《加减消元法——解二元一次方程组》教案
- 格式:doc
- 大小:823.50 KB
- 文档页数:10
第五章 解二元一次方程组 《加减消元法》教学设计一.教学目标1.会用加减消元法解二元一次方程组.2.进一步理解二元一次方程组的“消元”思想,初步体会数学中“化未知为已知”的化归思想.3.能根据方程组的特点,选择恰当的方法解二元一次方程组,培养学生的观察、分析能力。
4.通过探求二元一次方程组的解法,经历把“二元”转化为“一元”的过程,从而体会消元的思想,以及把“未知”转化为“已知”,把复杂问题转化为简单问题的化归思想。
二.教学重点会用加减消元法解二元一次方程组 三.教学难点在解题过程中进一步体会“消元”思想和“化未知为已知”的化归思想. 四、教学过程设计本节课设计了五个教学环节:第一环节:知识回顾;第二环节:讲授新知;第三环节:巩固新知;第四环节:课堂小结;第五环节:布置作业.第一环节:知识回顾:1、到目前为止,我们学了哪些方法解二元一次方程组?此方法的基本思路是什么? 代入消元法基本思路:消元;二元 ------ 一元 2、用代入法解方程组的主要步骤是什么?(1)变------用一个未知数的代数式表示另一个未知数 (2)代------把变形后的方程代入到另一个方程中,消去一个元 (3)解------分别求出两个未知数的值 (4)写------写出方程组的解 (5)检验——一般不写检验过程 第二环节:讲授新知: (1)探究引入:做一做:解下面的二元一次方程组⎩⎨⎧-=-=+11522153y x y x(学生在练习本上做,教师巡视、引导、解疑,注意发现学生在解答过程中出现的新的想法,可以让用不同方法解题的学生将他们的方法板演在黑板上,完后进行评析,并为加减消元法的出现铺路.)学生可能的解答方案1: 解1:把②变形,得:5112y x-=, ③ ① ②把③代入①,得:51135212y y -⨯+=, 解得3y =. 把3y=代入②,得2x =.所以方程组的解为23x y =⎧⎨=⎩.学生可能的解答方案2: 解2:由②得5211yx =+, ③把5y 当做整体将③代入①,得:()321121x x ++=,解得:2x =. 把2x =代入③,得:3y=.所以方程组的解为23x y =⎧⎨=⎩.(此种解法体现了整体的思想)学生可能的解答方案3:(观察发现:两个方程中一个含有5y ,而另一个是-5y ,两者互为相反数)解3:根据等式的基本性质方程①+方程②得:5x=10, 解得:2x =, 把2x =代入①,解得:3y=,所以方程组的解为23x y =⎧⎨=⎩.通过上面的练习发现,代入消元法核心是代入“消元”,通过“消元”,使“二元”转化为“一元”,从而使问题得以解决,那么(方案3)的解法又如何?它达到“消元”的目的了吗?它是如何达到的?(留些时间给学生观察,注意引导学生观察方程中某一未知数的系数,如x 的系数或y 的系数引导学生发现方程①和②中的5y 和5y -互为相反数,根据相反数的和为零(方案3)将方程①和②的左右两边相加,然后根据等式的基本性质消去了未知数y ,得到了一个关于x 的一元一次方程,从而实现了化“二元”为“一元”的目的).这就是我们这节课要学习的二元一次方程组的解法中的第二种方法——加减消元法. (2)讲授新知: 内容1:(教师板书课题)下面我们就用刚才的方法解下面的二元一次方程组.(学生试着用第三种方法解答,然后教师规范解答过程,)例1 解下列二元一次方程组(若学生先前的环节接受得好,可以让学生独立完成,教师再跟进讲授)(1)257231x y x y -=⎧⎨+=-⎩分析:观察到方程①、②中未知数x 的系数相等,可以利用两个方程相减消去未知数x .解:②-①,得:88y=- 解得:1y =-,把1-=y 代入①,得:752=+x , 解得:1=x ,所以方程组的解为⎩⎨⎧-==11y x(解答完本题后,口算检验,让学生养成进行检验的习惯,同时教师需强调以下两点: (1)注意解此题的易错点是②-①时是()()232517x y x y +--=--,方程左边去括号时注意符号.另外解题时,①-②或②-①都可以消去未知数x ,不过在①-②得到的方程中,y 的系数是负数,所以在上面的解法中选择②-①;(2)把1y =-代入①或②,最后结果是一样的,但我们通常的作法是将所求出的一个未知数的值代入系数较简单的方程中求出另一个未知数的值.内容2.随堂练习:1.方程组⎩⎨⎧=-=+83732y x y x 的解是2.用加减消元法解方程组:⎩⎨⎧=--=+17561976y x y x 应用( )A.①-②消去yB.①-②消去xC. ②- ①消去常数项D. 以上都不对3.用加减法解方程组:⎩⎨⎧=-=+810158.2103y x y x解: 把 ①+②得 18x =10.8,解得x =0.6把x =0.6代入①得3×0.6+10y =2.8 解得y =0.1 所以原方程组的解为⎩⎨⎧==1.06.0y x目的:由学生做练习,体会加减消元法的基本特点,熟悉加减消元法的基本步骤,提升学生用加减消元法解二元一次方程组的基本技能,积累解二元一次方程的活动经验.师生一起分析上面的解答过程,归纳出下面的一些规律:① ②①②在方程组的两个方程中,若某个未知数的系数是相反数,则可直接把这两个方程的两边分别相加,消去这个未知数;若某个未知数的系数相等,可直接把这两个方程的两边分别相减,消去这个未知数得到一个一元一次方程,从而求出它的解,这种解二元一次方程组的方法叫做加减消元法,简称加减法内容3:例2 解方程组 23123417x y x y +=⎧⎨+=⎩留一定的时间让学生观察此方程组,让学生说明自己观察到方程有什么特点,能不能自己解决此方程组,用什么方法解决?让学生讨论,学生可能得到的结论如下:1.x 、y 的系数既不相同也不是相反数,没有办法用加减消元法.2.是不是可以用等式的基本性质将这个方程组中的x 或y 的系数化成相等(或互为相反数)的情形,再用加减消元法,达到消元的目的.(在引导的过程中,肯定学生的好的想法.)其实,二元一次方程组中未知数的系数不一定刚好是1或-1,或同一个未知数的系数刚好相同或相反.这时就需要转化为同一个未知数系数相同或相反的情形,从而用加减消元法,达到消元的目的.由讨论得出如下过程:解:①×3,得:6936x y +=, ③ ②×2,得:3486=+y x , ④ ③-④,得:2=y . 将2=y 代入①,得:3=x .所以原方程组的解是⎩⎨⎧==23y x .内容4:议一议:根据上面几个方程组的解法,请同学们思考下面两个问题: (1)加减消元法解二元一次方程组的基本思路是什么? (2)用加减消元法解二元一次方程组的主要步骤有哪些? (由学生分组讨论、总结并请学生代表发言)(1)用加减消元法解二元一次方程组的基本思路仍然是“消元”. (2)用加减法解二元一次方程组的一般步骤是:①变形----找出两个方程中同一个未知数系数的绝对值的最小公倍数,然后分别在两个方程的两边乘以适当的数,使所找的未知数的系数相等或互为相反数.②加减消元,得到一个一元一次方程. ③解一元一次方程.④把求出的未知数的解代入原方程组中的任一方程,求出另一个未知数的值,从而得方程组的解.⑤检验解的正确性①②过手训练:用加减消元法解方程组:⎪⎩⎪⎨⎧=+--=+9)3(5)2(46132y x y x 注意:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等).通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程右边的形式,再作如上加减消元的考虑.解:将原方程组整理得:⎩⎨⎧=-=+3254123y x y x ①×5得:51015=+y x ③ ②×2得:6410-8=y x ④ ③+④得:6923=x 解得3=x把3=x 代入①得: 1233=+⨯y4-=y所以原方程组的解是:⎩⎨⎧-==43y x第三环节:巩固新知 , (—)巩固练习:1. 类型之一:用加减法解某一未知数的系数相同或是相反数的二元一次方程组:解方程组:⎩⎨⎧=--=+17561976y x y x2. 类型之二:用加减法解某一未知数的系数成整数倍数关系的二元一次方程组:解方程组:⎩⎨⎧-=-=+41241632y x y x3. 类型之三:用加减法解两个未知数的系数均不成整数倍数关系的方程组解方程组:⎩⎨⎧=+=+17431232y x y x(二)拓展练习1.已知:05)-3y (2x |2-y x |2=+++求x,y 的值 .①② ① ②① ②①②①② 解: 05)-3y (2x |2-y x |2=+++∴⎩⎨⎧=-+=-+053202y x y x①×2,得:0422=-+y x ③ ②- ③,得:01y =-,即:1y = 把1y =代入①,得:021=-+x ,即:x=1∴ 原方程组的解为:{11==y x2. 已知:关于x,y 的二元一次方程组⎩⎨⎧-=++=+2233232k y x k y x 的解满足2=+y x , 求x,y,k 的值目的:通过此题的练习,对于含参数的二元一次方程组的解法的灵活选择,摸索运算技巧,培养能力.第四环节:课堂小结① ②1.关于二元一次方程组的两种解法:代入消元法和加减消元法.比较这两种解法我们发现其实质都是消元,即通过消去一个未知数,化“二元”为“一元”.2. 用加减消元法解方程组的条件:某一未知数的系数的绝对值相等.3. 用加减法解二元一次方程组的步骤:①变:将其中一个未知数的系数化为相同(或互为相反数);②加减:通过相减(或相加)消去这个未知数,得到一个一元一次方程;③解:解这个一元一次方程,得到这个未知数的值;将求得的未知数的值代入原方程组中任何一个方程,•求得另一个未知数的值;④写:写出方程组的解;⑤检验:但不必写出检验过程第五环节:布置作业1.课本习题5.32.阅读读一读·你知道计算机是如何解方程组吗.3.预习课本下一节教学反思板书设计:。
重点:会用加减法解二元一次方程组。
难点:灵活运用加减消元法的技巧,把“二元”转化为“一元”。
七、教学过程教学环节教师活动学生活动设计意图导入新课温故而知新1、解二元一次方程组的基本思想是什么?2、代入消元法解方程组的一般步骤:个别提问复习旧知,引入新课。
讲授新课第一站——发现之旅认真观察此方程组中未知数y的系数有什么特点,还有没有其它的解法,并尝试一下能否求出它的解。
第二站——探究之旅分析:观察方程组中的两个方程,未知数x的系数相等,都是2。
把两个方程两边分别相减,就可以消去未知数x,同样得到一个一元一次方程。
解:由①-②得:-8y=8 解得 y=-1把y=-1代入①,得:x=1所以原方程组的解是分析:根据y的系数特点,让学生分组探索出两方程相减能否达到消元的目的,若不能,要怎样做,从而引出加法消元法。
解:由①+②得:5x=10 x=2把x=2代入①,得: y=3让学生在练习本写出解题过程(比比看,谁写的又对又快)。
引导学生观察相同未知数的系数特点。
培养学生从观察和思考问题的能力。
通过知识框架的构建,对方程组的解有一个新的认识,让学生学会学习知识的新方法,培养学生概括知识的能力。
⎩⎨⎧=+=+40222yxyx257,23 1.x yx y-=⎧⎨+=-⎩3521,2511.x yx y+=⎧⎨-=-⎩类比应用、闯关练习3x+2y=8 2m-3n=54x+3y=-4 4m+3n=75x-3y=4x+6y=3课知识小结加减消元法解方程组的基本思想是什么?前提条件是什么?基本思想:加减消元二元----- 一元前提条件:同一未知数的系数互为相反数或相等系数相反--------相加系数相等---------相减加减消元法解方程组的一般步骤:变形——加减(消元)——求解——写解(提醒)方程组变形的依据:等式的基本性质。
总结归纳学以致用作业1、必做题: P98习题8.2第3题及配套练习。
2、选做题: P98习题8.2第5题。
《二元一次方程组的解法——加减消元法》一、教学目标(1)知识目标:进一步了解加减消元法,并能够熟练地运用这种方法解较为复杂的二元一次方程组。
(2)能力目标:经历探索用“加减消元法”解二元一次方程组的过程,培养学生分析问题、解决问题的能力和创新意识。
(3)情感目标:在自由探索与合作交流的过程中,不断让学生体验获得成功的喜悦,培养学生的合作精神,激发学生的学习热情,增强学生的自信心。
二、教学重点难点(1)教学重点:利用加减法解二元一次方程组(2)教学难点:二元一次方程组加减消元法的灵活应用三、教学方法启发引导法、演示法四、教学准备:小黑板五、教学过程(一)复习旧知解二元一次方程组的基本思想是什么?(消元)(二)探究新知1、情境导入(利用小黑板)王老师昨天在水果批发市场买了2千克苹果和4千克梨共花了14元,李老师以同样的价格买了2千克苹果和3千克梨共花了12元,问:梨每千克的售价是多少元?凭借学生的经验估计他们会在列出二元一次方程组后马上想到用代入法解方程组,进而解决问题。
这时教师出示两种算法让学生加以比较,通过比较学生不难发现第二种算法是解决这个问题更简单的方法。
师:算法一是代入消元法,算法二就是今天我们将要学习的加减消元法。
复习加减消元法的定义:利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加或相减,以消去这个未知数,使方程只含有一个未知数而得以求解。
这种解二元一次方程组的方法叫作加减消元法,简称加减法2、例题讲评例①解方程组:⎩⎨⎧=+=+⑵y x ⑴y x 6231225 解:⑴-⑵,得2x=6x =3把x =3代入⑴得12235=+⨯y 解这个方程得y =23-∴原方程组的解为⎪⎩⎪⎨⎧==23-3y x 练习:指出下列方程组求解过程中有错误步骤,并给予订正。
练习1.解方程组: ⎩⎨⎧-=-=-⑵y x ⑴y x 445447 解:⑴-⑵,得2x =4-4,x =0把x =0代入⑴得4407=-⨯y 解这个方程得1-=y∴原方程组的解为⎩⎨⎧-==1y 0x 例②解方程组:⎩⎨⎧-=-=+⑵y x ⑴y x 11522153 解:⑴﹢⑵,得5x =10x =2把x =2代入⑴得3×2+5y=21解这个方程得y=3∴原方程组的解为⎩⎨⎧==32y x 练习:指出下列方程组求解过程中有错误步骤,并给予订正。
中小学教师教学(学案)设计模板消去这个未数。
练习一:1.指出下列方程组求解过程中是否有错误步骤,并给予订正:7x -4y =45x -4y =-4解:①-②,得 解 ①-②,得2x =4-4 -2x=12 x=0, x=-62.用加减法解二元一次方程组:(1)(2)(四)例题分析用加减法解方程组(想一想:怎样用加减法解下面的方程组?)解:点悟:找最小公倍数,变成某未知数系数的绝对值相等的新的方程组,从而为加减消元法解方程组创造条件. 练习二:用加减法解下列方程组。
点悟: 先化简:去分母、去括号、约分等, 然后在用加减法进行消元,可以简便计算。
(五).应用与拓展1. 是关于x 、y 的二元一次方程,求a 、b 的值。
3414542x y x y -=+=7239219x y x y -=+=-653615m n m n -=+=-⎩⎨⎧=+=+17431232y x y x 23(1)4311x y x y +=⎧⎨-=⎩21(2)329x y x y =+⎧⎨-=⎩3(1)(2)3(3)1136x y x y --+=⎧⎪⎨-+=⎪⎩812781(4)3004001500x y x y +=⎧⎨+=⎩23231358a b a b x y ++-++=+=-x y23 1.⎩出问题,探索新知除了用代入法,还有别的方法吗?想一想应怎样解方程组①②由①+②得: 5x=10由②-①得:8y=-8消去x,得 5y=5”中隐含了那些步骤?(三).归纳总结,获得新知两个二元一次方程中同一未知数的系数相反或相等时,把两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
这种方法叫做加减消元法,简称加减法。
归纳:利用加减消元法解方程组时,若同一个未知数的系数互为相反数,则可以直接消去这个未知数。
若同一个未知数系数相等,则可以直接消去这个未数。
练习一:1.指出下列方程组求解过程中是否有错误步骤,并给予订正:7x-4y=45x-4y=-4解:①-②,得2x=4- 4-2x=12x=0,x=-6(四)例题分析用加减法解方程组(想一想:怎样用加减法解下面的方程组?)解:练习二:用加减法解下列方程组。
学科数学班级任课教师课题解二元一次方程组课型新授日期学习重点运用加减消元法解二元一次方程组学习难点领会加减消元法表达的化未知为的化归思想。
教具学具多媒体教学方法探究法、讨论法教学过程一、复习、诊测、引入1、口述代入消元法的一般步骤:3x+2y=12、用代入消元法解方程组x-2y=3想一想:观察上面方程组的结构特点,想一想,除了可以用代入法解方程组外,是否有更简捷的解法。
二、学习新知:教学过程通过观察我们发现,这个方程组的两个方程中分别有2y和-2y的项,它们互为相反数,因此他们的和为零,所以,我们还可以用下面的方法解这个方程组。
3x+2y=1x-2y=3x+3y=1例1:解方程组2x+3y=5议一议:1、分析上面的解题过程,请你总结一下这类方程组具有什么特点?可以运用怎样的方法求解。
2、如果一个二元一次方程组中,两个方程的某个未知数的系数相同或互为相反数时,又可以运用什么样的方法求解?归纳结论〔解法〕:当二元一次方程组中,两个方程的某个未知数的系数相同或互为相反数时,可以把方程的两边分别相加〔当某个未知数的系数互为相反数时〕或相减〔当某个未知数的系数相等时〕来消去这个未知数,得到一个一元一次方程,从而求得二元一次方程组的解。
像上面这种解二元一次方程组的方法叫做加减消元法,简称加减法。
想一想:如果二元一次方程组的两个方程中,不含有系数互为相反数〔或向等〕的两项,我们是否可以对方程变形,把它化归为可以运用加减消元法求解的二元一次方程组呢?教例2:用加减消元法解以下方程组3x+2y=141〕5x-y=62x-3y=3这两个方程中含y的项的系数互为相反数,把两个方程相加就可消去y,进而求解这两个方程中含y的项的系数相等,把两个方程相减就可消去y,进而求解思考:怎样创造条件,运用加减消元法求解?学过程2)3x-2y=7解:略议一议:怎样根据方程组的特点选择恰当的方法,是求解的过程比拟简捷?请举出两例加以说明。
⽤加减消元法解⼆元⼀次⽅程组教案⽤加减消元法解⼆元⼀次⽅程组教案⼀、教学⽬标【知识与技能】在代⼊消元的基础上掌握加减消元法去解⽅程组的思想,并能正确运⽤加减消元法解⽅程组。
【过程与⽅法】通过⼩组合作、讨论的过程,学⽣的交流表达能⼒,归纳总结能⼒,以⾃学能⼒可以得到提升。
【情感态度与价值观】在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与⼈交流。
⼆、教学重难点【重点】掌握加减消元法解⽅程组。
【难点】正确的运⽤加减消元法解⽅程组。
三、教学过程(⼀)导⼊新课师:同学们,前⾯我们学习了解⽅程组,⼤家还记得是什么⽅法吗? ⽣:代⼊消元法x+y=10{2x+y=16师:⾮常正确,下⾯同学们看看⿊板上这道题如何做?师:我看同学们都做出来了,你们都是⽤什么⽅法做出来的啊?哦,是前⾯的代⼊消元法,其实这道题他有⼀个⾮常简单的⽅法,⼀下⼦就可以计算出来,下⾯我们就⼀起来探讨下⼀种新的解⽅程组的⽅法-加减法消元解⽅程组(⼆)⽣成新知出⽰例题{x+y=102x+y=16师:刚才我们解题的时候⽤的代⼊消元,那同学们你们观察观察这组⽅程他们的的y的系数有什么特点,你能不能想出什么好的解题⽅法呢?请⼤家先⾃⼰独⽴思考,然后前后4⼈为⼀⼩组,给⼤家5分钟的时间,⼤家相互讨论交流下。
学⽣独⽴思考,尝试练习、解答,初步形成⾃⼰的解决⽅案。
教师巡视,了解学⽣的学习情况,并及时指导;完成的同学,同学之间交流⼀下⾃⼰的解决问题的⽅法。
然后⼩组内展⽰各⾃解决问题的⽅案。
⽐⼀⽐谁的想法简洁,形成⼩组意见。
通过讨论学⽣可以得出如下结论:上式中y的系数相同,当⽤②-①时,可以发现变量y刚好可以消除师:⼤家都总结的⾮常到位,像这样在解⽅程组时,当x或者y的系数相同或者相反时,我们可以⽤两式相减或者相加的⽅式来消除其中⼀项,我们把这种⽅法叫做加减消元法。
师:那这个规律是不是适合于所有的题呢?下⾯我们就来拿到题来练练3x+4y=16{5x+6y=33师:请⼤家先⾃⼰在草稿本上演算⼀下,然后同桌之间相互讨论下,看看这道题应该如何解呢?我看⼤家结果已经出来了,谁来分享⼀下你的答案呢?⽣:有两种⽅法,⼀种是⽤带⼊消元,⼀种是⽤加减消元,加减消元的时候要把x或者y的系数变成⼀样的,所以①需要乘以3,②需要乘以2,这样①②的y的系数就刚还是相反数,①+②就可以消去y。
数学《加减消元法-解二元一次方程组》教案课时安排:第一课时:引入加减消元法第二课时:解决简单的二元一次方程组第三课时:引入倍加消元法第四课时:解决复杂的二元一次方程组课堂活动:第一课时:1.引入问题:小明有 6 条红色的绳子, 8 条绿色的绳子和 10 条蓝色的绳子,共计有多少条绳子?同学们快速作答并验证答案。
2.老师通过上述问题引导学生理解加减消元法。
3.教师给出一个简单的二元一次方程组,让学生通过加减消元法来解决。
4.让学生自己找到一些二元一次方程组,让同桌分别用加减消元法来解决。
第二课时:1.老师总结昨天加减消元法的解决方法,引入倍加消元法,告诉学生在某些情况下倍加消元法可能更适合。
2.老师给出一个适合倍加消元法的问题,让同学们快速求解。
3.让一些同学将他们在昨天找到的二元一次方程组用倍加消元法来解决。
第三课时:1.老师对昨天学过的知识进行复习。
2.展示一些更复杂的二元一次方程组,让同学们思考如何用加减消元法或倍加消元法来解决,让同学们互相讨论。
3.让一些同学来解决这些问题,记录下解题过程。
第四课时:1.老师对昨天学习的内容进行总结,让同学们回顾、检验自己的学习成果。
2.老师给出几道复杂的二元一次方程组,让同学们通过加减消元法或倍加消元法来解决,让同学们互相讨论。
3.让一些同学来解决这些问题,记录下解题过程并与同学分享。
作业安排:1.课后练习,让同学们运用加减消元法和倍加消元法来解决一些二元一次方程组。
2.让同学们自己编写一些二元一次方程组,让同桌来解决。
北师大版八年级数学上册《用加减消元法解二元一次方程组》教案 一、教学目标 知识与技能:了解并会用加减消元法解二元一次方程组。
过程与方法:了解解二元一次方程组的消元思想,体会数学中“化未知为已知”的化归思想。
情感态度与价值观:初步体验二元一次方程组解法的多样性和选择性。
二、教学重点会用加减消元法解二元一次方程组。
三、教学难点掌握解二元一次方程组的“消元”思想。
四、教学过程设计(一)课前探究预习教材,探究如何用加减消元法解二元一次方程组(二)课中展示怎样解下面的二元一次方程组呢?⎩⎨⎧=-=+11-52125y 3x y x分析:观察方程组中的两个方程,未知数y 的系数互为相反数,把这两个方程两边分别相加,就可以消去未知数y ,得到一个一元一次方程;(3x + 5y )+(2x - 5y )=21 + (-11)①左边 + ②左边 = ①左边 + ②左边3X+5y +2x - 5y =105x+0y =105x=10解:由①+②得: 5x=10 x =2把x =2代入①,得y =3所以原方程组的解是⎩⎨⎧==23x y应用新知例 1 解下列方程组.⎩⎨⎧-=+=-13275y 2x y x 分析:观察方程组中的两个方程,未知数x 的系数相等,都是2.把这两个方程两边分别相减,就可以消去未知数x ,同样得到一个一元一次方程.解:把 ②-①得:8y =-8y =-1把y =-1代入①,得2x -5╳(-1)=7解得:x =1所以原方程组的解是⎩⎨⎧-==11x y5. 例2.用加减消元法解下列各方程组⎩⎨⎧=+=+1743123y 2x y x分析:(1)用加减消元法解方程组时,若哪个未知数系数的绝对值正好相等,就可先消哪个未知数;若两个未知数的系数绝对值均不等,则可选定一个未知数,通过变形使其绝对值相等,再进行消元.(2)运用加减消元法解方程组的条件是方程组中两个方程的某个未知数的系数的绝对值相等,当方程组中两方程不具备这种特点时,必须用等式性质2来改变方程组中方程的形式,即得到与原方程组同解的且某未知数系数的绝对值已经相等的新的方程组,从而为加减消元法解方程组创造条件.①×3得6x+9y=36 ③②×2得6x+8y=34 ④③-④得y=2把y =2代入①,得解得:x =3所以原方程组的解是⎩⎨⎧-==11x y(四)小结梳理加减消元法解方程组基本思路:加减消元----二元---一元主要步骤有:变形----同一个未知数的系数相同或互为相反数加减----消去一个元求解----分别求出两个未知数的值写解----写出方程组的解(五)后测达标完成教材随堂练习(六)拓展延伸。
《加减法解二元一次方程组》精品教案教学目标1、理解加减消元法的含义。
2、掌握用加减法解二元一次方程组。
3、使学生理解加减消元法的化归思想方法。
重点、难点重点: 学用“加减法“解二元一次方程组难点: 对于相同字母的系数绝对值不相等时的解法.教学过程一、复习用代入法解方程组:错误!未找到引用源。
设计意图:通过利用以前学的代入法解二元一次方程组,巩固学过的知识的同时也同样为本节学的加减消元法打下基础。
二、探究新知观察方程组错误!未找到引用源。
比较两个方程中y的系数,能否找出新的消元方法呢?分析:这个方程中,未知数y的系数(相同或相反),把这方程组的左边与左边相减,右边与右边相减,能得到什么结果?解:由②-①得: x=6把x=6代入①,得 6+y=10解得y=4所以这个方程组的解是解方程组错误!未找到引用源。
分析:这个方程中,未知数y的系数(相同或相反),把这方程组的左边与左边,右边与右边。
解:①+②得3x=9解得:x=3把x=3代入①得:6+y=7解得:y=1所以方程组的解是错误!未找到引用源。
总结规律:1、某一未知数的系数时,用减法。
2、某一未知数的系数时,用加法。
加减消元法:当二元一次方程组中同一未知数的系数或时,把这两个方程的两边分别或,就能消去这个未知数,得到一个一元一次方程。
这种方法叫做加减消元法,简称加减法。
设计意图:由简单方程组入手,更加深刻理解加减消元解二元一次方程,并且归纳出加减法解方程的步骤。
三、例题讲解例3 用加减法解方程组错误!未找到引用源。
对于当方程组中两方程不具备上述特点时,则可用等式性质来改变方程组中方程的形式,即得到与原方程组同解的且某未知数系数的绝对值相等的新的方程组,从而为加减消元法解方程组创造条件.让学生观察思考:学生说出自己的结论,师引导分析:师生共同解决引导学生分析总结同字母的系数不同的方程消元的方法。
例4、2台大收割机和5台小收割机均工作2h共收割小麦3.6 hm2,3台大收割机和2台小收割机同时工作5h共收割小麦8 hm2.1台大收割机和1台小收割机每小时各收割小麦多少公顷?学生试着分析题目,找出等量关系列出方程组,进行解答。
消元解二元一次方程组教案实用一、教学目标1.知识与技能1.1理解二元一次方程组的解的概念。
1.2学会利用加减消元法解二元一次方程组。
2.过程与方法2.1通过观察、操作,培养解决实际问题的能力。
2.2通过小组合作,提高合作解决问题的能力。
3.情感态度与价值观3.1培养学生独立思考、勇于创新的精神。
3.2增强学生解决实际问题的信心。
二、教学重难点1.重点:理解二元一次方程组的解的概念,掌握加减消元法解二元一次方程组。
2.难点:灵活运用加减消元法解题。
三、教学过程1.导入新课1.1利用生活中的实际问题引入二元一次方程组的概念。
例如:小明和小红一共收集了30个邮票,小明有20个,小红有多少个?2.探索新知2.1引导学生回顾一元一次方程的解法,让学生尝试解二元一次方程组。
例如:求解方程组:\[\begin{cases}x+y=5\\2xy=1\end{cases}\]2.2学生尝试解题,教师巡回指导,发现学生不会解的情况,引导学生观察两个方程之间的关系。
3.引导学生发现消元法3.1教师引导学生将两个方程相加或相减,消去一个未知数。
例如:将第一个方程乘以2,得到:\[\begin{cases}2x+2y=10\\2xy=1\end{cases}\]然后将两个方程相减,消去y,得到:\[\begin{cases}2x+2y=10\\3y=9\end{cases}\]3.2学生根据消元法,求解出y的值,再将y的值代入其中一个方程求解x的值。
例如:如何选择相加或相减,如何确定消去哪个未知数等。
5.练习巩固5.1让学生独立完成教材上的练习题,巩固所学知识。
5.2教师选取一些典型题目进行讲解,帮助学生理解消元法。
6.小组合作6.1将学生分成小组,每组选取一道二元一次方程组题目进行讨论。
6.2各小组成员分别阐述自己的解题思路,共同找出最优解法。
7.1教师邀请几名学生分享自己的解题过程和心得体会。
7.2教师对学生的表现进行评价,鼓励学生继续努力。
消元---二元一次方程组的解法
练习和归纳: 解方程组:1、⎩
⎨
⎧==+115y -3x 33
y 2x
2、⎩⎨
⎧=+=+7
2y 3x 15y 2x
3、思考:已知a 、b 满足方程组
,则a+b=
六、小结归纳:
上面这些方程组的特点是什么? 解这类方程组基本思路是什么? 主要步骤有哪些?
特点:同一个未知数的系数相同或互为相反数
基本思路:加减消元:二元变一元 主要步骤:加减消去一个元 求解分别求出两个未知数的值 写解写出原方程组的解
七、作业:教材第98页第3题。
学生分组讨论后请代表板演过程,然后教师和学生一起分析有没
有过错,或写的好的地方在哪?
师生共同归纳方程特点和解题
过程,而且特别强调整体性及去括号的注意事项。
通过练习强化使
得当堂学习有所得,这
样相对不容易忘记。
七、教学评价设计 1、课堂理解度多少? 2、作业反馈情况如何?。
加减消元法解二元一次方程组教案加减消元法解二元一次方程组教案「篇一」二元一次方程组的解法(加减消元法)说课稿尊敬的各位老师,各位同学:大家好!我今天说课的题目是《二元一次方程组的解法》,选自沪教版九年义务教育课本六年级下册第六章第九节,本节两个课时,我今天阐述的是第二课时,用加减消元法解二元一次方程组。
下面我将从教材分析、教法分析、学法分析、教学过程及教学评价等几个方面进行阐述。
一、教材分析1、教材的地位和作用本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。
教材的编写目的是通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程;理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础.2、教学目标通过对新课程标准的研究与学习,我把本节课的三维教学目标确定如下:知识与技能目标:会用加减消元法解简单的二元一次方程组;理解加减消元法的基本思想,体会化未知为已知的化归思想方法。
过程与方法目标:通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。
情感态度及价值观:通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,同时体会到数学与日常生活的密切联系,认识到数学的价值。
3、教学重、难点由于六年级的学生年龄较小,在学习解二元一次方程组的过程中往往不注意方程组解法的形成过程更无法真正理解消元的思想方法。
而大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下: 重点:用加减消元法解决二元一次方程组难点:在解题过程中进一步体会“消元”思想和“化未知为已知”的化归思想为讲清楚重、难点,让学生达到本节设定的目标,我再从教法学法上谈谈。
二、教法分析考虑到学生已经掌握了用代入消元法解二元一次方程组,懂得其基本思路是把二元一次方程组转化为一元一次方程。
8.2消元--用加减消元法解二元一次方程组一、教材分析在学习本节课之前,学生已经学过代人消元法解二元一次方程组,理解“消元”是核心,化归是目标,因此本节课再学习加减消元法就有了理论基础。
二、教学目标1、知识技能:会运用加减消元法解二元一次方程组。
2、过程与方法:经历探究加减消元法解二元一次方程组的过程,领会“消元”法所体现的“化未知为已知”的化归思想方法。
3、情感态度与价值观:让学生在探究中感受数学知识的实际用价值,养成良好的学习习惯。
三、重点:加减消元法解二元一次方程组。
四、难点:如何运用加减法进行消元。
五、教学方法:本节课采用“探索------发现-------比较”的教学法。
六、教学过程:(一)温故而知新1、根据等式性质填空:<1>若a=b,那么a±c= .()<2>若a=b,那么ac= .()2、解二元一次方程组的基本思路是什么?3、用代入法解方程组的主要步骤是什么?(二)问题引入①②用我们学过的方法如何解?思考:还有别的方法吗?认真观察此方程组中各个未知数的系数有什么特点,并分组讨论还有没有其他的解法,并尝试一下能否求出它的解。
师生互动:3x+5y=21①2x-5y=-11②分析:(3x+5y)+(2x-5y)=21+(-11)①左边+②左边=①右边+②右边3x+5y+2x-5y=105x=10X=2思考:联系上面的解法,想一想怎样解方程组。
4x+5y=3①2x+5y=-1②观察上面两个方程组,引出加减消元法的概念:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.(板书课题)(三)范例学习,应用所学1、解方程组 2x-5y=7①2x+3y=-1②解:把②-①得: 8y=-8y=-1把y =-1代入①,得:2x-5×(-1)=7解得:x=1所以原方程组的解是x=1y=-12、练习1.用加减法解下面方程组时,你认为先消去哪个未知数较简单,填写消元的方法,并解(1)。
《8.2.2加减消元法---解二元一次方程组》说课稿尊敬的各位领导,各位老师:大家好!我今天说课的题目是《加减消元法---解二元一次方程组》,下面我将从以下五个板块展开说课,分别是说教材分析、说教法学法、说教学过程、说板书设计等五个板块进行说课。
一、说教材分析1、教材的地位和作用本课选自人民教育出版社中学数学七年级下册第八章第二节第二课时,本课是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。
本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。
通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础。
2、教学目标通过对新课程标准的研究与学习,结合我校学生的实际情况,我把本节课的三维教学目标确定如下:(一)知识与技能目标:会用加减消元法解简单的二元一次方程组。
理解加减消元法的基本思想,体会化未知为已知的化归思想方法。
(二)过程与方法目标:通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。
(三)情感态度及价值观:通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。
3、教学重点、难点:由于七年级的学生年龄较小,在学习解二元一次方程组的过程中容易进行简单的模仿,往往不注意方程组解法的形成过程更无法真正理解消元的思想方法。
而大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下:重点:用加减法解二元一次方程组。
难点:灵活运用加减消元法的技巧,把“二元”转化为“一元”二、说教法结合七年级学生的年龄特征和认知特点,这一阶段的学生有极强的求知欲,在教学中我主要评价激励法,对学三、说学法本节课的教学我始终把学生作为学习的主人,不断激发他们的学习兴趣,引导学生在自主探究、合作交流、小组竞赛相结合的学习方式下获得成功的体验,并相应的进行小组加分和个人加分,以增加学生的学习兴趣。