(2)设此二次函数的图象与x轴交于不重合两点M(x1,0),N(x2,0)(其中x1<x2),且满足x1<6﹣2x2,求a的取值范围.【分析】(1)由二次函数的对称轴x=﹣,求出对称轴x=1;(2)由二次函数与x轴有两个交点,Δ>0,求根公式求出x1,x2,且x1<6﹣2x2,求出a的取值范围.【解答】解:(1)∵y=ax2﹣2ax+1(a≠0),∴a=a,b=﹣2a,c=1,∴函数的对称轴为:x=﹣=﹣=1;(2)由求根公式得:x1==,x2==,∴x1+x2=2,∵x1<6﹣2x2,∴x1+2x2<6,即x1+x2+x2<6,∴x2<4,即<4,∵二次函数的图象与x轴交于不重合两点M(x1,0),N(x2,0),∴△=4a2﹣4a>0,解得•:a>1或a<0,①当a>1时,2a+<8a,解之得a>1或a<﹣(舍去),∴a>1,②当a<0时,2a+>8a,即>6a恒成立,∴a<0.③a小于0的时候,x2需要小于4,所以x=4时应该保证y<0,即16a﹣8a+1<0,所以a<﹣.∴a的取值范围:a>1或a<﹣.【点评】本题考查了,二次函数对称轴,二次函数与一元二次方程的关系,判别式Δ>0,解不等式等知识.关键是二次函数的应用.14.(2021•顺义区一模)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a(a>0)与y轴交于点A.(1)求点A和抛物线顶点的坐标(用含a的式子表示);(2)直线y=﹣ax+3a与抛物线y=ax2﹣4ax+3a围成的区域(不包括边界)记作G.横、纵坐标都为整数的点叫做整点.①当a=1时,结合函数图象,求区域G中整点的个数;②当区域G中恰有6个整点时,直接写出a的取值范围.【分析】(1)把y=ax2﹣4ax+3a化成顶点式y=a(x﹣2)2﹣a,可得顶点坐标;令x=0,y=3a,可求出点A的坐标;(2)①当a=1时,则y=﹣x+3,y=x2﹣4x+3,再根据整点的定义可得结论;②对a进行讨论,再结合整点的定义进行分析.【解答】解:(1)∵y=ax2﹣4ax+3a=a(x﹣2)2﹣a,∴顶点坐标(2,﹣a);∵抛物线y=ax2﹣4ax+3a(a>0)与y轴交于点A,∴A(0,3a);(2)①当a=1时,y=﹣x+3,y=x2﹣4x+3,可得y=﹣x+3与y=x2﹣4x+3的交点为(3,0),(0,3);则(1,1),(2,0)是区域G中的两个整点,即区域G中整点的个数为2个;②联立直线y=﹣ax+3a与抛物线y=ax2﹣4ax+3a,可得交点为(0,3a),(3,0),∴区域G是0≤x≤3,﹣a≤y≤3a组成;当x=1时,与直线的交点为(1,2a),与抛物线的交点为(1,0),同理可得,当x=2时,与直线的交点为(2,a),与抛物线的交点为(2,﹣a),区域G中的整点不包括边界,整点有6个,如图,当0<a<1时,G中最多有1个整点;当a=1时,G中有2个整点;当1<a≤1.5时,G中最多有5个整点;当1.5<a≤2时,G中最多有6个整点;当2<a≤3.5时,G中最多有13个整点;∴当时,区域G中恰有6个整点.【点评】本题属于新定义类问题,主要考查二次函数图象的性质,利用数形结合思想分析会更直观.15.(2021•北京一模)在平面直角坐标系xOy中,已知抛物线y=x2﹣2mx+m2﹣1.(1)当m=2时,求抛物线的顶点坐标;(2)①求抛物线的对称轴(用含m的式子表示);②若点(m﹣1,y1),(m,y2),(m+3,y3)都在抛物线y=x2﹣2mx+m2﹣1上,则y1,y2,y3的大小关系为y3>y1>y2;(3)直线y=x+b与x轴交于点A(﹣3,0),与y轴交于点B,过点B作垂直于y轴的直线l与抛物线y=x2﹣2mx+m2﹣1有两个交点,在抛物线对称轴左侧的点记为P,当△OAP为钝角三角形时,求m的取值范围.【分析】(1)先将m=2代入抛物线的解析式,并配方可得抛物线顶点的坐标;(2)①根据函数对称轴为直线x=﹣计算可得结论;②函数开口向上,x=m时函数取得最小值,根据离对称轴距离越远,函数值越大可比较y1,y2,y3的大小关系;(3)当△OAP为钝角三角形时,则0<m﹣2<m或m﹣2>﹣3,分别求解即可.【解答】解:(1)当m=2时,抛物线的解析式为:y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点坐标为(2,﹣1);(2)①∵抛物线y=x2﹣2mx+m2﹣1,∴函数对称轴为直线x=﹣=m;②∵函数开口向上,x=m时函数取得最小值,∴离对称轴距离越远,函数值越大,∵m﹣1<m<m+3,且点(m﹣1,y1),(m,y2),(m+3,y3)都在抛物线y=x2﹣2mx+m2﹣1上,∴y3>y1>y2;故答案为:y3>y1>y2;(3)把点A(﹣3,0)代入y=x+b的表达式并解得:b=3,则B(0,3),直线AB的表达式为:y=x+3,如图,在直线y=3上,当∠AOP=90°时,点P与B重合,当y=3时,y=x2﹣2mx+m2﹣1=3,则x=m±2,∵点P在对称轴的左侧,∴x=m+2>m不符合题意,舍去,则点P(m﹣2,3),当△OAP为钝角三角形时,则0<m﹣2<m或m﹣2<﹣3,解得:m>2或m<﹣1,∴m的取值范围是:m>2或m<﹣1.【点评】本题考查的是二次函数综合运用,涉及到一次函数,解不等式,一元二次方程根的判别式,钝角三角形判断的方法等知识点,第三问有难度,确定∠AOP为直角时点P的位置最关键.16.(2021•延庆区一模)在平面直角坐标系xOy中,直线l1:y=﹣2x+6与y轴交于点A,与x轴交于点B,二次函数的图象过A,B两点,且与x轴的另一交点为点C,BC=2;(1)求点C的坐标;(2)对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2>2时,总有y1>y2.①求二次函数的表达式;②设点A在抛物线上的对称点为点D,记抛物线在C,D之间的部分为图象G(包含C,D两点).若一次函数y=kx﹣2(k≠0)的图象与图象G有公共点,结合函数图象,求k的取值范围.【分析】(1)令y=0代入y=﹣2x+6中,可得B的坐标,已知中BC=2,即可得C的坐标;(2)①令y=﹣2x+6中令x=0,则可求A的坐标.设二次函数y=ax2+bx+c,分别把A、B代入抛物线解析式,当C(1,0)抛物线解析式可求,当C(5,0)时抛物线解析式可求.由已知条件,知x>2时,二次函数单调递增,即可得抛物线表达式y=2x2﹣8x+6;②把y=6代入抛物线可得x=0或4,即可得D坐标为(4,6),y=kx﹣2必过E(0,﹣2),两点确定一条直线解析式,CD的直线解析式为y=2x﹣2,代入可得E在直线CD上.E、C、D直线表达式为y=k1x﹣2,设过E、F点的表达式为y=k2x﹣2,k2≤k≤k1,将y=k2x﹣2与抛物线联立可得一元二次方程,令Δ=0,解得k2=0,即可得k的取值范围.【解答】解:(1)令y=﹣2x+6中y=0,则x=3,∴B点为(3,0),C在x轴上且BC=2,∴C为(1,0)或C为(5,0);(2)①设y=ax2+bx+c,令y=﹣2x+6中x=0,则y=6,∴A点为(0,6),把A点为(0,6)代入到二次函数中,得6=c,又由(1)B为(3,0)代入到二次函数中得,0=9a+3b+6,当C为(1,0)时,得0=a+b+c=a+b+6,解得a=2,b=﹣8,∴y=2x2﹣8x+6,当C为(5,0)时,得0=25a+5b+c=25a+5b+6,解得a=,b=﹣,∴y=x2﹣x+6,由题目任意两点P1(x1,y1)P2(x2,y2),当x1>x2>2时,总有y1>y2,∴当x>2时,二次函数单调递增,当y=2x2﹣8x+6时,对称轴为直线x=﹣==2,∵a=2>0,∴抛物线开口向上,∴x=2左边函数单调递减,x=2右边函数单调递增,符合要求;当y=x2﹣x+6,对称轴x=﹣=4,a=>0,抛物线开口向上,∴在x=4左边函数单调递减,即当2<x<4时,函数单调递减,与题干分歧,∴舍去,综上,y=2x2﹣8x+6;②令y=6,∴6=2x2﹣8x+6,∴2x2﹣8x=0,∴2x(x﹣4)=0,∴x1=0,x2=4,∵A点x=0,∴D点坐标为(4,6),可知y=kx﹣2必过点E(0,2),C、D坐标分别为(1,0),(4,6),设CD直线解析式为y=ax+b,把C、D代入上式,得0=a+b,6=4a+b,∴y=2x﹣2,∴直线CD必过点E,如图作y=k1x﹣2过C、D、E点,过y=k2x﹣2过E、F点,已知k1=2,k2≤k≤k1,当y=k2x﹣2,与二次函数有交点时,k2x﹣2=2x2﹣8x+6,得2x2﹣(8+k2)x+9=0,而y=k2x﹣2与二次函数恰有一公共点,即x恰有解,∴△=(8+k2)2﹣2×4×8=0,解得k2=0,又k2≠0,综上0<k≤2.【点评】本题考查二次函数应用,解本题关键代入法求二次函数解析式和一次函数的解析式,二次函数的性质,一元一次方程根的情况等.31/ 31。
高考数学模拟题汇编《三角函数》专项练习题-带答案1.(2024·天津和平区·高三上期末)已知函数()sin (0)f x x ωω=> 函数()f x 图象的一条对称轴与一个对称中心的最小距离为π2 将()f x 图象上所有的点向左平移π4个单位长度 再将所得图象上所有点的横坐标缩短到原来的12(纵坐标不变) 得到的图象所表示的函数为( ) A. ()πsin 24h x x ⎛⎫=+⎪⎝⎭B. ()1πsin 24h x x ⎛⎫=+ ⎪⎝⎭C. ()πsin 24h x x ⎛⎫=- ⎪⎝⎭D. ()cos2h x x = 2.(2024·天津和平耀华中学·高三上期末)已知函数()()()cos 210,0πf x A x A ϕϕ=+-><< 若函数()y f x =的部分图象如图所示 函数()()sin g x A Ax ϕ=- 则下列结论正确的个数有( )①将函数()1y f x =+的图象向左平移π12个单位长度可得到函数()g x 的图象 ②函数()y g x =的图象关于点π,06⎛⎫-⎪⎝⎭对称 ③函数()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上的单调递减区间为ππ,122⎡⎤⎢⎥⎣⎦④若函数()()0g x θθ+≥为偶函数 则θ的最小值为7π12. A. 1个 B. 2个C. 3个D. 4个3.(2024·天津河北区·高三上期末)函数()sin()(0)6f x x πωω=+>的最小正周期为π 将函数()y f x =的图象向左平移4π个单位后得到()y g x =的图象 则下列命题中不正确...的是( ) A. 函数()y g x =图象的两条相邻对称轴之间距离为2π B. 函数()y g x =图象关于1112π=x 对称C. 函数()y g x =图像关于7(,0)24π对称 D. 函数()y g x =在5(0,)12π内单调减函数.4.(2024·天津河东区·高三上期末)已知函数()()()sin 0,0f x x ωϕωϕπ=+><<的部分图象如图所示.有下列四个结论:①3πϕ=﹔①()f x 在7,1212ππ⎡⎤--⎢⎥⎣⎦上单调递增 ①()f x 的最小正周期T π= ①()f x 的图象的一条对称轴为3x π=.其中正确的结论有( )A. ①①B. ①①C. ①①D. ①①5.(2024·天津河西区·高三上期末)将函数()π2sin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图像向左平移π3个单位 得到函数()y g x =的图像 若函数(y g x =)的一个极值点是π6 且在ππ,36⎡⎤-⎢⎥⎣⎦上单调递增 则ω的值为( )A.23B.43C.83D.1636.(2024·天津红桥区·高三上期末)已知函数()cos sin (0)f x a x b x ωωω=+>在π6x =处取得最大值2 ()f x 的最小正周期为π 则ω=______ ()f x 在π[0,]2上的单调递减区间是______.7.(2024·天津南开区·高三上期末)设函数()()3sin (0,π)f x x ωϕωϕ-><.若π5π0,388f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭且()f x 的最小正周期大于2π 则( )A.17π,312ωϕ==-. B. 111π,324ωϕ== C. 2π,312ωϕ==- D. 211π,312ωϕ== 8.(2024·天津宁河区·高三上期末)已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象关于π12x =-对称 它的最小正周期为π 关于该函数有下面四个说法: ①()f x 的图象过点π,012⎛⎫⎪⎝⎭ ②()f x 在区间5π11π,1212⎡⎤⎢⎥⎣⎦上单调递减 ③当π0,2x ⎡⎤∈⎢⎥⎣⎦时 ()f x 的取值范围为33⎡⎢⎣⎦④把函数sin 2y x =的图象上所有点向右平行移动π6个单位长度 可得到()f x 的图象.以上四个说法中 正确的个数为( ) A. 1B. 2C. 3D. 49.(2024·天津五所重点校·高三上期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭ 其图象相邻两个对称中心之间的距离为π4且直线π12x =-是其一条对称轴 则下列结论正确的是( )A. 函数()f x 的最小正周期为πB. 函数()f x 在区间ππ,612⎡⎤-⎢⎥⎣⎦上单调递增 C. 点5π,024⎛⎫-⎪⎝⎭是函数()f x 图象的一个对称中心 D. 将函数()f x 图象上所有点的横坐标伸长为原来的2倍 纵坐标不变 再把得到的图象向左平移π6个单位长度 可得到一个奇函数的图象10.(2024·天津西青区·高三上期末)将函数sin cos 22y x x ϕϕ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的图象沿x 轴向左平移8π个单位后 得到一个偶函数的图象 则ϕ的取值不可能是( ) A. 34π-B. 4π-C.4π D.54π 11.(2024·天津八校联考·高三上期末)已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的对称中心到对称轴的最小距离为π4将()f x 的图象向右平移π3个单位长度后所得图象关于y 轴对称 且()()12max 1f x f x -=关于函数()f x 有下列四种说法: ①π6x =是()f x 的一个对称轴 ②π,03⎛⎫- ⎪⎝⎭是()f x 的一个对称中心 ③()f x 在π0,2⎛⎫ ⎪⎝⎭上单调递增 ④若()()120f x f x == 则12π2k x x -= ()k ∈Z . 以上四个说法中 正确的个数为( ) A. 1B. 2C. 3D. 412.(2024·天津塘沽一中·高三上期末)已知函数())3cos cos f x x x x =+.下列结论错误..的是( ) A. ()f x 的一个对称中心为5π,012⎛⎫⎪⎝⎭ B. π6f ⎛⎫ ⎪⎝⎭是()f x 的最大值 C. ()f x 在ππ,36⎡⎤-⎢⎥⎣⎦上单调递增 D. 把函数cos 2y x =的图象上所有点向右平行移动π6个单位长度后 再向上平移12个单位长度 可得到()f x 的图象.13.(2024·天津部分区·高三上期末)将函数()sin 2f x x =的图象向左平移π6个单位长度 得到函数()g x 的图象 则()g x 所具有的性质是( ) A. 图象关于直线π6x =对称 B. 图象关于点5π,012⎛⎫⎪⎝⎭成中心对称C. ()g x 的一个单调递增区间为ππ,123⎡⎤⎢⎥⎣⎦D. 曲线()y g x =与直线32y =的所有交点中 相邻交点距离的最小值为π6答案:1.(2024·天津和平区·高三上期末)已知函数()sin (0)f x x ωω=> 函数()f x 图象的一条对称轴与一个对称中心的最小距离为π2 将()f x 图象上所有的点向左平移π4个单位长度 再将所得图象上所有点的横坐标缩短到原来的12(纵坐标不变) 得到的图象所表示的函数为( ) A. ()πsin 24h x x ⎛⎫=+⎪⎝⎭ B. ()1πsin 24h x x ⎛⎫=+ ⎪⎝⎭ C. ()πsin 24h x x ⎛⎫=- ⎪⎝⎭ D. ()cos2h x x =【答案】A 【详解】由题意得π42T = 22T ππω== 则1ω= 所以()sin f x x = 则将()f x 图象上所有的点向左平移π4个单位长度变为()πsin 4g x x ⎛⎫=+ ⎪⎝⎭再将所得图象上所有点的横坐标缩短到原来的12(纵坐标不变) 得到的图象所表示的函数为()πsin 24h x x ⎛⎫=+ ⎪⎝⎭. 故选:A.2.(2024·天津和平耀华中学·高三上期末)已知函数()()()cos 210,0πf x A x A ϕϕ=+-><< 若函数()y f x =的部分图象如图所示 函数()()sin g x A Ax ϕ=- 则下列结论正确的个数有( )①将函数()1y f x =+的图象向左平移π12个单位长度可得到函数()g x 的图象 ②函数()y g x =的图象关于点π,06⎛⎫- ⎪⎝⎭对称 ③函数()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上的单调递减区间为ππ,122⎡⎤⎢⎥⎣⎦④若函数()()0g x θθ+≥为偶函数 则θ的最小值为7π12. A. 1个 B. 2个C. 3个D. 4个【答案】B 【详解】因为1311A A --=-⎧⎨-=⎩ 所以2A = 所以()()2cos 21f x x ϕ=+-.又因为()02cos 12f ϕ=-= 得3cos 2ϕ=(舍)或1cos 2ϕ=- 因为0πϕ<< 可得23ϕπ=所以()2π2cos 213f x x ⎛⎫=+- ⎪⎝⎭ ()2π2sin 23g x x ⎛⎫=- ⎪⎝⎭函数()1y f x =+的图象向左平移π12个单位长度得到 ()π2π2π3π2π2cos 22cos 22sin 263323y x x x g x ⎛⎫⎛⎫⎛⎫=++=-+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故A 正确对于B 令2π2π,3x k k -=∈Z 解得ππ,32k x k =+∈Z 所以()g x 关于点()ππ,023k k ⎛⎫⎪⎝⎭+∈Z 对称当1k =-时 对称点为π,06⎛⎫-⎪⎝⎭故B 正确 对于C π32g ⎛⎫=⎪⎝⎭ π03g ⎛⎫= ⎪⎝⎭ππ23g g ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ 故C 错误 对于D 函数()()0g x θθ+≥为偶函数 即()2π2sin 223g x x θθ⎛⎫+=+- ⎪⎝⎭为偶函数 所以2ππ2π32k θ-=+ Z k ∈ 解得7ππ122k θ=+ Z k ∈ 又0θ≥ 所以当1k =-时π12θ=为最小值 故D 错误. 故选:B .3.(2024·天津河北区·高三上期末)函数()sin()(0)6f x x πωω=+>的最小正周期为π 将函数()y f x =的图象向左平移4π个单位后得到()y g x =的图象 则下列命题中不正确...的是 A. 函数()y g x =图象的两条相邻对称轴之间距离为2π B. 函数()y g x =图象关于1112π=x 对称C. 函数()y g x =图像关于7(,0)24π对称 D. 函数()y g x =在5(0,)12π内单调减函数.【答案】C 【详解】将函数()sin 26f x x π⎛⎫=+ ⎪⎝⎭的图像向左平移4π个单位后得到()cos 26g x x π⎛⎫=+ ⎪⎝⎭函数()g x 的对称中心横坐标为262x k πππ+=+ 即()62k x k Z ππ=+∈ C 选项错误 故选C .4.(2024·天津河东区·高三上期末)已知函数()()()sin 0,0f x x ωϕωϕπ=+><<的部分图象如图所示.有下列四个结论:①3πϕ=﹔①()f x 在7,1212ππ⎡⎤--⎢⎥⎣⎦上单调递增 ①()f x 的最小正周期T π= ①()f x 的图象的一条对称轴为3x π=.其中正确的结论有( )A. ①①B. ①①C. ①①D. ①①【答案】A 【详解】因为()30f = 所以3sin ϕ= 由于0ϕπ<< 所以3πϕ=或23π 由于图象最高点在y轴左侧 所以23ϕπ= ①不正确 因为06f π⎛⎫=⎪⎝⎭所以2sin()063ππω+= 解得2,63k k ωππ+=π∈Z 64k ω=- 令1k =得2ω= 周期为π ①正确由2222,232k x k k ππππ-≤+≤π+∈Z 可得,1212k x k k 7πππ-≤≤π-∈Z 令0k =可得增区间为7,1212ππ⎡⎤--⎢⎥⎣⎦①正确 因为3x π=时 24233x ππ+=所以3x π=不是对称轴 ①不正确 故选:A. 5.(2024·天津河西区·高三上期末)将函数()π2sin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图像向左平移π3个单位 得到函数()y g x =的图像 若函数(y g x =)的一个极值点是π6 且在ππ,36⎡⎤-⎢⎥⎣⎦上单调递增 则ω的值为( )A.23B.43C.83D.163【答案】A 【详解】由题意得:()ππππ2sin 2sin 3636g x x x ωωω⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦又函数(y g x =)的一个极值点是π6即π6x =是函数()g x 一条对称轴所以πππππ6362k ωω++=+ 则223k ω=+(k ∈Z ) 函数 ()g x 在ππ,36⎡⎤-⎢⎥⎣⎦上单调递增 则函数()g x 的周期2πππ263T ω⎡⎤⎛⎫=>-- ⎪⎢⎥⎝⎭⎣⎦解得02ω<< 则0k = 23ω=故选:A. 6.(2024·天津红桥区·高三上期末)已知函数()cos sin (0)f x a x b x ωωω=+>在π6x =处取得最大值2 ()f x 的最小正周期为π 则ω=______ ()f x 在π[0,]2上的单调递减区间是______. 【答案】 ①. 2 ①. ππ[,]62【详解】依题意 函数22())f x a b x ωϕ=++ 222a b + 2ππω= 解得2ω=又π()26f = 则ππ22π,Z 62k k ϕ⨯+=+∈ 即πZ π2,6k k ϕ=+∈ 因此π()2sin(2)6f x x =+ 当π[0,]2x ∈时 ππ7π(2)[,]666x +∈由ππ7π2266x ≤+≤ 解得ππ62x ≤≤ 于是()f x 在ππ[,]62上单调递减所以2ω= ()f x 在π[0,]2上的单调递减区间是ππ[,]62.故答案为:2 ππ[,]627.(2024·天津南开区·高三上期末)设函数()()3sin (0,π)f x x ωϕωϕ-><.若π5π0,388f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭且()f x 的最小正周期大于2π 则( )A.17π,312ωϕ==-. B. 111π,324ωϕ== C. 2π,312ωϕ==- D. 211π,312ωϕ== 【答案】C 【详解】由()f x 的最小正周期大于2π 可得π42T > 因为π5π0,388f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭可得5ππ3π4884=+=T 则3πT = 且0ω> 所以2π23T ω==即2()3sin 3ϕ⎛⎫- ⎪⎝⎭f x x 由5π25π3sin 3838ϕ⎛⎫⎛⎫=⨯- ⎪ ⎪⎝⎭⎝⎭f 即5πsin 112ϕ⎛⎫-= ⎪⎝⎭可得5ππ2π122ϕ-=+k k ∈Z 则π2π12k ϕ=-- k ∈Z 且π<ϕ 可得0k = π12ϕ=- 所以23ω=π12ϕ=-.故选:C .8.(2024·天津宁河区·高三上期末)已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象关于π12x =-对称 它的最小正周期为π 关于该函数有下面四个说法:①()f x 的图象过点π,012⎛⎫⎪⎝⎭ ②()f x 在区间5π11π,1212⎡⎤⎢⎥⎣⎦上单调递减 ③当π0,2x ⎡⎤∈⎢⎥⎣⎦时 ()f x 的取值范围为33⎡⎢⎣⎦④把函数sin 2y x =的图象上所有点向右平行移动π6个单位长度 可得到()f x 的图象.以上四个说法中 正确的个数为( ) A. 1B. 2C. 3D. 4【答案】B 【详解】()f x 的最小正周期为π 所以2ππω= 得2ω=由()f x 关于π12x =-对称 则ππsin 1126f ϕ⎛⎫⎛⎫-=-+=± ⎪ ⎪⎝⎭⎝⎭所以πππ,Z 62k k ϕ-+=+∈ 解得2ππ,Z 3k k ϕ=+∈ 又π2ϕ< 所以π3ϕ=- 所以()πsin 23f x x ⎛⎫=- ⎪⎝⎭对于①:πππsin 01263f ⎛⎫⎛⎫=-≠ ⎪ ⎪⎝⎭⎝⎭①错误对于②:由5π11π1212x ≤≤得ππ3π2232x ≤-≤ 函数sin y x =在π3π,22⎡⎤⎢⎥⎣⎦上单调递减 所以()f x 在区间5π11π,1212⎡⎤⎢⎥⎣⎦上单调递减 ②正确对于③:由π02x ≤≤得ππ2π2333x -≤-≤ 函数sin y x =在π2π,33⎡⎤-⎢⎥⎣⎦上的值域为3⎡⎤⎢⎥⎣⎦ 所以()f x 的取值范围为32⎡⎤-⎢⎥⎣⎦③错误 对于④ 把函数sin 2y x =的图象上所有点向右平行移动π6个单位长度得ππsin 2sin 263y x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ④正确故选:B.9.(2024·天津五所重点校·高三上期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭ 其图象相邻两个对称中心之间的距离为π4且直线π12x =-是其一条对称轴 则下列结论正确的是( )A. 函数()f x 的最小正周期为πB. 函数()f x 在区间ππ,612⎡⎤-⎢⎥⎣⎦上单调递增C. 点5π,024⎛⎫-⎪⎝⎭是函数()f x 图象的一个对称中心 D. 将函数()f x 图象上所有点的横坐标伸长为原来的2倍 纵坐标不变 再把得到的图象向左平移π6个单位长度 可得到一个奇函数的图象【答案】C 【详解】对于A 由题意可知 函数()f x 的最小正周期为ππ242T =⨯= A 错误 2π4Tω== ()()sin 4f x x ϕ=+因为直线π12x =-是函数()f x 的一条对称轴 则()ππ4πZ 122k k ϕ⎛⎫⨯-+=+∈ ⎪⎝⎭得()5ππZ 6k k ϕ=+∈ 因为π2≤ϕ 则π6ϕ=- 所以 ()πsin 46f x x ⎛⎫=- ⎪⎝⎭.对B 当ππ,612x ⎡⎤∈-⎢⎥⎣⎦时 5πππ4666x -≤-≤ 故函数()f x 在区间ππ,612⎡⎤-⎢⎥⎣⎦上不单调 B 错对C()5πsin π024f ⎛⎫-=-= ⎪⎝⎭ 故点5π,024⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心 C 对 对D 由题意可知 ()πππsin 2sin 2666g x x x ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦不为奇函数 D 错. 故选:C. 10.(2024·天津西青区·高三上期末)将函数sin cos 22y x x ϕϕ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的图象沿x 轴向左平移8π个单位后 得到一个偶函数的图象 则ϕ的取值不可能是( ) A. 34π-B. 4π-C.4π D.54π 【答案】B 【详解】将()1sin cos sin 2222y x x x ϕϕϕ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭的图象向左平移8π个单位后得到的图象对应的函数为1sin 224y x πϕ⎛⎫=++ ⎪⎝⎭由题意得()42k k Z ππϕπ+=+∈ ①()4k k Z πϕπ=+∈当1,0,1k =-时 ϕ的值分别为34π-4π 54π所以ϕ的取值不可能是4π-.故选:B. 11.(2024·天津八校联考·高三上期末)已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的对称中心到对称轴的最小距离为π4将()f x 的图象向右平移π3个单位长度后所得图象关于y 轴对称 且()()12max 1f x f x -=关于函数()f x 有下列四种说法: ①π6x =是()f x 的一个对称轴 ②π,03⎛⎫- ⎪⎝⎭是()f x 的一个对称中心 ③()f x 在π0,2⎛⎫ ⎪⎝⎭上单调递增 ④若()()120f x f x == 则12π2k x x -= ()k ∈Z . 以上四个说法中 正确的个数为( ) A. 1B. 2C. 3D. 4【答案】B【详解】根据题意由对称中心到对称轴的最小距离为π4可得1π44T = 即2ππT ω== 得2ω= 将()f x 的图象向右平移π3个单位长度后可得()2πsin 23f x A x ϕ⎛⎫=-+ ⎪⎝⎭其图象关于y 轴对称 所以()f x 偶函数 则2πππ32k ϕ-+=+ Z k ∈ 解得7ππ6k ϕ=+ Z k ∈ 由π2ϕ<可知当1k =-时 π6ϕ=符合题意由()()12max 21f x f x A -==可得12A = 因此()1πsin 226f x x ⎛⎫=+ ⎪⎝⎭对于① 当π6x =时 π1ππ1sin 262662f ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭ 取得最大值所以π6x =是()f x 的一个对称轴 即①正确 对于② 当π3x =-时 π12ππ1sin 032362f ⎛⎫⎛⎫-=-+=-≠ ⎪ ⎪⎝⎭⎝⎭所以π,03⎛⎫-⎪⎝⎭不是()f x 的一个对称中心 即②错误 对于③ 当π20,x ⎛⎫∈ ⎪⎝⎭时 可得ππ7π2,666x ⎛⎫+∈ ⎪⎝⎭ 又sin y x =在π7π,66⎛⎫ ⎪⎝⎭上不单调 所以()f x 在π0,2⎛⎫⎪⎝⎭上不是单调递增的 所以③错误 对于④ 若()()120f x f x == 由正弦函数图象性质可知两个相邻零点的距离为半个周期 所以任意两个零点之间的距离为半周期的整数倍 由()1πsin 226f x x ⎛⎫=+ ⎪⎝⎭周期为π可得12π2k x x -=()k ∈Z 即④正确 所以正确的个数只有①和④共2个.故选:B12.(2024·天津塘沽一中·高三上期末)已知函数())3cos cos f x x x x =+.下列结论错误..的是( ) A. ()f x 的一个对称中心为5π,012⎛⎫⎪⎝⎭ B. π6f ⎛⎫ ⎪⎝⎭是()f x 的最大值 C. ()f x 在ππ,36⎡⎤-⎢⎥⎣⎦上单调递增D. 把函数cos 2y x =的图象上所有点向右平行移动π6个单位长度后 再向上平移12个单位长度 可得到()f x 的图象.【答案】A 【详解】由题意可得:()()3sin cos cos f x x x x =+3cos21π1sin 2262+⎛⎫=+=++ ⎪⎝⎭x x x 对于选项A :因为5π5ππ111sin sin π1266222⎛⎫⎛⎫=++=+=⎪ ⎪⎝⎭⎝⎭f 所以()f x 的一个对称中心为5π1,122⎛⎫ ⎪⎝⎭ 故A 错误 对于选项B :πππ1π13sin sin 6362222⎛⎫⎛⎫=++=+= ⎪ ⎪⎝⎭⎝⎭f 所以π6f ⎛⎫ ⎪⎝⎭是()f x 的最大值 故B 正确 对于选项C :因为ππ,36⎡⎤-⎢⎥⎣⎦ 则πππ2,622x ⎡⎤+∈-⎢⎥⎣⎦ 且sin y x =在ππ,22⎡⎤-⎢⎥⎣⎦内单调递增 所以()f x 在ππ,36⎡⎤-⎢⎥⎣⎦上单调递增 故C 正确对于选项D :把函数cos 2y x =的图象上所有点向右平行移动π6个单位长度后 得到πππππcos 2cos 2cos 2sin 263626⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-=+-=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦y x x x x 的图象 再向上平移12个单位长度 得到()π1sin 262⎛⎫=++= ⎪⎝⎭y x f x 的图象 故D 正确 故选:A. 13.(2024·天津部分区·高三上期末)将函数()sin 2f x x =的图象向左平移π6个单位长度 得到函数()g x 的图象 则()g x 所具有的性质是( )A. 图象关于直线π6x =对称B. 图象关于点5π,012⎛⎫ ⎪⎝⎭成中心对称 C. ()g x 的一个单调递增区间为ππ,123⎡⎤⎢⎥⎣⎦ D. 曲线()y g x =与直线3y =的所有交点中 相邻交点距离的最小值为π6 【答案】D 【详解】由题意()ππsin 2sin 326g x x x ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦对于A 133πππ33sin g ⎛⎫⎛⎫=+=≠ ⎪ ⎪⎝⎭⎝⎭ 所以图象不关于直线π6x =对称 故A 错误 对于B 5π5ππ1sin 022163g ⎛⎫⎛⎫=+=-≠ ⎪ ⎪⎝⎭⎝⎭所以图象不关于点5π,012⎛⎫ ⎪⎝⎭成中心对称 故B 错误 对于C 当ππ,123x ⎡⎤∈⎢⎥⎣⎦时 2π2,ππ3t x ⎡⎤=+∈⎢⎥⎣⎦ 由复合函数单调性可知此时()g x 单调递减 故C 错误 对于D 若()23π3sin 2g x x ⎛⎫=+= ⎪⎝⎭ 则ππ22π33x k +=+或()π2π22π,Z 33x k k +=+∈ 所以曲线()y g x =与直线3y =的所有交点中 相邻交点距离的最小值为2πππ3326=-.故选:D.。