《25.1随机事件与概率1》学案
- 格式:doc
- 大小:18.50 KB
- 文档页数:4
中学导学稿 25章.概率初步年级:九年级学科:数学学期:上学期设计时间:自主合作交流2、什么是确定性事件?什么是随机事件?根据教材举例说明。
3、随机事件与必然事件和不可能事件的区别在哪里?活动二:即学即练:指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
(1)两直线平行,内错角相等;(2)打靶命中靶心;(3)在装有3个球的布袋里摸出4个球活动三:在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共5只,请考虑以下问题,摸一次球,观察摸出球的颜色:(1)摸到的是红球,可能吗?这是什么事件?(2)摸到的是黑球或白球,可能吗?这是什么事件?(3)摸到的是白球,可能吗?这是什么事件?当堂检测定为1000公斤;(C)在只装有5个红球的袋中摸出1球是红球;(D)农历十五的晚上一定能看到圆月。
2、指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
(1)掷一次骰子,向上一面是3点;(2)13个人中,至少有两个人出生的月份相同;(3)经过有信号灯的十字路口,遇见红灯;(4)物体在重力的作用下自由下落。
(5)抛掷一千枚硬币,全部正面朝上。
3、下列事件:A.袋中有5个红球,能摸到红球;B.袋中有4个红球,1个白球,能摸到红球;C.袋中有2个红球,3个白球,能摸到红球;D.袋中有5个白球,能摸到红球。
问上述事件哪些事件是必然事件?哪些是随机事件?哪些是不可能事件?能力提升:下列说法正确的是 ( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生。
人教版九年级上册25.1随机事件与概率25.1.1随机事件教学设计一、教学目标1.理解随机事件的概念,掌握样本空间、随机事件、必然事件和不可能事件的概念;2.能够运用频率和概率的概念描述随机事件的发生概率;3.能够根据实际问题,利用随机事件的概念和性质来求解问题。
二、教学重难点1.随机事件的概念和性质;2.概率的定义和计算方法;3.随机事件与生活实际问题的联系。
三、教学内容1. 随机事件的概念和性质(1)随机事件的概念;(2)样本空间、随机事件、必然事件和不可能事件的概念;(3)随机事件的性质。
2. 概率的定义和计算方法(1)频率的概念;(2)概率的定义;(3)概率计算的方法;(4)概率的性质。
3. 随机事件与生活实际问题的联系(1)生活中的随机事件;(2)利用随机事件的概念和性质解决实际问题。
四、教学过程1. 导入新知教师通过一个简单的生活场景引入概率的概念,如:学生们玩扑克牌的场景,通过发牌的过程让学生们感受到某种事件的发生概率是随机的,引导学生们思考什么是随机事件。
2. 分享学习成果学生们利用现实生活中的随机事件,如翻硬币、掷骰子、抽签等等,制作实验记录表格,并且在班内分享与讨论各自的发现。
3. 知识巩固教师讲解随机事件的概念和性质,包括样本空间、随机事件、必然事件和不可能事件等,引导学生们理解和记忆这些名词的定义和概念。
4. 练习掌握(1)概率计算方法的小组练习:分成小组,在教师的引导下,利用班级人数为样本空间,作某种人数限制的随机事件,计算这种随机事件发生的概率。
(2)根据实际生活问题解决问题:小组讨论,列出生活中出现的随机事件,并在课堂上给出解决这类问题的相关方法。
五、教学评价1. 师评在学生活动中注意观察各学生的参与度和表现情况,引导学生在小组活动和课堂讨论中发表自己的看法和意见。
2. 自评每个学生在课堂上完成练习,交换作业、互相检查,并在自己的笔记上记录知识点。
六、教学反思本单元主要通过生活场景和实际问题案例贯穿整个教学过程,从而让学生们理解随机事件的概念和性质。
25.1 随机事件与概率25.1.1 随机事件1.熟记必然事件、不可能事件、随机事件的概念和特点.2.会判断一个事件是必然事件、不可能事件还是随机事件.3.重点:知道随机事件的概念及其发生的可能性是有大小的.阅读教材本课时“问题1”~“问题3”,回答下列问题.知识点一必然事件、不可能事件和随机事件同组两人合作剪下五张大小相同的白纸条,每张上面分别标上1,2,3,4,5这几个数字.然后每人每次分别抓一张纸条,重复20次.把每次所抓纸条上的数字记下,最后汇总.回答:每次抓到的纸条上的数字有几种可能结果?所抓纸条上的数字可能小于6吗?可能是2吗?可能是0吗?有5种可能的结果;一定小于6;可能是2;不可能是0.【归纳总结】在一定条件下,必然会发生的事件称为必然事件;不可能发生的事件称为不可能事件;有可能发生,也有可能不发生的事件称为随机事件.【讨论】举例说一说什么是必然事件、不可能事件和随机事件.如太阳从东边出来是必然事件,太阳从西边出来是不可能事件,正月初一北京下雪是随机事件.(学生回答只要合理即可)【预习自测】下列事件中,属于不可能事件的是(A)A.某个数的绝对值小于0B.某个数的相反数等于它本身C.某两个数的和小于0D.某两个负数的积大于0知识点二随机事件发生的可能性有大小两人一组进行教材本课时“问题3”中的试验,把“摸到白球”记为事件A,把“摸到黑球”记为事件B,其中一人把球搅均匀,另一人摸球并记录下摸球10次和摸球100次的结果.(1)事件A和事件B是随机事件吗?(2)哪个事件发生的可能性大?(3)你认为摸球10次与摸球100次哪一种更能获得准确的结果?(4)为了更大可能地获得准确的结果,可以怎么做?(1)是.(2)摸到黑球的可能性大,即B事件发生的可能性大.(3)摸球100次能获得更准确的结果.(4)为了更大可能地获得准确的结果,应增加实验次数.【归纳总结】随机事件发生的可能性是有大小的.【讨论】你能通过改变球的数量使事件A与事件B发生的可能性一样吗?拿出2个黑球(或加入2个白球).(只要学生答出使两种颜色球的数量一样多即可)【预习自测】一个口袋里有1个红球,2个白球,3个黑球,从中随机摸出一个球,摸出黑球的可能性最大,摸出红球的可能性最小.。
25.1 随机事件与概率第 1课时教课目标:知识技术目标认识必然发生的事件、不行能发生的事件、随机事件的特色.数学思虑目标学生经历体验、操作、观察、概括、总结的过程, 发展学生从纷繁复杂的表象中,提炼出实质特色并加以抽象概括的能力.解决问题目标能依据随机事件的特色, 鉴识哪些事件是随机事件.感情态度目标引领学生感觉随机事件就在身旁, 加强学生珍惜机遇,掌握机遇的意识.教课要点:随机事件的特色.教课难点:判断现实生活中哪些事件是随机事件.教课过程<活动一 >【问题情境】摸球游戏三个不透明的袋子均装有10 个乒乓球 . 优选多名同学来参加游戏.游戏规则每人每次从自己选择的袋子中摸出一球 , 记录下颜色 , 放回 , 搅匀 , 重复前方的试验 . 每人摸球5 次 . 依据摸出黄色球的次数排序 , 次数最多的为第一名 , 其次为第二名 , 最少的为第三名 .【师生行为】教师早先准备的三个袋子中分别装有10 个白色的乒乓球; 5 个白色的乒乓球和 5 个黄色的乒乓球; 10 个黄色的乒乓球.学生踊跃参加游戏, 经过操作和观察, 概括猜想出在第 1 个袋子中摸出黄色球是不行能的, 在第 2 个袋子中能否摸出黄色球是不确立的, 在第 3 个袋子中摸出黄色球是必然的.教师合时指引学生概括出必然发生的事件、随机事件、不行能发生的事件的特色.【设计企图】经过生动、爽朗的游戏 , 自可是然地引出必然发生的事件、随机事件和不行能发生的事件, 不但可以激发学生的学习兴趣 , 而且有益于学生理解 . 可以奇妙地实现从实践认识到理性认识的过渡 .<活动二 >【问题情境】指出以下事件中哪些是必然发生的, 哪些是不行能发生的,哪些是随机事件?1.平时加热到 100° C 时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是 6 点;4.胸襟三角形的内角和,结果是360°;5.经过城市中某一有交通讯号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人走开水可以正常生活 100 天;9.正月十五雪打灯;10.宇宙飞船的速度比飞机快 .【师生行为】教师利用多媒体课件演示问题, 使问题情境更具生动性.学生踊跃思虑, 回答以下问题 , 进一步夯实必然发生的事件、随机事件和不行能发生的事件的特色 . 在比较充足的感知下,达到加深理解的目的.教师在学生完成问题后应注意指引学生发此刻我们生活的四周大批地存在着随机事件.【设计企图】引领学生经历由实践认识到理性认识再重新认识实践问题的过程,同时引入一些知识问题 , 使学生进一步感悟数学是认识客观世界的重要工具.<活动三 >情境 15 名同学参加演讲竞赛, 以抽签方式决定每个人的出场序次. 签筒中有 5 根形状、大小相同的纸签 , 上边分别标有出场的序号1,2,3,4,5.小军第一抽签,他在看不到纸签上的数字的状况下从签筒中随机地抽取一根纸签.情境 2小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.在详尽情境中列举不行能发生的事件、必然发生的事件和随机事件.【师生行为】学生第一独立思虑, 再把自己的看法和小组其余同学交流, 并提炼出小构成员列举的主要事件,在全班公布.【设计企图】开放性的问题有益于培育学生的发散性思想和创新思想, 也有益于学生加深对学习内容的理解 .<活动四 >【问题情境】请你列举一些生活中的必然发生的事件、随机事件和不行能发生的事件.【师生行为】教师指引学生充足交流,热情谈论.【设计企图】随机事件在现实世界中广泛存在. 经过让学生自己找到大批丰富多彩的实例,使学生从不一样侧面、不一样视角进一步深入对随机事件的理解与认识.<活动五 >【问题情境】李宁运动品牌打出的口号是“全部皆有可能”,请你说说对这句话的理解.【师生行为】教师注意指引学生独立思虑, 交流合作 , 提高学生对问题的理解与判断能力.【设计企图】有意识地引领学生从数学的角度重新审察现实世界,初步感悟辩证一致的思想.<活动六 >概括、小结部署作业设计一个摸球游戏, 要求对甲乙公正.【师生行为】学生反思、谈论.学生在设计游戏的过程中,进一步感悟随机事件的特色. 作业的开放性为学生创建了更大的学习空间.【设计企图】课堂小结采纳学生反思报告形式, 帮助学生形成较完好的认知结构. 作业使课堂内容得以丰富和延展 .教课方案说明现实生活中存在着大批的随机事件,而概率正是研究随机事件的一门学科. 本课是“概率初步”一章的第一节课. 教课中,教师第一以一个学生喜闻乐道的摸球游戏为背景,经过试验与解析,使学生体验有些事件的发生是必然的、有些是不确立的、有些是不行能的,引出必然发生的事件、随机事件、不行能发生的事件. 而后,经过对不一样事件的解析判断,让学生进一步理解必然发生的事件、随机事件、不行能发生的事件的特色. 结合详尽问题情境,引领学生设计提出必然发生的事件、随机事件、不行能发生的事件,拥有相当的开放度,鼓励学生的逆向思想与创新思想,在必定程度上满足了不一样层次学生的学习需要.做游戏是学习数学最好的方法之一,依据本节课内容的特色,教师设计了摸球游戏,力求引领学生在游戏中形成新认识,学习新看法,获取新知识,充足调动了学生学习数学的积极性,表现了学生学习的自主性. 在游戏中参加数学活动,在游戏中解析、概括、合作、思考,领悟数学道理 . 在快乐轻松的学习氛围中,显性目标和隐性目标自然完成, 在必定程度上,首创了一个崭新的数学课堂教课模式.。
25.1.1 随机事件自学案(一)学习目标1.通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。
2.通过“摸球〞这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。
〔二〕学习重点学习重点:随机事件的特点,对随机事件发生的可能性大小的定性分析学习难点:对生活中的随机事件作出准确判断,理解大量重复试验的必要性。
〔三〕课前预习一、选择题1.以下事件中,是确定性事件的是〔〕A.明日有雷阵雨B.小明的自行车轮胎被钉子扎坏C.小红买体育彩片D.抛掷一枚正方体骰子,出现点数7点朝上2.以下事件中,属于不确定事件的有〔〕①太阳从西边升起;②任意摸一张体育彩票会中奖;③掷一枚硬币,有国徽的一面朝下;④小勇长大后成为一名宇航员。
A. ①②③ B . ①③④ C. ②③④ D. ①②④3.以下成语所描述的事件是必然事件的是〔〕A.水中捞月B.守株待兔C.水涨船高D.画饼充饥4.以下说法正确的选项是〔〕A.随机的抛掷一枚质地均匀的硬币,落地后反面一定朝上B.从1、2、3、4、5中随机取一个数,取得奇数的可能性较大C.某彩票的中奖率为36%,说明买100张彩票,有36张中奖D. 翻开电视,**一套正在播放?新闻联播?5.有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面的点数为偶数。
以下说法正确的选项是〔〕A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件6.一个不透明的布袋中有30个球,每次摸一个,摸一次就一定摸到红球,那么红球有〔〕A.15个 B. 20个 C. 29个 D.30个二、填空题7.从数1、2、3、4、5中任取两个数字,得到的都是偶数,这一事件是_____。
8.一个口袋中装有红、黄、蓝三个大小和形状都相同的三个球,从中任取一球得到红球与得到蓝球的可能性___ __ 。
第二十五概率初步25.1 随机事件与概率25.1.1 随机事件自学目标:1.通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。
2.历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。
重、难点:随机事件的特点并能对生活中的随机事件作出准确判断。
自学过程:一、课前准备:1.在一定条件下必然发生的事件,叫做;在一定条件下不可能发生的事件,叫做;在一定条件下可能发生也可能不发生的事件,叫做;2.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山; (2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数); (4)水往低处流;(5)酸和碱反应生成盐和水; (6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解。
3.什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?二、自主探究:活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。
签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。
小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。
请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?活动2:小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。
请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?(1)上述两个活动中的两个事件(2)怎样的事件称为随机事件呢?(3)与必然事件和不可能事件的区别在哪里?三、巩固新知:1.下列事件是必然发生事件的是()(A)打开电视机,正在转播足球比赛 (B)小麦的亩产量一定为1000公斤(C)在只装有5个红球的袋中摸出1球是红球 (D)农历十五的晚上一定能看到圆月2.下列事件中是必然事件的是 ( )A.早晨的太阳一定从东方升起 B.安阳的中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目 D·小红今年14岁了她一定是初中生3.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破 ( ) A.可能性很小 B.绝对不可能 C.有可能 D.不太可能4.下列各语句中是必然事件的是 ( )A.两个分数相加和一定是整数 B.两个分数相乘积一定是整数C.两个互为相反数的和为0 D.两个互为相反数的积为05.下列说法正确的是 ( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生6.下列事件:A.袋中有5个红球,能摸到红球B.袋中有4个红球,1个白球,能摸到红球C.袋中有2个红球,3个白球,能摸到红球D.袋中有5个白球,能摸到红球问上述事件哪些事件是必然事件?哪些是随机事件?哪些是不可能事件?7.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
第二十五概率初步25.1 随机事件与概率25.1.1 随机事件自学目标:1.通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。
2.历经“猜测—动手操作—收集数据—数据处理—验证结果”,及时发现问题,解决问题,总结出随机事件发生的可能性大小的特点以及影响随机事件发生的可能性大小的客观条件。
重、难点:1.对随机事件发生的可能性大小的定性分析2.理解大量重复试验的必要性。
自学过程:一、课前准备:1.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中同时摸出1个小球,请你写出这个摸球活动中的一个随机事件_________________.2.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性______摸到J、Q、K 的可能性.(填“<,>或=”)3.下列事件为必然发生的事件是( )(A)掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1(B)掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数(C)打开电视,正在播广告(D)抛掷一枚硬币,掷得的结果不是正面就是反面4.同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能发生的事件是( )(A)点数之和为12 (B)点数之和小于3(C)点数之和大于4且小于8 (D)点数之和为135.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( )(A)抽出一张红心(B)抽出一张红色老K(C)抽出一张梅花J (D)抽出一张不是Q的牌6.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a、抽到一名住宿女生;b、抽到一名住宿男生;c、抽到一名男生.其中可能性由大到小排列正确的是( )(A)cab(B)acb(C)bca(D)cba一、自主探究:1、袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。
25.1随机事件与概率25.1.1随机事件一、教学目标【知识与技能】1.理解必然发生的事件,不可能发生的事件,随机事件的概念,掌握判断随机事件的方法.2.了解随机事件发生的可能性有大有小,并会对随机事件发生的可能性大小做出判断.【过程与方法】通过本节课的学习,会根据经验判断一个简单事件是属于必然事件,不可能事件还是随机事件.【情感态度与价值观】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】随机事件的特点,会判断现实生活中的随机事件.【教学难点】判断现实生活中哪些事件是随机事件.五、课前准备课件、图片等.六、教学过程(一)导入新课你能确定明天是什么天气吗?(出示课件2)解决这个问题要研究随机事件.(板书课题)(二)探索新知探究一必然事件、不可能事件和随机事件出示课件4,5:活动1掷骰子掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,则骰子向上的一面:教师问:可能出现哪些点数?学生答:1点、2点、3点、4点、5点、6点.教师问:出现的点数是7,可能发生吗?学生答:不可能发生.教师问:出现的点数大于0,可能发生吗?学生答:一定会发生.教师问:出现的点数是4,可能发生吗?学生答:可能发生,也可能不发生.出示课件6-8:活动2摸球游戏教师问:小明从盒中任意摸出一球,一定能摸到红球吗?学生答:不一定.教师问:小麦从盒中摸出的球一定是白球吗?学生答:一定.教师问:小米从盒中摸出的球一定是红球吗?学生答:一定.教师问:三人每次都能摸到红球吗?学生答:小明不一定;小麦一定不能;小米一定能.出示课件9:“从如下一堆牌中任意抽一张牌,可以事先知道抽到红牌的发生情况”吗?学生交流,回答问题:第一组一定会发生;第二组一定不会发生;第三组有可能发生,也可能不发生.教师归纳:(出示课件10,11)在一定条件下,有些事件必然会发生,这样的事件称为必然事件.有些事件必然不会发生,这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件称为随机事件.教师强调:事件一般用大写字母A,B,C···表示.出示课件12:例判断下列事件是必然事件、不可能事件和随机事件:(1)乘公交车到十字路口,遇到红灯;(2)把铁块扔进水中,铁块浮起;(3)任选13人,至少有两人的出生月份相同;(4)从上海到北京的D314次动车明天正点到达北京.学生思考交流后,教师抽查学生口答:⑴随机事件;⑵不可能事件;⑶必然事件;⑷随机事件.巩固练习:(出示课件13)下列现象哪些是必然发生的,哪些是不可能发生的?学生独立思考后口答:必然事件;必然事件;不可能事件;不可能事件;必然事件;必然事件;不可能事件;不可能事件.探究二随机事件发生的可能性大小出示课件15-17:活动3:摸球袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师问:这个球是白球还是黑球?学生答:可能是白球也可能是黑球.教师问:如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?学生答:摸出黑球的可能性大.由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.教师问:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?学生答:可以.白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.出示课件18:教师归纳:随机事件的特点:一般地,⑴随机事件发生的可能性是有大小的;⑵不同的随机事件发生的可能性的大小有可能不同.出示课件19:例1有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大的事件是_____,可能性最小的事件是_____(填写序号);(2)将这些事件的序号按发生的可能性从小到大的顺序排列:____________.学生观察交流后,师生共同解答.⑴④;②;⑵②<③<①<④.巩固练习:(出示课件20,21)1.随意从一副扑克牌中抽到Q和K的可能性大小是()A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定2.如果一件事情不发生的可能性为99.99%,那么它()A.必然发生B.不可能发生C.很有可能发生D.不太可能发生学生思考后独立解答:1.C解析:因为在一副扑克牌中,Q和K的数量相同,所以它们的可能性相同.2.D解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.出示课件22:例2一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其他区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.师生共同解答.解:至少再放入4个绿球.理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,即绿球的数量最多,这样摸到绿球的可能性最大.巩固练习:(出示课件23,24)甲口袋中放着22个红球和8个黑球,乙口袋中则放着200个红球、8个黑球和2个白球,这三种球除了颜色以外没有任何区别,两袋中的球都各自搅匀,蒙上眼睛从口袋中取一个球,如果你想取一个红球,你选哪个口袋成功的机会大?小红认为选甲较好,因为里面的球较少,容易摸到红球;小明认为选乙较好,因为里面的球较多,成功的机会越大;小亮认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.你觉得他们说的有道理吗?学生交流后口答.解:他们的说法都没有道理.因为摸到一个红球的可能性的大小和袋子中球的总数量没关系,而是取决于红球占总数量的比例.在甲口袋中取一个红球的可能性为2230,在乙口袋中取一个红球的可能性为200 210,即2021,因为2021>2230,所以在乙口袋中取一个红球的可能性大.(三)课堂练习(出示课件25-30)1.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨3.下列事件是必然事件,不可能事件还是随机事件?(1)太阳从东边升起.(2)篮球明星林书豪投10次篮球,次次命中.(3)打开电视正在播中国新航母舰载机训练的新闻片.(4)一个三角形的内角和为181度.4.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x=______.5.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性()“落在陆地上”的可能性.A.大于B.等于C.小于D.三种情况都有可能6.桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色扑克牌的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?7.你能说出几个与必然事件、随机事件、不可能事件相联系的成语吗?数量不限.参考答案:1.C2.B3.解:⑴必然事件;⑵随机事件;⑶随机事件;⑷不可能事件.4.45.A6.解:⑴不能确定;⑵黑桃;⑶可以,去掉一张黑桃或增加一张红桃.7.解:必然事件:种瓜得瓜,种豆得豆;黑白分明.随机事件:海市蜃楼,守株待兔.不可能事件:海枯石烂,画饼充饥,拔苗助长.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材129页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.。
第二十五章概率初步25.1 随机事件与概率25.1.1 随机事件(第1课时)学习目标1.借助典型事例了解必然事件、不可能事件、随机事件的概念;会正确判断生活中的简单事件哪些是随机事件、必然事件或不可能事件.2.主动通过试验,观察—探究—归纳出随机事件的概念和特点,从而培养抽象概括的能力和分析、解决问题的能力.3.在愉快的学习中获得成功体验,感受数学就在身边,乐于亲近数学,体会数学的应用价值.学习过程设计一、提出问题,创设情境1.试分析:“从一堆牌中任意抽一张抽到红牌”这一事件的发生情况.图①图②图③2.思考:下图中三人每次都能摸到红球吗?二、信息交流,揭示规律归纳必然事件、不可能事件、随机事件的概念.三、运用规律,解决问题【例1】五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.请思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字会是0吗?(3)抽到的数字会是6吗?(4)抽到的数字会是1吗?(5)你能说出一个与问题(3)相似的问题吗?【例2】阅读日记:划横线的事件中,哪些是必然事件? 哪些是不可能事件? 哪些是随机事件?2013年3月11日晴早上,我迟到了,在楼梯上遇到了班主任,她批评了我一顿.我想我真不走运,她经常在办公室的啊,今天我真倒霉.我明天不能再迟到了,不然明天早上我将在楼梯上遇到班主任.中午放学回家,我看了一场篮球赛,我想长大后我会比姚明还高,我将长到10米高.看完比赛后,我又回到学校上学.下午放学后,我开始写作业.今天作业太多了,我不停地写啊写,一直写到太阳从西边落下.四、变式训练,深化提高1.现有背面相同的两张牌(红牌和黑牌),下列事件属于哪类事件?(1)洗匀后任意抽一张,抽到黑牌;(2)洗匀后任意抽一张,抽到红牌或黑牌;(3)抽一张牌 ,放回,洗匀后再抽一张牌.这样先后抽得的两张牌都是红牌.(4)抽一张牌,不放回,再抽一张牌.这样先后抽得的两张牌都是红牌.2.请你举一些生活中的必然事件、随机事件和不可能事件的例子.布置作业指出下列事件中,哪些是必然事件,哪些是不可能事件?哪些是随机事件?1.通常加热到100 ℃时,水沸腾;2.篮球队员在罚球线上投篮一次,未投中;3.掷一枚骰子,向上一面的点数是6;4.任意画一个三角形,其内角和是360°;5.经过有交通信号灯的路口,遇到红灯;6.射击运动员射击一次,命中靶心.参考答案一、设计问题,创设情境1.图①:必然发生;图②:必然不发生;图③:可能发生,也可能不发生.2.小明:可能摸到红球也可能摸不到红球;小麦:一定不会摸到红球;小米:一定会摸到红球.二、信息交流,揭示规律在一定条件下,必然会发生的事件叫做必然事件;在一定条件下,必然不会发生的事件叫做不可能事件;在一定条件下:可能发生也可能不发生的事件,称为随机事件.三、运用规律,解决问题【例1】解:(1)抽到的数字有五种可能的结果;(2)抽到的数字不会是0;(3)抽到的数字不会是6;(4)抽到的数字会是1;(5)例如:抽到的数字会是9吗?【例2】解:在楼梯上遇到了班主任(必然事件)明天早上我将在楼梯上遇到班主任(随机事件)我将长到10米高(不可能事件)太阳从西边落下(必然事件)四、变式训练,深化提高1.解:(1)随机事件;(2)必然事件;(3)随机事件;(4)不可能事件.2.例如:摸一张彩票中奖是随机事件.布置作业1.必然事件;2.随机事件;3.随机事件;4.不可能事件;5.随机事件;6.随机事件.。
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时教学设计一. 教材分析本节课为人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时,主要内容包括随机事件的定义、必然事件、不可能事件以及概率的定义。
本节课的内容是学生对概率知识的一次初步认识,为后续学习更高级的概率知识打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于事件的分类和概率的概念有一定的理解。
但同时,学生对于概率这一概念的理解还需要通过具体的例子来进行引导。
三. 教学目标1.了解随机事件的定义、必然事件、不可能事件。
2.理解概率的定义,并能运用概率知识解决简单问题。
3.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.重点:随机事件的定义、必然事件、不可能事件,概率的定义。
2.难点:概率的计算和应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,通过具体的例子引导学生理解概率的概念,培养学生的动手操作能力和团队协作能力。
六. 教学准备1.教学PPT。
2.教学案例和问题。
3.小组合作学习的任务单。
七. 教学过程1.导入(5分钟)通过一个简单的抛硬币实验,引导学生思考:抛硬币时,正面朝上和反面朝上的可能性是否相等?从而引出随机事件的定义。
2.呈现(15分钟)呈现必然事件、不可能事件的例子,让学生通过观察和分析,理解必然事件和不可能事件的含义。
3.操练(10分钟)让学生通过PPT上的练习题,巩固对随机事件、必然事件、不可能事件的理解。
4.巩固(10分钟)学生分小组,根据任务单,探讨并计算一些简单的概率问题,如抛硬币、掷骰子等。
教师巡回指导,帮助学生解决遇到的问题。
5.拓展(10分钟)让学生思考并讨论:如何计算一个事件的概率?引导学生理解概率的计算方法。
6.小结(5分钟)教师引导学生总结本节课所学的知识,让学生明确随机事件、必然事件、不可能事件的定义,以及概率的计算方法。
人教版义务教育课程教科书九年级上册25.1.1 随机事件与概率(1)导学案一、学习目标(1)目标理解必然事件、不可能事件、随机事件的概念;区分必然事件、不可能事件和随机事件;(2)目标解析教学重点:能对必然事件、不可能事件、随机事件的类型作出正确判断。
随机事件的特点教学难点:难点:必然事件、不可能事件、随机事件的区别, 对生活中的随机事件作出准确判断二、课内探究1. 、据事件发生可能性的不同,把下面的 8 个事件分类:(1)某人的体温是 100 ℃(2)a 2+b 2=-1(其中a,b 都是实数);(3)太阳从西边下山;(4)经过城市中某一有交通信号灯的路口,遇到红灯;(5)一元二次方程x 2+2x +3=0 无实数解.(6)掷一枚骰子,向上的一面是 6 点;(7)人离开水可以正常生活 100 天;(8)篮球队员在罚线上投篮一次,未投中.必然会发生的事件有_______________;不可能发生的事件有_______________;可能发生也可能不发生的事件有______________2、论并总结:什么是必然事件?什么又是不可能事件呢?它们各有什么特点?3、自主探究建构新知问题1 组长组织另五人进行抽签活动,每位同学在看不到纸签上的数字的情况下随机的取一根签,并考虑以下问题:抽到的序号有几种可能的结果?抽到的序号小于6吗?抽到的序号会是0吗?抽到的序号会是1吗?思考以上事件是否是随机事件?问题2探讨,掷一次骰子,在骰子向上的一面上可能出现哪些点数?出现的点数大于0吗?出现的点数会是7吗?出现的点数会是4吗?条件下重复进行掷骰子试验,验证讨论的结果的准确性,并思考以上事件是否是随机事件。
问题3试分析:“从一堆牌中任意抽一张抽到红牌”这一事件的发生情况?问题4: 袋子中装有 4 个黑球、2 个白球,这些球的形状、大小、质地等完全相同.即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出 1 个球.(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?三、当堂检测1、下列事件中,哪些是必然事件的,哪些是不可能事件的,哪些是随机事件(1)通常加热到100℃时,水沸腾;(2)篮球队员在罚线上投篮一次,未投中;(3)掷一枚骰子,向上的一面是6点;(4)度量三角形的内角和,结果是360°;(5)经过城市中某一有交通信号灯的路口遇到红灯;(6)某射击运动员射击一次,命中靶心。
人教版义务教育教材◎数学九年级上册25.1 随机事件与概率教学目标1. 了解必然发生的事件、不可能发生的事件、随机事件的特点和概率的意义,通过学习,渗透随机的概念.2. 在具体情境中了解概率的意义,能估算一些简单随机事件的概率.3. 学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.5. 能根据随机事件的特点,辨别哪些事件是随机事件.引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.教学重点1. 在具体情境中了解概率和概率的意义,知道随机事件的特点.2. 会用列举法求概率.教学难点1. 判断现实生活中哪些事件是随机事件.2. 应用概率解答实际问题.课时安排3课时.1教师备课系统──多媒体教案2教案A第1课时教学内容25.1.1 随机事件.教学目标1.了解必然发生的事件、不可能发生的事件、随机事件的特点.2.学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.3.能根据随机事件的特点,辨别哪些事件是随机事件.4.引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.教学重点随机事件的特点.教学难点判断现实生活中哪些事件是随机事件.教学过程一、导入新课摸球游戏:三个不透明的袋子中分别装有10个白色的乒乓球、5个白色的乒乓球和5个黄色的乒乓球、10个黄色的乒乓球.(挑选3名同学来参加).游戏规则:每人每次从自己选择的袋子中摸出一球,记录下颜色,放回.然后搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序.次数最多的为第一名.其次为第二名、第三名.学生积极参加游戏,通过操作、观察、归纳,猜测出在第1个袋子中摸出黄色球是不可能的;在第2个袋子中能否摸出黄色球是不确定的;在第3个袋子中摸出黄色球是必然的.通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件.这样不仅能够激发学生的学习兴趣,并且有利于学生理解.能够巧妙地实现从实践认识到理性认识的过渡.二、新课教学问题1 五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.请思人教版义务教育教材◎数学九年级上册考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字小于6吗?(3)抽到的数字会是0吗?(4)抽到的数字会是1吗?通过简单的推理或试验,可以发现:(1)数字1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先无法预料一次抽取会出现哪一种结果;(2)抽到的数字一定小于6;(3)抽到的数字绝对不会是0;(4)抽到的数字可能是1,也可能不是1 ,事先无法确定.问题2 小伟掷一枚质地均匀的骸子,骸子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骸子,在骸子向上的一面上,(1)可能出现哪些点数?(2)出现的点数大于0吗?(3)出现的点数会是7吗?(4)出现的点数会是4吗?通过简单的推理或试验.可以发现:(1)从1到6的每一个点数都有可能出现,所有可能的点数共有6种,但是事先无法预料掷一次骰子会出现哪一种结果;(2)出现的点数肯定大于0;(3)出现的点数绝对不会是7;(4)出现的点数可能是4.也可能不是4,事先无法确定.在一定条件下,有些事件必然会发生.例如,问题1中“抽到的数字小于6”,问题2中“出现的点数大于0”,这样的事件称为必然事件.相反地,有些事件必然不会发生.例如,问题1中“抽到的数字是0”.问题2中“出现的点数是7”,这样的事件称为不可能事件.必然事件与不可能事件统称确定性事件.在一定条件下,有些事件有可能发生,也有可能不发生,事先无法确定.例如,问题1中“抽到的数字是1”,问题2中“出现的点数是4”.这两个事件是否发生事先不能确定.在一定条件下,可能发生也可能不发生的事件,称为随机事件.问题3袋子中装有4个黑球、2个白球.这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1个球.(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?为了验证你的想法,动手摸一下吧!每名同学随机从袋子中摸出1个球,记下球的颜色,然后把球重新放回袋子并摇匀.汇总全班同学摸球的结果并把结果填在下表中.3教师备课系统──多媒体教案4 比较表中记录的数字的大小,结果与你事先的判断一致吗?在上面的摸球活动中,“摸出黑球”和“摸出白球”是两个随机事件.一次摸球可能发生“摸出黑球”,也可能发生“摸出白球”,事先不能确定哪个事件发生.由于两种球的数量不等,所以“摸出黑球”与“摸出白球”的可能性的大小不一样,“摸出黑球”的可能性大于“摸出白球”的可能性.思考:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?活动:(1)请你列举一些生活中的必然发生的事件、随机事件和不可能发生的事件.教师引导学生充分交流,热烈讨论.随机事件在现实世界中广泛存在.通过让学生自己找到大量丰富多彩的实例,使学生从不同侧面、不同视角进一步深化对随机事件的理解与认识.(2)李宁运动品牌打出的口号是“一切皆有可能”,请你谈谈对这句话的理解.教师引导学生独立思考,交流合作,提升学生对问题的理解与判断能力.并有意识地引领学生从数学的角度重新审视现实世界,初步感悟辩证统一的思想.三、巩固练习1.做一做.在一次国际乒乓球单打比赛中,我国运动员张怡宁、王楠经过奋力拼搏,一路过关斩将,会师最后决赛,那么,在比赛开始前,你能确定该项比赛的(1)冠军属于中国吗?必然事件(2)冠军属于外国选手吗?不可能事件(3)冠军属于王楠吗?随机事件2.教材第128页练习.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)通常加热到100℃时,水沸腾;(2)篮球队员在罚线上投篮一次,未投中;(3)掷一枚骰子,向上一面的点数是6;(4)任意画一个三角形,其内角和是360°;(5)经过有交通信号灯的路口,遇到红灯;(6)射击运动员射击一次,命中靶心.在学生了解和接受了“必然事件”、“不可能事件”、“随机事件”的概念后,结合自己的生活常识与经验,完成题组练习.本题考察学生对必然发生事件、不可能发生事件和随机事件的理解与判断.四、课堂小结今天你学习了什么,有什么收获?五、布置作业习题25.1 第1题.人教版义务教育教材◎数学九年级上册5第2课时教学内容25.1.2 概率(1).教学目标1.了解概率的意义,通过学习,渗透随机概念.2.在具体情境中了解概率的意义,能估算一些简单随机事件的概率.3.在合作探究学习过程中,激发学生学习的好奇心与求知欲,体验数学的价值与学习的乐趣.发展学生合作交流的意识与能力,锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.教学重点在具体情境中了解概率和概率的意义.教学难点概率的意义,判断实验条件的意识.教学过程一、导入新课在同样条件下,某一随机事件可能发生也可能不发生.那么,它发生的可能性究竟有多大?能否用数值刻画可能性的大小呢?下面我们讨论这个问题.二、新课教学1.在问题1中,从分别写有数字1,2,3,4,5的五个纸团中随机抽取一个,这个纸团的数字有几种可能?每个数字被抽到的可能性大小是多少?教师引导学生思考、回答.因为纸团看上去完全一样,又是随机抽取,所以每个数字抽到的可能性大小相等,我们用51表示每一个数字被抽到的可能性大小. 2.在问题2中,掷一枚骸子,向上一面的点数有几种可能?每种点数出现的可能性大小是多少?有6种可能,即1,2,3,4,5,6.因为骰子的形状规则、质地均匀,又是随机掷出,所以每种点数出现的可能性大小相等,我们用61表示每一种点数出现的可能性大小. 归纳:数值51和61刻画了试验中相应随机事件发生的可能性大小.一般地,对于一个随机事件A ,我们把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A).3.以上的两个实验有什么共同特点?教师备课系统──多媒体教案6教师引导学生思考、交流、讨论.由问题1和问题2,可以发现以上试验有两个共同特点:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.4.在上面的抽签实验中,“抽到偶数”和“抽到奇数”这两个事件的概率是多少? 教师指导学生思考、讨论,得出结论:“抽到偶数”这个事件包含抽到 2,4这两种可能结果,在全部5中可能的结果中所占的比为52.于是这个事件的概率:P (抽到偶数)=52.同理可得:P (抽到偶数)=53. 5.归纳总结.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P (A )=n m . 在P (A )=n m 中,由m 和n 的含义,可知0≤m ≤n ,进而有0≤nm ≤1,因此 0≤P (A )≤1.特别地,当A 为必然事件时,P (A )=1;当A 为不可能事件时,P (A )=0.事件发生的可能性越大,它的概率越接近1;反之,事件发生的可能性越小,它的概率越接近0(如下图).6.实例探究.例1 掷一枚质地均匀的股子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.本例是求简单随机事件概率的练习,教师可让学生以小组为单位讨论,引导学生注意本题的实验是否满足条件.解:掷一枚质地均匀的骰子时,向上一面的点数可能为1,2,3,4,5,6,共6种.这些点数出现的可能性相等.(1)点数为2有1种可能,因此P (点数为2)=61. (2)点数为奇数有3种可能,即点数为1,3,5,因此 P (点数为奇数)=63=21.人教版义务教育教材◎数学九年级上册7(3)点数大于2且小于5有2种可能,即点数为3,4,因此 P (点数大于2且小于5)=62=31. 三、巩固练习教材第133页练习第2题.四、课堂小结简述本节学习内容,深化学生的理解.五、布置作业习题25.1 第3题.第3课时教学内容25.1.2 概率(2).教学目标1.运用实例进一步理解通过逻辑分析用列举法求概率的方法,并进一步体会它在生活中的应用.2. 通过对概率的学习,体会数学与人类生活的密切 联系,激发学生学习数学的热情.教学重点会用列举法求概率.教学难点应用概率解答实际问题.教学过程一、导入新课我们上节课学习了概率的概念和意义,知道了求概率的方法.今天我们运用实例进一步理解概率的意义和求概率的方法,并体会它在生活中的应用.二、新课教学例2 下图是一个可以自由转动的转盘,转盘分成7个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).求下列事件的概率:教师备课系统──多媒体教案8(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.教师引导学生回顾求概率的方法,仔细审题,然后分析、解答.问题中可能出现的结果有7种,即指针可能指向7个扇形中的任何一个.因为这7个扇形大小相同,转动的转盘又是自由停止,所以指针指向每个扇形的可能性相等.解:按颜色把7个扇形分别记为:红1,红2,红3,绿1,绿2,黄1,黄2,所有可能结果的总数为7,并且它们出现的可能性相等.(1)指针指向红色(记为事件A )的结果有3种,即红1,红2,红3,因此P (A )=73. (2)指针指向红色或黄色(记为事件B )的结果有5种,即红1,红2,红3,黄1,黄2,因此P (B )=75. (1)指针不指向红色(记为事件C )的结果有4种,即绿1,绿2,黄1,黄2,因此P (C )=74. 把例2中的(1)(3)两问及答案联系起来,你有什么发现?(1)(3)两个答案加起来刚好等于1,“指向红色”和“不指向红色”两个事件包含了所有可能的实验结果,相互又不含有公共的实验结果,所以,它们的概率和为1,这两个事件称为对立事件.例3 右图是计算机中“扫雷”游戏的画面.在一个有9×9个方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现了如图所示的情况.我们把与标号3的方格相邻的方格记为A 区域(画线部分),A 区域外的部分记为B 区域.数字3表示在A 区域有3颗地雷.下一步应该点击A 区域还是B 区域?分析:下一步应该怎样走取决于点击哪部分遇到地雷的概率小,只要分别计算点击两区域内的任一方格遇到地雷的概率并加以比较就可以了.解题过程参见教材第133页.三、巩固练习教材第133页练习第3题.四、归纳总结通过本节的学习,你有哪些收获?通过回顾反思,让学生对所学知识能力有进一步的认识和提高,通过学生归纳或教师释疑,让学生加强理解,强化知识.人教版义务教育教材◎数学九年级上册五、布置作业习题25.1 第2、4、5题.9教师备课系统──多媒体教案10教案B第1课时教学内容25.1.1 随机事件.教学目标1.理解必然事件、不可能事件、随机事件的概念.2.会根据经验判断一个简单事件是属于必然事件、不可能事件、还是随机事件.3.经历体验、操作、观察、归纳、总结的过程,发展学生从复杂的表象中,提炼出本质特征并加以抽象概括的能力.4.从事件的实际情形出发,会分析事件发生的可能性.能根据随机事件的特点,辨别哪些事件是随机事件,并在解决实际问题的过程中体会与他人的合作.5.感受数学与现实生活的联系,在独立思考的基础上,积极参与对数学问题的讨论,获得成功的体验.教学重点随机事件概念的形成.教学难点判断现实生活中哪些事件是随机事件.教学过程一、导入新课“天有不测风云”这句话被引申为世界上有很多事情具有偶然性,人们不能事先判定这些事情是否会发生?但是随着人们对事件发生可能性的深入研究,人们发现许多偶然事件的发生也是有规律可循的.二、新课教学1.观察实例哪些是必然发生的,哪些是不可能发生的.(1)木柴燃烧,产生热量.(2)明天,地球还会转动.(3)煮熟的鸭子,飞了.(4)在0℃下,雪会融化.从日常生活的经验和常识入手,调动学生的积极性,让学生在感性上接受“必然事件”、“不可能事件”的概念.2.探索分析,解决问题.问题1 五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团,请人教版义务教育教材◎数学九年级上册思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字小于6吗?(3)抽到的数字会是0吗?(4)抽到的数字会是1吗?通过简单的推理或试验,可以发现:(1)数字1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先无法预料一次抽取会出现哪一种结果;(2)抽到的数字一定小于6;(3)抽到的数字绝对不会是0;(4)抽到的数字可能是1,也可能不是1 ,事先无法确定.问题2 小伟掷一枚质地均匀的骸子,骸子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骸子,在骸子向上的一面上,(1)可能出现哪些点数?(2)出现的点数大于0吗?(3)出现的点数会是7吗?(4)出现的点数会是4吗?通过简单的推理或试验.可以发现:(1)从1到6的每一个点数都有可能出现,所有可能的点数共有6种,但是事先无法预料掷一次N子会出现哪一种结果;(2)出现的点数肯定大于0;(3)出现的点数绝对不会是7;(4)出现的点数可能是4.也可能不是4,事先无法确定.3.归纳总结,得出概念.在一定条件下,有些事件必然会发生,这样的事件称为必然事件.相反地,有些事件必然不会发生,这样的事件称为不可能事件.必然事件与不可能事件统称确定性事件.在一定条件下,可能发生也可能不发生的事件,称为随机事件.这两次试验较简单,学生不假思索即可回答,但我们要的并不只是学生的答案,更注重的是学生是否经历了猜测、检验等过程.因此,在这个环节,一定要留给学生猜测、检验的时间,让学生经历这一数学活动过程,同时也为后面的学习做好铺垫.三、巩固练习教材第128页练习.本题考察学生对必然发生事件、不可能发生事件和随机事件的理解与判断.学生可独立完成,然后小组内订正.四、课堂小结今天你学习了什么,有什么收获?五、布置作业习题25.1 第1题.11教师备课系统──多媒体教案12第2课时教学内容25.1.2 概率(1).教学目标1.了解概率的意义,通过学习,渗透随机概念.2.在具体情境中了解概率的意义,能估算一些简单随机事件的概率.3.在合作探究学习过程中,激发学生学习的好奇心与求知欲,体验数学的价值与学习的乐趣.发展学生合作交流的意识与能力,锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.教学重点在具体情境中了解概率和概率的意义.教学难点概率的意义,判断实验条件的意识.教学过程一、导入新课复习上节课学习的内容,导入新课的教学.1.什么是随机事件?2.在同样条件下,某一随机事件可能发生也可能不发生.那么,它发生的可能性究竟有多大?能否用数值刻画可能性的大小呢?二、新课教学1.概率.(1)在问题1中,从分别写有数字1,2,3,4,5的五个纸团中随机抽取一个,这个纸团的数字有几种可能?每个数字被抽到的可能性大小是多少?(2)在问题2中,掷一枚骸子,向上一面的点数有几种可能?每种点数出现的可能性大小是多少?教师引导学生思考、回答,小组内讨论,必要时教师可进行指导.归纳总结:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).2.概率的计算.(1)问题1和问题2中的两个实验有什么共同特点?(2)在上面的抽签实验中,“抽到偶数”和“抽到奇数”这两个事件的概率是多少?教师指导学生思考、讨论,得出结论:(1)每一次试验中,可能出现的结果只有有限个;每一次试验中,各种结果出现人教版义务教育教材◎数学九年级上册13的可能性相等.(2)“抽到偶数”这个事件包含抽到 2,4这两种可能结果,在全部5中可能的结果中所占的比为52.于是这个事件的概率:P (抽到偶数)=52.同理可得:P (抽到偶数)=53. 3.归纳总结.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P (A )=n m . 在P (A )=n m 中,由m 和n 的含义,可知0≤m ≤n ,进而有0≤nm ≤1,因此 0≤P (A )≤1.特别地,当A 为必然事件时,P (A )=1;当A 为不可能事件时,P (A )=0.事件发生的可能性越大,它的概率越接近1;反之,事件发生的可能性越小,它的概率越接近0.三、巩固练习教材第133页练习第2题.四、课堂小结今天你学习了什么,有什么收获?五、布置作业习题25.1 第3题.第3课时教学内容25.1.2 概率(2).教学目标1.运用实例进一步理解通过逻辑分析用列举法求概率的方法,并进一步体会它在生活中的应用.2.通过对概率的学习,体会数学与人类生活的密切 联系,激发学生学习数学的热教师备课系统──多媒体教案14情.教学重点会用列举法求概率.教学难点应用概率解答实际问题.教学过程一、导入新课1.什么是概率?2.怎样求概率?二、新课教学例1 掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.本例是求简单随机事件概率的练习,教师可让学生以小组为单位讨论,引导学生注意本题的实验是否满足条件.例2 下图是一个可以自由转动的转盘,转盘分成7个大小相同的扇形,颜色分为红、 绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).求下列事件的概率:(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.教师引导学生回忆计算概率的方法,学生回顾并仔细审题分析例2,先独立完成后集体交流,推荐代表板演.通过例2,让学生明白几何图形中也有关于概率的问题,并让学生独立完成此题的解答,让学生获得成功的体验.师:你能举出这种转盘在生活中的应用吗?你能由此设计一些胜负公平的游戏吗? 生:思考、讨论,举应用实例.例3 教师引导学生观看计算机中“扫雷”游戏的画面.在一个有9×9个方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能埋藏1颗地雷.人教版义务教育教材◎数学九年级上册小王在游戏开始时随机地点击一个方格,点击后出现了如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?师:你能应用所学概率知识使你赢得机会更大吗?学生说一说自己是怎样玩这个游戏的,作简单经验介绍,通过学生感兴趣的电脑游戏应用概率知识,调动学生积极性,体会生活中处处离不开数学.师:(点拨)第二步应该怎样走取决于踩在哪一部分遇到地雷的概率小,只要分别计算在两区域的任一方格内踩中地雷的概率并加以比较就可以了.生:分组合作探究,讨论第二步怎样走的方案,各小组展示讨论结果及理论依据.师:(点拨)你会玩“扫雷”游戏了吗?怎样玩赢的机会更大?生:根据讨论结果总结归纳.三、巩固练习教材第133页练习第3题.四、归纳总结通过本节的学习,你有哪些收获?五、布置作业习题25.1 第4、5题.15。
第二十五概率初步25.1 随机事件与概率25.1.1 随机事件自学目标:1.通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。
2.历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。
重、难点:随机事件的特点并能对生活中的随机事件作出准确判断。
自学过程:一、课前准备:1.在一定条件下必然发生的事件,叫做;在一定条件下不可能发生的事件,叫做;在一定条件下可能发生也可能不发生的事件,叫做;2.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山; (2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数); (4)水往低处流;(5)酸和碱反应生成盐和水; (6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解。
3.什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?二、自主探究:活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。
签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。
小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。
请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?活动2:小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。
请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?(1)上述两个活动中的两个事件(2)怎样的事件称为随机事件呢?(3)与必然事件和不可能事件的区别在哪里?三、巩固新知:1.下列事件是必然发生事件的是()(A)打开电视机,正在转播足球比赛 (B)小麦的亩产量一定为1000公斤(C)在只装有5个红球的袋中摸出1球是红球 (D)农历十五的晚上一定能看到圆月2.下列事件中是必然事件的是 ( )A.早晨的太阳一定从东方升起 B.安阳的中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目 D·小红今年14岁了她一定是初中生3.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破 ( ) A.可能性很小 B.绝对不可能 C.有可能 D.不太可能4.下列各语句中是必然事件的是 ( )A.两个分数相加和一定是整数 B.两个分数相乘积一定是整数C.两个互为相反数的和为0 D.两个互为相反数的积为05.下列说法正确的是 ( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生6.下列事件:A.袋中有5个红球,能摸到红球B.袋中有4个红球,1个白球,能摸到红球C.袋中有2个红球,3个白球,能摸到红球D.袋中有5个白球,能摸到红球问上述事件哪些事件是必然事件?哪些是随机事件?哪些是不可能事件?7.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
25.1.1 随机事件教学目标:1、通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。
2、会对随机事件的可能性大小作出判断教学重点:随机事件的特点教学难点:对生活中的随机事件作出准确判断。
教学方法:自主学习+小组合作+老师指导教学过程:预习:1、叫必然事件,叫不可能事件。
这两种事件统称为随机事件是指随机事件又称不确定事件。
2、指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
(1)两直线平行,内错角相等;(2)刘翔再次打破110米栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球(8)物体在重力的作用下自由下落。
(9)抛掷一千枚硬币,全部正面朝上。
展示:1、指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)同旁内角互补,两直线平行.(2)平坦明天下大雨.(3)1+1=3.(4)掷一次骰子,向上一面是6点.(5)11个人中,至少有两个人出生的月份相同.(6)中国足球队夺得世界杯冠军.(7)在装有3个红球的布袋里摸出绿球.(8)对顶角相等.拓展:中考真题1.“a 是实数, ||0a ”这一事件是 ( )A. 必然事件B. 不确定事件C. 不可能事件D. 随机事件2.下列说法中正确的是( )A .“打开电视,正在播放《新闻联播》”是必然事件;B .某次抽奖活动中奖的概率为1001,说明每买100张奖券,一定有一次中奖; C .数据1,1,2,2,3的众数是3;D .想了解台州市城镇居民人均年收入水平,宜采用抽样调查.3.下列事件中,是确定事件的是( ) .A.打雷后会下雨B. 明天是睛天C. 1小时等于60分钟D.下雨后有彩虹4.下列事件是必然事件的是( ).A 、通常加热到100℃,水沸腾;B 、抛一枚硬币,正面朝上;C 、明天会下雨;D 、经过城市中某一有交通信号灯的路口,恰好遇到红灯.5.在下列事件中:①投掷一枚均匀的硬币,正面朝上;②投掷一枚均匀的骰子,6点朝上;③任意找367人中,至少有2人的生日相同;④打开电视,正在播放广告;⑤小红买体育彩票中奖;⑥北京明年的元旦将下雪;⑦买一张电影票,座位号正好是偶数;⑧到2020年世界上将没有饥荒和战争;⑨抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;⑩在标准大气压下,温度低于0℃时冰融化;⑾如果a ,b 为实数,那么a +b =b +a ;⑿抛掷一枚图钉,钉尖朝上. 确定的事件有______;随机事件有______,在随机事件中,你认为发生的可能性最小的是______,发生的可能性最大的是______.(只填序号)反馈:1.下列事件中是必然事件的是( ).A .从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球B .小丹的自行车轮胎被钉子扎坏C .小红期末考试数学成绩一定得满分D .将豆油滴入水中,豆油会浮在水面上2.同时投掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.下列事件中是不可能事件的是( ).A .点数之和为12B .点数之和小于3C .点数之和大于4且小于8D .点数之和为13 3.下列事件中,是确定事件的是( ).A .明年元旦北京会下雪B .成人会骑摩托车C.地球总是绕着太阳转D.从北京去天津要乘火车4.下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生B.生活中,如果一个事件可能发生,那么它就是必然事件C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生D.生活中,如果一个事件不是必然事件,那么它就不可能发生反思:。
25.1.1 随机事件(第1课时)
学习目标:
知识与技能:通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。
过程与方法:历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。
情感态度和价值观:体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。
学习重点:随机事件的特点
学习难点:对生活中的随机事件作出准确判断
学习过程
一、学前准备
1.自学课本136-137页,写下疑惑摘要。
2.下列问题哪些是必然发生的?哪些是不可能发生的?
(1)太阳从西边下山;
(2)某人的体温是100℃;
(3)a2+b2=-1(其中a,b都是实数);
(4)水往低处流;
(5)酸和碱反应生成盐和水;
(6)三个人性别各不相同;
(7)一元二次方程x2+2x+3=0无实数解。
3.引发思考
我们把上面的事件(1)、(4)、(5)、(7)称为必然事件,把事件(2)、(3)、(6)称为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?
二、自学、合作探究
(一)自学、相信自己
活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。
签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。
小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。
请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?
(2)抽到的序号小于6,可能吗?这是什么事件?
(3)抽到的序号是1,可能吗?这是什么事件?
(4)你能列举与事件(3)相似的事件吗?
根据学生回答的具体情况,教师适当地加点拔和引导。
活动2:小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。
请考虑以下问题,掷一次骰子,观察骰子向上的一面:
(1)出现的点数是7,可能吗?这是什么事件?
(2)出现的点数大于0,可能吗?这是什么事件?
(3)出现的点数是4,可能吗?这是什么事件?
(4)你能列举与事件(3)相似的事件吗?
(二)思索、交流
(1)上述两个活动中的两个事件(3)与必然事件和不可能事件的区别在哪里?
(2)怎样的事件称为随机事件呢?
三、应用练习,巩固新知
练习:指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
(1)两直线平行,内错角相等;
(2)刘翔再次打破110米栏的世界纪录;
(3)打靶命中靶心;
(4)掷一次骰子,向上一面是3点;
(5)13个人中,至少有两个人出生的月份相同;
(6)经过有信号灯的十字路口,遇见红灯;
(7)在装有3个球的布袋里摸出4个球
(8)物体在重力的作用下自由下落。
(9)抛掷一千枚硬币,全部正面朝上。
四、学习体会
1.如何对生活中的必然事件,不可能事件,随机事件做出准确判断?
2.体会随机事件有什么的特点?
五、自我测试
1. 指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件?
(1)同旁内交互补,两直线平行
(2)东营明天下大雨
(3)1+1=3
(4)掷一次骰子,向上一面是6点;
(5)11个人中,至少有两个人出生的月份相同;
(6)中国足球队夺得世界杯冠军
(7)在装有3个红球的布袋里摸出绿球
(8)对顶角相等
(9)抛掷一千枚硬币,全部反面朝上。
(10)数学测试你得满分。