三、 弹性力学有限元法基本原理(二)
- 格式:pptx
- 大小:670.06 KB
- 文档页数:41
第二章有限单元法的基本原理作为一种比较成熟的数值计算方法,有限元的数学基础是变分原理。
经过半个过世纪的发展,它的数学基础已经比较完善。
从数学角度分析,有限元法是以变分原理和剖分插值为基础的数值计算方法。
它广泛的应用于解算各种类型的偏微分方程,特别对椭圆型方程,因为椭圆型方程的边值问题等价于适当的变分问题,即能量积分的级值问题。
通过变分,导出相应的泛涵,再把作用域从几何上剖分为足够小的单元,这样就能够用简单的图形去拟合复杂的边界,用简单的初等函数去模拟单元的性质。
在解算中先对每个单元进行分析,后在通过连接单元的节点对作用域的整体进行分析,就是对泛涵求极值,从而把一个复杂的偏微分方程求解问题,变成解线形代数方程组的问题。
尽管这样会出现大量的未知数,由于采用了矩阵分析的方法,总体上很有规律,适合编制程序用计算机完成。
通常的数学考虑包括这些:1)从古典变分方法原理去定义微分方程边值问题的广义解以及在古典变分方法的框架对有限元进行理论分析。
2)保证偏微分方程边值问题的提法正确,即要求解存在、唯一和稳定,即保证数值解法是可靠的。
3)有限元中重要的一点是采用了分块多项式插值函数,因此,有限元的误差估计转化为插值逼近的误差估计问题。
4)有限元的收敛性和误差估计。
由于本文是应用有限元的理论解决大地测量中的问题,因此,这里将不讨论上叙问题,而是从固体力学的基本方程出发,通过虚功原理建立起离散化的有限元方程。
另外,还以八节点六面体单元为例,简要叙述了实际中最常用的等参单元的概念及其数值变化的一些公式。
§2.1 弹性力学基本方程有限元法中经常要用到弹性力学的基本方程,这里写出这些方程的矩阵表达式。
2-1-1、平衡方程对任意一点的受力情况分析,沿坐标轴方向x, y ,z分解得到平衡方程0*00000000=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂z y xxz yz xy z y x F F F z yzz x y z y x τττσσσ 记为: 0=+F A σ其中A 是微分算子,F 是体积力向量。
有限元法的理论基础有限元法是一种离散化的数值计算方法,对于结构分析而言,它的理论基础是能量原理。
能量原理表明,在外力作用下,弹性体的变形、应力和外力之间的关系受能量原理的支配,能量原理与微分方程和定解条件是等价的。
下面介绍有限元法中经常使用的虚位移原理和最小势能原理。
1.虚位移原理虚位移原理又称虚功原理,可以叙述如下:如果物体在发生虚位移之前所受的力系是平衡的(物体内部满足平衡微分方程,物体边界上满足力学边界条件),那么在发生虚位移时,外力在虚位移上所做的虚功等于虚应变能(物体内部应力在虚应变上所做的虚功)。
反之,如果物体所受的力系在虚位移(及虚应变)上所做的虚功相等,则它们一定是平衡的。
可以看出,虚位移原理等价于平衡微分方程与力学边界条件。
所以虚位移原理表述了力系平衡的必要而充分的条件。
虚位移原理不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。
2.最小势能原理最小势能原理可以叙述为:弹性体受到外力作用时,在所有满足位移边界条件和变形协调条件的可以位移中,真实位移使系统的总势能取驻值,且为最小值。
根据最小势能原理,要求弹性体在外力作用下的位移,可以满足几何方程和位移边界条件且使物体总势能取最小值的条件去寻求答案。
最小势能原理仅适用于弹性力学问题。
2.2有限元法求解问题的基本步骤弹性力学中的有限元法是一种数值计算方法,对于不同物理性质和数学模型的问题,有限元法的基本步骤是相同的,只是具体方式推导和运算求解不同,有限元求解问题的基本步骤如下。
2.2.1问题的分类求解问题的第一步就是对它进行识别分析,它包含的更深层次的物理问题是什么?比如是静力学还是动力学,是否包含非线性,是否需要迭代求解,要从分析中得等到什么结果等。
对这些问题的回答会加深对问题的认识与理解,直接影响到以后的建模与求解方法的选取等。
2.2.2建模在进行有限元离散化和数值求解之值,我们为分析问题设计计算模型,这一步包括决定哪种特征是所要讨论的重点问题,以便忽略不必要的细节,并决定采用哪种理论或数学公式描述结果的行为。
有限元法基本原理
有限元法是最先应用于航空工程结构的矩阵分析方法,主要用来解决复杂结构中力与位移的关系。
有限元法的基本思想:将具有无限个自由度的连续的求解区域离散为具有有限个自由度、且按一定方式(节点)相互连接在一起的离散体(单元),即将连续体假想划分为数目有限的离散单元,而单元之间只在数目有限的指定点处相互联结,用离散单元的集合体代替原来的连续体。
一般情况下,有限元方程是一组以节点位移为未知量的线性方程组,解次方程组可得到连续体上有限个节点上的位移,进而可求得各单元上的应力分布规律。
有限元方法求解问题主要分为以下几步:(1)结构的离散化
将已连续体线性沦为单元组合体;(2)挑选加速度模式
即假定单元中位移分布是坐标的某种函数,位移模式一般选为多项式的函数;
(3)单元力学特性分析
利用弹性力学的平衡方程、几何方程、物理方程和虚功原理得到单元节点力和节点位移之间的力学关系,即建立单元刚度矩阵;
(4)排序耦合节点力根据机械功成正比原则,用耦合节点Courtomer替代所有促进作用于单元边界或单元内部的载荷;
(5)建立整个结构的所有节点载荷与节点位移之间的关系(整体结构平衡方程),即建立结构的的总体刚度矩阵;
(6)边界条件
排除结构发生整体刚性位移的可能性。
(7)求解线性方程组
方程组存有唯一求解,即为获得结构中各节点的加速度,单元内部加速度通过插值获得。
(8)后处理与计算结果评价。
第2章 弹性力学平面问题有限单元法2.1 三角形单元(triangular Element)三角形单元是有限元分析中的常见单元形式之一,它的优点是:①对边界形状的适应性较好,②单刚形式及其推导比较简单,故首先介绍之。
一、结点位移和结点力列阵设图为从某一结构中取出的一典型三角形单元。
在平面应力问题中,单元的每个结点上有沿x、y两个方向的力和位移,单元的结点位移列阵规定为: 相应结点力列阵为: (式2-1-1){}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=m j i m ed d d d m j j i v u v u v u i {}ii j j m X Y X (2-1-1)Y X Y iej m m F F F F ⎧⎫⎪⎪⎪⎪⎧⎫⎪⎪⎪⎪⎪⎪==⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎪⎪⎪⎪⎪⎪⎩⎭二、单元位移函数和形状函数前已述及,有限单元法是一种近似方法,在单元分析中,首先要求假定(构造)一组在单元内有定义的位移函数作为近似计算的基础。
即以结点位移为已知量,假定一个能表示单元内部(包括边界)任意点位移变化规律的函数。
构造位移函数的方法是:以结点(i,j,m)为定点。
以位移(u i ,v i ,…u m v m 3)为定点上的函数值,利用普通的函数插值法构造出一个单元位移函数。
在平面应力问题中,有u,v 两个方向的位移,若假定单元位移函数是线性的,则可表示成:(,)12u u x y x yααα+46y ==+ 5(,)v v x y x ααα+==+ (2-1-2)a式中的6个待定常数α1 ,…, α6 可由已知的6个结点位移分量(3个结点的坐标)确定。
将13个结点坐标(x i,3iy y i ),(x j,y j ),(x m,y m )代入上式得如下两组线性方程: 12i i u x ααα+3=+12j j j x y u αα=+α+3m y (a)12m m u x ααα=++46i y和5i i v x αα=+α+465j j j x y v αα=+α+46m y (b)5m m v x ααα=++利用线性代数中解方程组的克来姆法则,由(a)可解出待定常数1α 、2α 、3α :211A Aα=22A 3A Aα=3Aα=式中行列式:2111i i 1i i i j m j j m m u x y A u x y u x y =j jm mu y A u y u y =3111i i j jm mx u A 2111i i j j m mAx y A x y x y x u x u ===A为△ijm 的面积,只要A不为0,则可由上式解出:112i i j j a u a u ()m m a u A α=++21(2i ij j bu b u )m m b u A α=++ (C)312i i j j c u c u ()m mc u A α=++i j a x y =−j i y x y =−m i j j i y x y 式中:m m j x y a x a x m m i =−y m y y =−m i j y ym i j b y =− b b j i =− (d)3c m i j x x =− j i c m x x =−m j i c x x =−m iy x y =−m为了书写方便,可将上式记为: a xm i j b i jy y =−(,,) i u j m uu u ruuu u r i jc m x x =−(,,)i j m uuu u r uuu u r)m m N x y u N x y u N x y u =++)m x y v 表示按顺序调换下标,即代表采用i,j,m 作轮换的方式便可得到(d)式。
有限元法基本原理与应用有限元法(Finite Element Method, FEM)是一种数值计算方法,广泛应用于工程领域中的结构分析、流体力学、热传导等问题的数值模拟。
它的基本原理是将连续的物理问题转化为离散的有限元组装问题,通过对离散的有限元进行数值计算,得到问题的近似解。
有限元法的基本原理可以简要概括为以下几个步骤:1.建立问题的数学模型:将实际问题抽象为一个数学模型,例如线性弹性力学、热传导方程等。
模型包括物理量的表达式、边界条件和初始条件等。
2.离散化:将连续的物理问题离散化为一系列有限元。
有限元是由一些简单的几何形状(如三角形、四边形)组成的子区域,称为单元。
整个问题区域被划分为许多单元。
3.处理边界条件:在模型中,边界条件是非常重要的,它们描述了问题在边界上的行为。
有限元法通过施加适当的边界条件来模拟实际问题的边界行为。
4.建立单元模型:针对每个单元,建立其适当的数学模型。
常用的有线弹性力学的单元模型有三角形和四边形元素、梁单元、壳单元等。
5.组装方程:通过将所有单元的方程组合在一起,形成整个问题的方程组。
这个方程组通常是一个矩阵方程,可以通过求解该方程组来得到问题的数值解。
6.求解方程:有限元法适用于大规模、复杂的问题,可以通过迭代的方式求解。
常用的求解方法有直接法、迭代法、预处理共轭梯度法等。
7.后处理:对求解结果进行后处理,包括分析和可视化。
这些结果可以用来评估结构的安全性、优化设计等。
有限元法的应用非常广泛,涵盖了许多工程领域。
它可以用于结构分析,例如建筑物、桥梁、飞机等的强度和刚度分析、应变和位移分析等。
在流体力学中,有限元法可以用于模拟空气动力学、水动力学等。
在热传导问题中,有限元法可以用于计算物体在不同温度条件下的热传导情况。
有限元法的优点在于可以处理较为复杂的几何形状和边界条件,能够提供准确的数值结果。
它还具有良好的可扩展性,可以适应不同规模和复杂度的问题。
同时,有限元法还可以与其他数值方法相结合,如有限差分法和有限体积法,以提高数值计算的精度和效率。