随机过程知识点
- 格式:doc
- 大小:1.33 MB
- 文档页数:14
第一章随机过程 的基本概念与基本类型 一.随机变量及其分布X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x)p kf (t)dt分布函数kxX 的概率分布用概率密度 f (x)F(x)分布函数连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,)其联合分布函数 1 2 n 1 1 2 离散型联合分布列连续型联合概率密度3.随机变量 的数字特征 数学期望:离散型随机变量 XEX x p kkXEX xf (x)dx连续型随机变量2DX E(X EX) 2 EX (EX) 2方差:反映随机变量取值 的离散程度协方差(两个随机变量 X ,Y ):B E[( X EX)(Y EY)] E(XY) EX EYXYB XY相关系数(两个随机变量X,Y ):0,则称 X ,Y 不相关。
若XYDX DY独立不相关itXg(t) E(e )itxe p k 连续 g(t)ke itxf (x)dx4.特征函数离散 g(t) 重要性质: g(0) 1,g(t) 1 g( t) g(t),, g (0) i EX kk k5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布P( X 1) p,P( X 0) qEX pDX pqP(X k) C p q n kk kEX npDX n p qnk泊松分布P( X k) ek!EXDX均匀分布略( x a)21 2N(a, ) f (x)222EX a正态分布eDX2xe ,x 0 0, x 011指数分布f (x)EXDX2X (X ,X , ,X ) 的联合概率密度 X ~ N(a, B) 6.N维正态随机变量1 2 n11 2T 1(x a) B (x a)}f (x , x , , x n ) exp{ 11 2n 2(2 ) | B |2a (a ,a , ,a ), x (x , x , ,x ), B (b ) 正定协方差阵 1 2 n 1 2 n ij n n二.随机过程 的基本概念 1.随机过程 的一般定义设 ( , P)是概率空间, T 是给定 的参数集,若对每个 t T ,都有一个随机变量 X 与之对应, X(t,e),t T ( , 是P)上 的随机过程。
第三章 随机过程学习目标通过对本章的学习,应该掌握以下要点: 随机过程的基本概念随机过程的数字特征(均值、方差、相关函数);平稳过程的定义、各态历经性、相关函数和功率谱密度;高斯过程的定义和性质、一维概率密度函数;随机过程通过线性系统、输出和输入的关系;窄带随机过程的表达式和统计特性;正弦波加窄带高斯过程的统计特性;高斯白噪声及其通过理想低通信道和理想带通滤波器。
3.1 内容概要3.1.1 随机过程的基本概念随机过程是一类随时间作随机变化的过程,具有不可预知性,不能用确切的时间函数来描述。
1.定义角度一:随机过程ξ(t )是随机试验的全体样本函数{ξ1 (t ), ξ2 (t ), …, ξn (t )}的集合。
角度二:随机过程ξ(t )是在时间进程中处于不同时刻的随机变量的集合。
这说明,在任一观察时刻t 1,ξ(t 1)是一个不含t 变化的随机变量。
可见,随机过程具有随机变量和时间函数的特点。
研究随机过程正是利用了它的这两个特点。
2.分布函数和概率密度函数 一维分布函数:ξ(t )在11111(,)[()]F x t P t x ξ=≤含义:随机过程ξ(t )在t 1时刻的取值ξ(t 1)小于或等于某一数值x 1的概率。
如果存在1111111),(),(x t x F t x f ∂∂=则称111(,)f x t 为ξ(t )的一维概率密度函数。
同理,任意给定12n t t t T ∈ ,,,,则ξ(t )的n 维分布函数为{}12121122(,,,;,,)(),(),,()n n n n n F x x x t t t P t x t x t x ξξξ=≤≤≤如果此能在n21n 21n 21n n n 21n 21n x )t x ()t x (∂∂∂∂= x x t t x x F t t x x f ,,,;,,,,,,;,,,则称其为ξ(t )的n 维概率密度函数。
显然,n 越大,对随机过程统计特性的描述就越充分。
知识点总结第1章 概率论基础1.1概论空间随机试验,它是指其结果不能事先确定且在相同条件下可以重复进行的试验。
其中,一个试验所有可能出现的结果的全体称为随机试验的样本空间,记为Ω,试验的一个结果称为样本点,记为ω,即}{ω=Ω. 样本空间的某个子集称为随机事件,简称事件.定义1.1.1 设Ω样本空间,是Ω的某些子集构成的集合,如果:(1)∈Ω (2)若∈A ,则∈A(3)若∈n A ,,, ,21n =则∈∞= 1n nA那么称为一事件域,也称为σ域.显然,如果是一事件域,那么(1)∈φ(2)若∈B A ,,则∈-B A(3)若∈n A , ∞==1n n 2,1n A ,则,,定义 1.1.2 设Ω是样本空间,是一事件域,定义在上的实值函数)(⋅P 如果满足:(1)∈∀A 0)(,≥A P ,(2)1)(=ΩP , (3)若∈n A ,,2,1, =n 且,,2,1,,, =≠=j i j i A A j i φ则∞=∞=∑=11)()(n n n n A P A P那么称P 是二元组(,Ω)上的概率,称P (A )为事件A 的概率,称三元组,(Ω),P 为概率空间。
关于事件的概率具有如下性质:(1);0)(=φP(2)若∈nA ,,,2,1,,,,,,2,1,n j i j i A A n i j i =≠==φ 则ni ni i i A P A P 11)()(==∑=(3)若∈B A ,,,B A ⊂则)A P B P A B P ()()(-=-(4)若∈B A ,)()(,,B P A P B A ≤⊂则; (5)若∈A ;1)(,≤A P 则(6)若∈A );(1)(,A P A P -=则(7)若∈n A ,,2,1, =n 则∞=∞=∑≤11)()(n n n i A P A P(8)若∈i A ,,,2,1,n i =则-===∑ ni ni i i A P A P 11)()(∑∑≤<≤≤<<≤--+-+nj i nk j i n n kj ij i A A A P A A A P A A P 11211)()1()()(一列事件∈n A ,2,1,=n 称为单调递增的事件列,如果;,2,1,1 =⊂+n A A n n 一列事件∈n A ,2,1,=n 称为单调递减的事件列,如果,2,1,1=⊃+n A A n n .定理1.1.1 设 ∈n A ,2,1,=n(1)若 ,2,1,=n A n 是单调递增的事件列,则⎪⎪⎭⎫⎝⎛=∞=∞→ 1)(lim n n n n A P A P (2)若 ,2,1,=n A n 是单调递减的事件列,则⎪⎪⎭⎫⎝⎛=∞=∞→ 1)(lim n n n n A P A P 定义1.1.3.设,(Ω),P 为一概率空间,∈B A ,.且,0)(>A P 则称)()()(A P AB P A B P =为在事件A 发生的条件下事件B 发生的条件概率.不难验证,条件概率)|(A P ⋅符合定义1.1.2中的三个条件,即 (1)∈∀B , 0)|(≥A B P ;(2);1)|(=ΩA P (3)设∈n B ,,2,1,,,,2,1, =≠==j j i B B n j i φ则∞=∞=∑=11)|()|(n n n n A B P A B P定理 1.1.2. 设,Ω( ),P 是一概率空间,有: (1)(乘法公式)若∈i A ,,,,2,1n i =且0)(121>-n A A A P ,则)|()()(12121A A P A P A A A P n =(2)(全概率公式)设∈A ,∈iB ,,2,1,0)(, =>i B P i 且∞=⊃=≠=1,,,2,1,,,,i i j i A B j i j i B B φ则∑∞==1)|()()(i i i B A P B P A P(3)(贝叶斯(Bayes)公式)且∈A ∈>i B A P ,0)(,,,,2,1,0)( =>i B P i且 ∞=⊃==1,,,2,1,,i i j i A B j i B B φ则,2,1,)|()()|()()|(1==∑∞=i B A P B P B A P B P A B P j jji i i定义 1.1.4设,(Ω ),P 为一概率空间,,,,2,1,n i F A i =∈如果对于任意的)1(n k k ≤<及任意的,12n i i i k i ≤<<<≤ 有)()()()(2121k k i i i i i i A P A P A P A A A P =则称n 21,,,A A A 相互独立。
随机过程知识点汇总随机过程是指一组随机变量{X(t)},其中t属于某个集合T,每个随机变量X(t)都与一个时刻t相关联。
2.随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。
离散时间随机过程是指在离散的时间点上取值的随机过程,例如随机游走。
连续时间随机过程是指在连续的时间区间上取值的随机过程,例如XXX运动。
3.随机过程的数字特征随机过程的数字特征包括均值函数和自相关函数。
均值函数E[X(t)]描述了随机过程在不同时刻的平均取值。
自相关函数R(t1,t2)描述了随机过程在不同时刻的相关程度。
4.平稳随机过程平稳随机过程是指其均值函数和自相关函数都不随时间变化而变化的随机过程。
弱平稳随机过程的自相关函数只与时间差有关,而不依赖于具体的时间点。
强平稳随机过程的概率分布在时间上是不变的。
5.高斯随机过程高斯随机过程是指其任意有限个随机变量的线性组合都服从正态分布的随机过程。
高斯随机过程的均值函数和自相关函数可以唯一确定该过程。
6.马尔可夫随机过程马尔可夫随机过程是指其在给定当前状态下,未来状态的条件概率分布只依赖于当前状态,而与过去状态无关的随机过程。
马尔可夫性质可以用转移概率矩阵描述,并且可以用马尔可夫链来建模。
7.泊松过程泊松过程是指在一个时间段内随机事件发生的次数服从泊松分布的随机过程。
泊松过程的重要性质是独立增量和平稳增量。
8.随机过程的应用随机过程在金融学、信号处理、通信工程、控制理论等领域有广泛的应用。
例如,布朗运动被广泛应用于金融学中的期权定价,马尔可夫链被应用于自然语言处理中的语言模型。
t)|^2]协方差函数BZs,t)E[(ZsmZs))(ZtmZt))],其中Zs和Zt是Z在时刻s和t的取值。
复随机过程是由实部和虚部构成的随机过程,其均值和方差函数分别由实部和虚部的均值和方差函数计算得到。
协方差函数和相关函数也可以类似地计算得到。
复随机过程在通信系统中有广泛的应用,例如调制解调、信道编解码等。
高等数学中的随机过程相关知识点详解近年来,随机过程被越来越多的人所关注和使用。
作为高等数学的一个分支,随机过程具有广泛的应用领域,包括金融、医学、生物学等等。
在本文中,将详细解析高等数学中的随机过程相关知识点,帮助读者更好地理解和应用这一领域的知识。
一、概率论基础在进行随机过程的学习之前,我们需要了解一些概率论的基础知识。
概率论是确定不确定性的一种科学方法,它研究的是随机事件的发生规律和概率计算方法。
在概率论中,有一些基本概念和公式,包括概率、条件概率、概率分布、随机变量等等。
1.1 概率概率是指一个事件发生的可能性大小。
通常用P来表示,它的取值范围是0到1。
当P=0时,表示这个事件不可能发生;当P=1时,表示这个事件一定会发生。
例如,掷一枚硬币正面朝上的概率为1/2,或者说P=0.5。
1.2 条件概率条件概率是指在已知某些条件下,某个事件发生的概率。
通常用P(A|B)来表示,表示在B发生的情况下,A发生的概率。
例如,从一副牌中摸两张牌,第一张是红桃,第二张是黑桃的概率为P(第二张是黑桃|第一张是红桃)=26/51。
1.3 概率分布概率分布是指所有可能事件发生的概率分布,它是概率论的基础。
在不同的情况下,概率分布也是不同的。
例如,在离散型随机变量中,概率分布通常以概率质量函数的形式给出;而在连续性随机变量中,概率分布通常以概率密度函数的形式给出。
1.4 随机变量随机变量是一种随机事件的数学描述。
它通常用大写字母表示,如X、Y、Z等等。
根据其取值的类型,随机变量可以分为离散型和连续型。
离散型随机变量只能取到有限或可数个值,如掷硬币、扔骰子等等;而连续型随机变量可以取到任意实数值,如身高、体重等等。
二、随机过程的基本概念2.1 随机过程的定义随机过程是一种描述随机事件随时间变化的方法。
它可以看作是有限维随机变量序列的无限集合,其中每个随机变量代表系统在某个时刻的状态。
随机过程的定义包括两个方面:空间(状态集合)和时间(时刻集合)。
考研随机过程知识点浓缩随机过程是概率论中的重要分支,研究随机事件在时间上的演变规律。
在考研数学中,随机过程是一个重要的知识点,涉及到概率论和数理统计等多个领域。
本文将对考研随机过程的知识点进行浓缩总结,帮助考生更好地掌握重点内容。
1. 随机过程的定义随机过程是一个定义在时间轴上的随机变量族,即一系列随机变量组成的集合。
随机过程可分为连续时间随机过程和离散时间随机过程,根据时间参数的取值范围来进行区分。
2. 随机过程的分类根据随机过程的状态空间,可以将随机过程分为离散状态随机过程和连续状态随机过程。
离散状态随机过程中,状态空间为有限集合或者可列无限集合,如泊松过程;连续状态随机过程中,状态空间为连续集合,如布朗运动。
3. 马尔可夫性质马尔可夫性质是随机过程的重要性质之一,指的是在给定当前状态的条件下,未来的发展只依赖于当前状态,与过去的状态无关。
具有马尔可夫性质的随机过程可以简化计算和分析。
4. 随机过程的平稳性平稳性是随机过程的另一个重要性质,分为弱平稳和严平稳。
弱平稳指的是均值和自协方差不依赖于时间的特性;严平稳则要求联合分布在时间上的平移具有不变性。
平稳性的性质可以简化对随机过程的研究。
5. 随机过程的独立增量性质随机过程的独立增量性质指的是在不相交的时间间隔内,随机变量之间是相互独立的。
具有独立增量性质的随机过程可以通过对各个时间间隔内的随机变量进行独立分析。
6. 随机过程的马尔可夫链马尔可夫链是一种特殊的离散时间随机过程,具有马尔可夫性质。
马尔可夫链的状态空间是离散的,状态转移概率只与当前状态有关,与过去的状态无关。
马尔可夫链通常用状态转移矩阵来描述状态之间的转移规律。
7. 泊松过程泊松过程是一类具有无记忆性的离散状态随机过程,是一种常用的数学模型。
泊松过程描述了在一段时间内随机事件发生的次数,具有独立增量和稳定增量的性质。
8. 布朗运动布朗运动是连续时间的连续状态随机过程,具有平稳增量、独立增量和高斯增量的特性。
《概率统计与随机过程》知识总结第1章 随机事件及其概率一、随机事件与样本空间 1、随机试验我们将具有以下三个特征的试验称为随机试验,简称试验, (1)重复性:试验可以在相同的条件下重复进行;(2)多样性:试验的可能结果不止一个,并且一切可能的结果都已知; (3)随机性:在每次试验前,不能确定哪一个结果会出现。
随机试验一般用大写字母E 表示,随机试验中出现的各种可能结果称为试验的基本结果。
2、样本空间随机试验E 的所有可能结果组成的集合称为试验的样本空间,记为S ,样本空间中的元素,即E 的每个基本结果,称为样本点。
3、随机事件称随机试验E 的样本空间S 的子集为E 的随机事件,简称事件。
随机事件通常利用大写字母A 、B 、C 等来表示。
在一次试验中,当且仅当这一子集(事件)中的某个样本点出现时,称这一事件发生。
特别地,将只含有一个样本点的事件称为基本事件;样本空间S 包含所有的样本点,它在每次试验中都发生,称S 为必然事件;事件∅(S ∅⊂)不包含任何样本点,它在每次试验中都不发生,称∅为不可能事件。
4、随机事件间的关系及运算(1)包含关系:若B A ⊂,则称事件A 包含事件B ,也称事件B 含在事件A 中,它表示:若事件B 发生必导致事件A 发生。
(2)相等关系:若B A ⊂且A B ⊂,则称事件A 与事件B 相等,记为A B =。
(3)事件的和:称事件{|A B x x A ⋃=∈或}x B ∈为事件A 与事件B 的和事件。
事件A B ⋃发生意味着事件A 发生或事件B 发生,即事件A 与事件B 至少有一件发生。
类似地,称1n i i A =⋃为n 个事件12n A A A ⋯、、、的和事件,称1i i A ∞=⋃为可列个事件12 A A ⋯、、的和事件。
(4)事件的积:称事件{|A B x x A ⋂=∈且}x B ∈为事件A 与事件B 的积事件。
事件A B ⋂发生意味着事件A 发生且事件B 发生,即事件A 与事件B 都发生。
第一章:预备知识§1.1 概率空间随机试验,样本空间记为Ω。
定义1.1 设Ω是一个集合,F 是Ω的某些子集组成的集合族。
如果 (1)∈ΩF ; (2)∈A 若F ,∈Ω=A A \则F ; (3)若∈n A F , ,,21=n ,则∞=∈1n nAF ;则称F 为-σ代数(Borel 域)。
(Ω,F )称为可测空间,F 中的元素称为事件。
由定义易知:定义1.2 设(Ω,F )是可测空间,P(·)是定义在F 上的实值函数。
如果则称P 是()F ,Ω上的概率,(P F ,,Ω)称为概率空间,P(A)为事件A 的概率。
定义 1.3 设(P F ,,Ω)是概率空间,F G ⊂,如果对任意G A A A n ∈,,,21 ,,2,1=n 有: (),11∏===⎪⎪⎭⎫⎝⎛ni i n i i A P A P则称G 为独立事件族。
§1.2 随机变量及其分布随机变量X ,分布函数)(x F ,n 维随机变量或n 维随机向量,联合分布函数,{}T t X t ∈,是独立的。
§1.3随机变量的数字特征定义1.7 设随机变量X 的分布函数为)(x F ,若⎰∞∞-∞<)(||x dF x ,则称)(X E =⎰∞∞-)(x xdF为X 的数学期望或均值。
上式右边的积分称为Lebesgue-Stieltjes 积分。
方差,()()[]EY Y EX X E B XY --=为X 、Y 的协方差,而 为X 、Y 的相关系数。
若,0=XY ρ则称X 、Y 不相关。
(Schwarz 不等式)若,,22∞<∞<EY EX则§ 1.4 特征函数、母函数和拉氏变换定义1. 10 设随机变量的分布函数为F (x ),称为X 的特征函数随机变量的特征函数具有下列性质: (1)(0)1,()1,()()g g t g t g t =≤-= 1( 2 ) g (t )在()∞∞-, 上一致连续。
(3)()(0)()k k k g i E X =(4)若12,,,n X X X 是相互独立的随机变量,则12n X X X X =+++的特征函数12()()()()n g t g t g t g t =,其中()i g t 是随机变量X i 的特征函数,1,2,,i n =.定义1 . 11 设 12(,,,)n X X X X =是n 维随机变量,t = (12,,,n t t t ) ,R ∈ 则称121()(,,,)()[exp()]nitX n k k k g t g t t t E eE i t X '====∑,为X 的特征函数。
定义1.12 设X 是非负整数值随机变量,分布列 则称)()(Xdef s E s P ==k k k s P ∑∞=0为X 的母函数。
§ 1.5 n 维正态分布定义1.13 若n 维随机变量),,,(21n X X X X =的联合概率密度为 式中,),,,(21n a a a a =是常向量,n n ij b B ⨯=)(是正定矩阵,则称X 为n 维正态随机变量或服从n 维正态分布,记作),(~B a N X 。
可以证明,若),(~B a N X,则X 的特征函数为为了应用的方便,下面,我们不加证明地给出常用的几个结论。
性质1 若),(~B a N X 则n l b B a X E kl X X k k l k ,,2,1,,)( ===。
性质2 设),(~B a N X ,XA Y=,若BA A '正定,则),(~BA A aA N Y '。
即正态随机变量的线性变换仍为正态随机变量。
性质3 设),,,(4321X X X X X =是四维正态随机变量,4,3,2,1,0)(==k X E k ,则§ 1.6 条件期望给定Y=y 时,X 的条件期望定义为由此可见除了概率是关于事件{Y=y }的条件概率以外,现在的定义与无条件的情况完全一样。
E(X|Y=y)是y 的函数,y 是Y 的一个可能值。
若在已知Y 的条件下,全面地考虑X 的均值,需要以Y 代替y ,E(X|Y)是随机变量Y 的函数,也是随机变量,称为 X 在 Y 下的条件期望。
条件期望在概率论、数理统计和随机过程中是一个十分重要的概念,下面我们介绍一个极其有用的性质。
性质 若随机变量X 与Y 的期望存在,则⎰===)()|()]|([)(y dF y Y X E Y X E E X E Y --------(1)如果Y 是离散型随机变量,则上式为如果Y 是连续型,具有概率密度f(x),则(1)式为第二章 随机过程的概念与基本类型§2.1 随机过程的基本概念定义2.1 设(P F ,,Ω)是概率空间,T 是给定的参数集,若对每个t ∈T ,有一个随机变量X (t ,e )与之对应,则称随机变量族}),,({T t e t X ∈是(P F ,,Ω)的随机过程,简记为随机过程}),({T t t X ∈。
T 称为参数集,通常表示时间。
通常将随机过程}),,({T t e t X ∈解释为一个物理系统。
X(t)表示在时刻t 所处的状态。
X(t)的所有可能状态所构成的集合称为状态空间或相空间,记为I 。
从数学的观点来说,随机过程}),,({T t e t X ∈是定义在T ×Ω上的二元函数。
对固定的t ,X (t ,e )是定义在T 上的普通函数,称为随机过程}),,({T t e t X ∈的一个样本函数或轨道,样本函数的全体称为样本函数的空间。
§ 2.2 随机过程的函数特征t X ={X (t ),t ∈T }的有限维分布函数族。
有限维特征函数族: 其中:定义2.3 设t X ={X (t ),t ∈T }的均值函数def t m X )()]([t X E ,T t ∈。
二阶矩过程,协方差函数:T ,)]()([),()(2∈-=t t m t X E def t t B t D X X X相关函数: =),(t s R X )]()([t X s X E定义2.4 设{X (t ),t ∈T },{Y (t ),t ∈T }是两个二阶矩过程,互协方差函数,互相关函数。
§ 2.3 复随机过程定义 2.5 设},{T t X t ∈,},{T t Y t ∈是取实数值的两个随机过程,若对任意T t ∈ t t t iY X Z +=, 其中 1-=i ,则称},{T t Z t ∈为复随机过程.定理 2.2 复随机过程},{T t X t ∈的协方差函数 ),(t s B 具有性质 (1)对称性:),(),(s t B t s B =;(2)非负定性§2.4 几种重要的随机过程一、正交增量过程定义2.6 设(){}T ∈X t t ,是零均值的二阶矩过程,若对任意的,4321T ∈<≤<t t t t 有公式 ()()[]()()[]03412=X -X X -X E t t t t ,则称()t X 正交增量过程。
二、独立增量过程定义2.7 设(){}T ∈X t t ,是随机过程,若对任意的正整数n 和,21T ∈<<<n t t t 随机变量()()()()()()12312,,,-X -X X -X X -X n n t t t t t t 是互相独立的,则称(){}T ∈X t t ,是独立增量过程,又称可加过程。
定义 2.8 设(){}T ∈X t t ,是平稳独立增量过程,若对任意,t s <随机变量()()s t X -X 的分布仅依赖于s t -,则称(){}T ∈X t t ,是平稳独立增量过程。
三、马尔可夫过程定义2.9设(){}T t t X ∈,为随机过程,若对任意正整数n 及n t t t << ,21,()()0,,)(1111>==--n n x t X x t X P ,且其条件分布()(){}1111,,|)(--===n n n n x t X x t X x t X P =(){}11|)(--==n n n n x t X x t X P ,(2.6)则称(){}T t t X ∈,为马尔可夫过程。
四、正态过程和维纳过程定义 2.10设(){}T t t X ∈,是随机过程,若对任意正整数n 和T t t t ∈∈ ,,21,(()() ,,21t X t X ,()n t X )是n 维正态随机变量,则称(){}T t t X ∈,是正态过程或高斯过程。
定义 2.11设{}∞<<-∞t t W ),(为随机过程,如果(1)0)0(=W ;(2)它是独立、平稳增量过程; (3)对t s ,∀,增量()0,||,0~)()(22>--σσs t N s W t W ,则称{}∞<<-∞t t W ),(为维纳过程,也称布朗运动过程。
定理 2.3 设{}∞<<-∞t t W ),(是参数为2σ的维纳过程,则(1) 任意t ),(∞-∞∈,()||,0~)(2t N t W σ;(2) 对任意∞<<<∞-t s a ,,[]),m in())()())(()((2a t a s a W t W a W s W E --=--σ,特别: ()()t s t s Rw ,m in ,2σ=。
五、平稳过程定义 2.12 设(){}T t t X ∈,是随机过程,如果对任意常数τ和正整数,n 当T ∈++T ∈ττn n t t t t ,,,,,11 时,()()()()n t t t X X X ,,21与()()()()τττ+X +X +X n t t t ,,,21 有相同的联合分布,则称(){}T t t X ∈,为严平稳过程,也称狭义平稳过程。
定义 2.13 设(){}T t t X ∈,是随机过程,如果 (1)(){}T t t X ∈,是二阶矩过程;(2)对于任意()()[]=X E =T ∈X t t m t ,常数;(3)对任意的()()s t R t s R t s -=T ∈X X ,,,,则称(){}T t t X ∈,为广义平稳过程,简称为平稳过程。
若T 为离散集,则称平稳过程(){}T t t X ∈,为平稳序列。
第三章 泊松过程§3.1 泊松过程的定义和例子定义3.1 计数过程定义3.2 称计数过程}0),({≥t t X 为具有参数λ>0的泊松过程,若它满足下列条件 (1) X(0)= 0;(2) X(t)是独立增量过程;(3) 在任一长度为t 的区间中,事件A 发生的次数服从参数λt >0的泊松分布,即对任意s,t >0,有注意,从条件(3)知泊松过程是平稳增量过程且t t X E λ=)]([。