弹性力学及有限元法:第7章 等参数单元G2
- 格式:ppt
- 大小:1.28 MB
- 文档页数:57
弹性力学及有限单元法_河海大学中国大学mooc课后章节答案期末考试题库2023年1.建立平衡微分方程时,用到了下列哪些假定()、()。
参考答案:连续性_小变形2.有限单元法中的单元仍然满足()、()、()、()的理想弹性体。
参考答案:完全弹性_均匀性_各向同性_连续性3.应力边界条件是指在边界上()之间的关系式。
参考答案:应力与面力4.面力是指分布在物体的力。
参考答案:表面上##%_YZPRLFH_%##表面5.位移是指一点的移动。
参考答案:位置6.线应变(或正应变)以为正。
参考答案:伸长7.极坐标系下的几何方程有()。
参考答案:3个8.极坐标系下的平衡微分方程有()。
参考答案:2个9.应力是指上的内力。
参考答案:单位面积##%_YZPRLFH_%##单位截面10.地面的沉陷与地基的弹性模量无关。
()参考答案:错误11.弹性力学问题中,仅对位移分量要求单值。
()参考答案:错误12.在小边界上按圣维南原理列写的三个边界条件是方程。
参考答案:代数##%_YZPRLFH_%##积分13.在大边界上按精确的应力边界条件,列出的两个边界条件是方程。
参考答案:函数14.精确的应力边界条件可理解为,边界上的应力分量应等于对应的。
参考答案:面力分量15.当体力为常量时,按应力求解可简化为按求解。
参考答案:应力函数16.常体力,是指。
参考答案:体力是常量##%_YZPRLFH_%##体力等于常量##%_YZPRLFH_%##体力为常量17.体力是指分布在物体的力。
参考答案:体积内##%_YZPRLFH_%##体积18.在弹性力学中,可以应用叠加原理。
参考答案:正确19.逆解法先假设应力分量的函数形式进行求解。
参考答案:错误20.应力的量纲与面力的量纲是一样的。
参考答案:正确21.弹性力学中应力的符号与面力的符号规定,在正、负坐标面上是一致的。
参考答案:错误22.弹性力学和材料力学中关于切应力的符号规定是一样的。
参考答案:错误23.小变形假定可简化()、()为线性方程。
有限元分析
的一般规律物体在空间的位置随时间的改变
对象内容
任务
对象内容
任务
概述
ANSYS 静力分析z起重机械有限元应用
整机模态分析
车辆安全性
工件淬火3.06 min 时的温度、组织分布(NSHT3D)
同济大学
同济大学
金属反挤压成型:温度分布和变化铸造成型:温度变化和气泡
速度
压力导流管分析
超音速飞行压力分布汽车气动分析
高速导弹气动
同济大学
两根热膨胀系数不同的棒焊接在一起,加热后的变形情况
子结构方法分析大型结构的早期应用法
梁单元
建模时充分利用重复性。
《弹性力学及有限元》教学大纲《弹性力学及有限元》教学大纲大纲说明课程代码:5125004总学时:40学时(讲课32学时,上机8学时)总学分:2.5学分课程类别:必修适用专业:土木工程专业(本科)预修要求:高等数学、理论力学、材料力学课程的性质、目的、任务:本课程是土木工程专业限选修的一门专业基础课。
本课程的教学目的,是使学生在理论力学和材料力学等课程的基础上进一步掌握弹性力学的基本概念、原理和方法,了解弹性力学问题的求解思路、方法和解答,为学习相关专业课程打下初步的弹性力学基础。
在此基础上,使学生掌握有限单元法的基本概念、理论、方法,了解和应用ANSYS大型结构分析程序求解简单的弹性力学问题。
课程教学的基本要求:本课程教学环节主要包括:课堂讲授、习题课、作业、答疑、上机计算、考试。
采用课堂授课方式,重点章节安排习题课。
课后布置一定量的习题,以便掌握弹性力学与有限单元法的基本概念、原理和方法,用弹性力学的求解方法及大型结构分析有限单元程序求解简单的弹性力学问题。
考试采用开卷方式。
大纲的使用说明:本大纲适用于土木工程本科专业40课时的《弹性力学及有限元》课程.大纲正文第一章绪论学时:6学时(讲课6学时)本章讲授要点:了解弹性力学的研究内容,理解体力、面力、应力、应变和位移等基本概念,熟悉体力、面力、应力、应变、位移等力学量的记号和符号的有关规定,理解弹性力学的基本假定;了解有限单元法的发展,掌握泛函、变分和泛函极值等基本概念;了解加权残值、里兹与伽辽金等方法。
重点:弹性力学中的应力、应变和位移等基本概念;泛函、变分、驻值等基本概念;加权残值、里兹与伽辽金等方法。
难点:应力、应变;泛函、变分、驻值;加权残值法、里兹法与伽辽金法。
第一节弹性力学的内容第二节弹性力学中的几个基本概念第三节弹性力学中的基本假定第四节有限单元法的发展简介第五节变分原理.泛函.变分.驻值第六节加权残值法、里兹法与伽辽金法第二章弹性力学的基本理论学时:12学时(讲课12学时)本章讲授要点:掌握平面应力、平面应变与平面轴对称问题的特点及其它们的基本方程,了解按位移或者应力求解平面应力、平面应变与平面轴对称问题的求解思路,了解以多项式解法求解平面问题的基本思路与方法,了解以应力函数求解简支梁受均布荷载弯曲问题的思路和方法。
弹性力学及有限元分析1、 设试件两定点之间的长度为L 0,其截面积为F 0,加上拉力P 后,L 0 伸长了△L 。
我们把P/ F 0 称为拉伸应力(σ),△L/ L 0 称为拉伸应变(ε),于是有σ=P/ F 0 ,ε= △L/ L 0某种材料的拉伸应力和拉伸应变的比,称为该材料的杨氏模量或弹性模量(E),即 LF PL E ∆==00εσ,弹性模量E 表征了材料的物理性质。
2、 根据力学特性,固体通常分为韧性固体和脆性固体。
首先分析韧性材料,材料在受力变形过程中,明显地有四个特性点划分三各阶段。
a. 弹性阶段,这一阶段的明显特征是,当外力逐渐去掉时,变形也逐渐消失,物体能够恢复到原来的形状,物体的这种性质称为弹性,存在一个应力极限称为弹性极限。
随着外力的消失而消失的变形称为弹性变形;去掉外力后仍然保留的变形称为残余变形或永久变形。
弹性阶段另一个明显特征是,应力与应变保持线性关系。
设受力方向为x 方向,x xE εσ=,这就是简单拉伸时的虎克定律,弹性模量E 为常数,表示应力与应变成正比例。
通常把弹性极限和比例极限规定为一个值。
b. 塑性阶段,超过弹性极限后,材料开始失去弹性,进入塑性阶段,这时产生较大的永久变形,应力应变关系不再是线性的。
当曲线超过s 点(屈服极限)后,材料开始屈服,即在应力几乎不增加的情况下,应变会不断的增加,称s 点为屈服极限;当变形大到一定程度后,材料开始强化,要继续增加变形必须再增加外力,到达b 点后产生颈缩。
从弹性极限到b 的变形范围统称为塑性阶段,属于塑性力学的研究范畴。
c. 断裂阶段,试件产生颈缩后,开始失去抵抗外力的能力,最后发生断裂,相对于b点的应力称为强度极限。
脆性材料:它的拉伸曲线图没有明显的三个阶段之分,也没有明显的屈服应力点,材料亦不再满足虎克定律。
为了分析上的需要,往往以切线斜率作为弹性模量,即εσd d E =。
如果对脆性固体材料加载,应力应变曲线将沿着OA 上升,若到A 点后即行卸载,应力应变曲线并不沿着原来的途径回复到原点,而是沿着直线AB 下降,当全部载荷卸去之后,试件中尚残存一部分永久变形''ε。