空间直线和平面总结知识结构图+例题
- 格式:doc
- 大小:437.00 KB
- 文档页数:19
空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。
理解和掌握这些关系,对于解决相关的几何问题具有关键作用。
下面我们通过一些例题来深入探讨,并对相关知识点进行总结。
一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。
2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。
证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。
又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。
(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。
2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。
证明:连接 AC 交 BD 于 O,连接 MO。
因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。
又因为 M 是 PC 的中点,所以MO∥PA。
因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。
(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。
2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。
证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。
二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。
专题十二空间直线、平面的平行知识精讲一知识结构图二.学法指导1.空间两条直线平行的证明一是定义法:即证明两条直线在同一个平面内且两直线没有公共点;二是利用平面图形的有关平行的性质,如三角形中位线,梯形,平行四边形等关于平行的性质;三是利用基本事实4:找到一条直线,使所证的直线都与这条直线平行.2.求证角相等一是用等角定理;二是用三角形全等或相似.3.利用直线与平面平行的判定定理证明线面平行,关键是寻找平面内与已知直线平行的直线.4.证线线平行的方法常用三角形中位线定理、平行四边形性质、平行线分线段成比例定理、基本事实4等.5.线面平行的性质和判定经常交替使用,也就是通过线线平行得到线面平行,再通过线面平行得线线平行.利用线面平行的性质定理解题的具体步骤:(1)确定(或寻找)一条直线平行于一个平面;(2)确定(或寻找)过这条直线且与这个平行平面相交的平面;(3)确定交线;(4)由性质定理得出线线平行的结论.6.平面与平面平行的判定方法:(1)定义法:两个平面没有公共点.(2)判定定理:一个平面内的两条相交直线分别平行于另一个平面.(3)转化为线线平行:平面α内的两条相交直线与平面β内的两条相交直线分别平行,则α∥β.(4)利用平行平面的传递性:若α∥β,β∥γ,则α∥γ.7.应用平面与平面平行性质定理的基本步骤:8.证明直线与直线平行的方法(1)平面几何中证明直线平行的方法.如同位角相等,两直线平行;三角形中位线的性质;平面内垂直于同一直线的两条直线互相平行等.(2)基本事实4.(3)线面平行的性质定理. (4)面面平行的性质定理. 9. 证明直线与平面平行的方法:(1)线面平行的判定定理.(2)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.三.知识点贯通知识点1 基本事实4、等角定理的应用1.基本事实4文字表述:平行于同一条直线的两条直线平行.这一性质叫做空间平行线的传递性. 符号表述:⎭⎪⎬⎪⎫a ∥b b ∥c ⇒a ∥c . 2.等角定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补. 例题1.如图,在正方体ABCD A 1B 1C 1D 1中,M ,M 1分别是棱AD 和A 1D 1的中点.(1)求证:四边形BB 1M 1M 为平行四边形; (2)求证:∠BMC =∠B 1M 1C 1.【解析】 (1)∵ABCD A 1B 1C 1D 1为正方体.∴AD =A 1D 1,且AD ∥A 1D 1,又M,M1分别为棱AD,A1D1的中点,∴AM=A1M1且AM∥A1M1,∴四边形AMM1A1为平行四边形,∴MM1=AA1且MM1∥AA1.又AA1=BB1且AA1∥BB1,∴MM1=BB1且MM1∥BB1,∴四边形BB1M1M为平行四边形.(2)由(1)知四边形BB1M1M为平行四边形,∴B1M1∥BM.同理可得四边形CC1M1M为平行四边形,∴C1M1∥CM.∵∠BMC和∠B1M1C1方向相同,∴∠BMC=∠B1M1C1.知识点二直线与平面平行的判定直线与平面平行的判定例题2:如图,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:(1)EH∥平面BCD;(2)BD∥平面EFGH.【解析】(1)∵EH为△ABD的中位线,∴EH∥BD.∵EH⊄平面BCD,BD⊂平面BCD,∴EH∥平面BCD.(2)∵BD∥EH,BD⊄平面EFGH,EH⊂平面EFGH,∴BD∥平面EFGH.知识点三直线与平面平行的判定与性质直线与平面平行的判定及性质例题3已知直线a,l,平面α,β满足α∩β=l,a∥α,a∥β.求证:a∥l.【证明】如图所示,过a作平面γ交平面α于b,∵a∥α,∴a∥b.同样过a作平面δ交平面β于c,∵a∥β,∴a∥c.则b∥c.又∵b⊄β,c⊂β,∴b∥β.又∵b⊂α,α∩β=l,∴b∥l.又∵a∥b,∴a∥l.知识点四平面与平面平行的判定1.平面与平面平行的判定(1)文字语言:如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行.(2)符号语言:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥α.(3)图形语言:如图所示.例题4.如图,在正方体ABCDA1B1C1D1中,M、E、F、N分别是A1B1、B1C1、C1D1、D1A1的中点.求证:(1)E、F、B、D四点共面;(2)平面MAN∥平面EFDB.【解析】(1)连接B1D1,∵E、F分别是边B1C1、C1D1的中点,∴EF∥B1D1.而BD∥B1D1,∴BD∥EF.∴E、F、B、D四点共面.(2)易知MN∥B1D1,B1D1∥BD,∴MN∥BD.又MN⊄平面EFDB,BD⊂平面EFDB.∴MN∥平面EFDB.连接MF.∵M、F分别是A1B1、C1D1的中点,∴MF∥A1D1,MF=A1D1.∴MF∥AD且MF=AD.∴四边形ADFM是平行四边形,∴AM∥DF.又AM⊄平面BDFE,DF⊄平面BDFE,∴AM∥平面BDFE.又∵AM∩MN=M,∴平面MAN∥平面EFDB.知识点五平面与平面平行的性质1.平面与平面平行的性质定理(1)文字语言:两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行.(2)符号语言:α∥β,α∩γ=a,β∩γ=b⇒a∥b.(3)图形语言:如图所示.(4)作用:证明两直线平行.例题5 如图,已知平面α∥平面β,P ∉α且P ∉β,过点P 的直线m 与α、β分别交于A 、C ,过点P 的直线n 与α、β分别交于B 、D ,且P A =6,AC =9,PD =8,求BD 的长.【解析】 因为AC ∩BD =P ,所以经过直线AC 与BD 可确定平面PCD ,因为α∥β,α∩平面PCD =AB ,β∩平面PCD =CD ,所以AB ∥CD .所以P A AC =PB BD ,即69=8-BDBD . 所以BD =245.五 易错点分析易错一 等角定理的运用例题5.已知角α和角β的两边分别平行且一组边方向相同,另一组边的方向相反,若α=45°,则β= . 【答案】135°【解析】由等角定理可知β=135°. 误区警示利用等角定理求角的大小,应注意两角的边的方向之间的关系。
空间点、直线、平面之间的位置关系一、知识概述本节内容主要是空间点、直线、平面之间的位置关系,在认识过程中,可以进一步提高同学们的空间想象能力,发展推理能力.通过对实际模型的认识,学会将文字语言转化为图形语言和符号语言,以具体的长方体中的点、线、面之间的关系作为载体,使同学们在直观感知的基础上,认识空间中点、线、面之间的位置关系,点、线、面的位置关系是立体几何的主要研究对象,同时也是空间图形最基本的几何元素.二、重难点知识归纳1、平面(1)平面概念的理解直观的理解:桌面、黑板面、平静的水面等等都给人以平面的直观的印象,但它们都不是平面,而仅仅是平面的一部分.抽象的理解:平面是平的,平面是无限延展的,平面没有厚薄.(2)平面的表示法①图形表示法:通常用平行四边形来表示平面,有时根据实际需要,也用其他的平面图形来表示平面.②字母表示:常用等希腊字母表示平面.(3)涉及本部分内容的符号表示有:①点A在直线l内,记作;②点A不在直线l内,记作;③点A在平面内,记作;④点A不在平面内,记作;⑤直线l在平面内,记作;⑥直线l不在平面内,记作;注意:符号的使用与集合中这四个符号的使用的区别与联系.(4)平面的基本性质公理1:如果一条直线的两个点在一个平面内,那么这条直线上的所有点都在这个平面内.符号表示为:.注意:如果直线上所有的点都在一个平面内,我们也说这条直线在这个平面内,或者称平面经过这条直线.公理2:过不在一条直线上的三点,有且只有一个平面.符号表示为:直线AB存在唯一的平面,使得.注意:“有且只有”的含义是:“有”表示存在,“只有”表示唯一,不能用“只有”来代替.此公理又可表示为:不共线的三点确定一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号表示为:.注意:两个平面有一条公共直线,我们说这两个平面相交,这条公共直线就叫作两个平面的交线.若平面、平面相交于直线l,记作.公理的推论:推论1:经过一条直线和直线外的一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.空间直线(1)空间两条直线的位置关系①相交直线:有且仅有一个公共点,可表示为;②平行直线:在同一个平面内,没有公共点,可表示为a//b;③异面直线:不同在任何一个平面内,没有公共点.(2)平行直线公理4:平行于同一条直线的两条直线互相平行.符号表示为:设a、b、c是三条直线,.定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.(3)两条异面直线所成的角注意:①两条异面直线a,b所成的角的范围是(0°,90°].②两条异面直线所成的角与点O的选择位置无关,这可由前面所讲过的“等角定理”直接得出.③由两条异面直线所成的角的定义可得出异面直线所成角的一般方法:(i)在空间任取一点,这个点通常是线段的中点或端点.(ii)分别作两条异面直线的平行线,这个过程通常采用平移的方法来实现.(iii)指出哪一个角为两条异面直线所成的角,这时我们要注意两条异面直线所成的角的范围.3.空间直线与平面直线与平面位置关系有且只有三种:(1)直线在平面内:有无数个公共点;(2)直线与平面相交:有且只有一个公共点;(3)直线与平面平行:没有公共点.4.平面与平面两个平面之间的位置关系有且只有以下两种:(1)两个平面平行:没有公共点;(2)两个平面相交:有一条公共直线.三、典型例题剖析例1.在正方体的八个顶点中,共可确定()个平面.A.6B.12C.18D.20解析:正方体有六个面,这八个顶点确定6个平面;每两条平行的边(不在正方体的面上)所在的直线确定一个面,共6个面(上下,前后,左右各两个);对应每一个顶点有三个点确定的平面共有8个平面.所以由正方体的八个顶点共可确定6+6+8=20个平面.故选D.例2.设a、b、c是空间中三条直线,下面给出四个命题,下列命题中,真命题的个数是()①如果,则a//c;②若a、b相交,b、c相交,则a、c相交;③若a、b共面,b、c共面,则a、c共面;④若a、b异面,b、c异面,则a、c异面.A.0B.1C.2D.3解析:对于①,在这两个条件下,直线a和c还可以异面,故为假命题.对于②,a、c不一定相交,也可以平行,也可以异面,故也为假命题.对于③,a、c还可以异面,假命题.对于④,a、c可以平行,也可以相交,则不一定异面,还是假命题.故真命题个数为0,选A.例3.一条直线与三条平行直线都相交,求证:这四条直线共面.已知:a//b//c,.求证:直线a,b,c,l共面.分析:先将已知和求证改写成符号语言.证明四线共面,可先由其中的两条直线确定一个平面,然后证明其余的直线均在此平面内.也可先由其中两条直线确定一个平面,另两条直线确定平面,再证平面重合.证明:,a、b确定一个平面,设为.又.又即.同理b、c确定一个平面,.平面与都过两相交直线b与l.两相交直线确定一个平面,与重合.故l与a、b、c共面.例4.如图,的三边AB,BC,AC平面相交,交点分别为P,Q,R,求证:P,Q,R三点在一条直线上.分析:欲证明P,Q,R三点在一条直线上,只需证明P,Q,R三点是两个平面的公共点,由公理2知,P,Q,R三点一定在两个平面的交线上.证明:如图,A,B,C三点确定的为平面ABC,直线AB在平面ABC内,直线与平面的交点为P,所以点P在平面ABC内,也在平面内,也就是P是平面ABC与平面的公共点,故平面与平面ABC相交,设其交线为l,则.同理,所以P,Q,R在一条直线上.它们都在平面与平面ABC的交线l上.点拨:在立体几何中,证明三个点(或更多的点)共线通常所使用的方法都是利用公理2,证明这些点是两个平面的公共点.例5.已知:a、b是两条异面直线,直线a上的两点A、B的距离为6,直线b上的两点C、D的距离为8,AC、BD的中点分别为M、N,且MN=5.求异面直线a、b所成的角.分析:本题的关键在于依据异面直线所成角的定义构造和异面直线a、b平行的两条相交直线,然后把它们归纳到某一三角形中求解.解:如图所示,连接BC,并取BC的中点O,连接OM、ON.OM、ON分别是和的中位线,OM//AB,ON//CD,即OM//a,ON//b.OM、ON所成的锐角或直角是异面直线a、b所成的角.又AB=6,CD=8,OM=3,ON=4.在中,又MN=5,,.故异面直线a、b所成的角是.。
点线面位置关系典型例题一,直线与平面平行的判定与性质典型例题一例1 简述下列问题的结论,并画图说明:(1)直线⊂a 平面α,直线A a b = ,则b 和α的位置关系如何?(2)直线α⊂a ,直线a b //,则直线b 和α的位置关系如何?分析:(1)由图(1)可知:α⊂b 或A b =α ;(2)由图(2)可知:α//b 或α⊂b .说明:此题是考查直线与平面位置关系的例题,要注意各种位置关系的画法与表示方法. 典型例题二例2 P 是平行四边形ABCD 所在平面外一点,Q 是PA 的中点,求证://PC 平面BDQ . 分析:要证明平面外的一条直线和该平面平行,只要在该平面内找到一条直线和已知直线平行就可以了.证明:如图所示,连结AC ,交BD 于点O ,∵四边形ABCD 是平行四边形∴CO AO =,连结OQ ,则OQ 在平面BDQ 内,且OQ 是APC ∆的中位线,∴OQ PC //.∵PC 在平面BDQ 外,∴//PC 平面BDQ . 说明:应用线面平行的判定定理证明线面平行时,关键是在平面内找一条直线与已知直线平行,怎样找这一直线呢?由于两条直线首先要保证共面,因此常常设法过已知直线作一平面与已知平面相交,如果能证明已知直线和交线平行,那么就能够马上得到结论.这一个证明线面平行的步骤可以总结为:过直线作平面,得交线,若线线平行,则线面平行.典型例题三例3 经过两条异面直线a ,b 之外的一点P ,可以作几个平面都与a ,b 平行?并证明你的结论.分析:可考虑P 点的不同位置分两种情况讨论.解:(1)当P 点所在位置使得a ,P (或b ,P )本身确定的平面平行于b (或a )时,过P 点再作不出与a ,b 都平行的平面;(2)当P 点所在位置a ,P (或b ,P )本身确定的平面与b (或a )不平行时,可过点P 作a a '//,b b //'.由于a ,b 异面,则a ',b '不重合且相交于P .由于P b a ='' ,a ',b '确定的平面α,则由线面平行判定定理知:α//a ,α//b .可作一个平面都与a ,b 平行. 故应作“0个或1个”平面.说明:本题解答容易忽视对P 点的不同位置的讨论,漏掉第(1)种情况而得出可作一个平面的错误结论.可见,考虑问题必须全面,应区别不同情形分别进行分类讨论.典型例题四例4 平面外的两条平行直线中的一条平行于这个平面,那么另一条直线也平行于这个平面. 已知:直线b a //,//a 平面α,α⊄b .求证:α//b .证明:如图所示,过a 及平面α内一点A 作平面β.设c =βα ,∵α//a ,∴c a //.又∵b a //,∴c b //.∵α⊄b ,α⊂c ,∴α//b .说明:根据判定定理,只要在α内找一条直线b c //,根据条件α//a ,为了利用直线和平面平行的性质定理,可以过a 作平面β与α相交,我们常把平面β称为辅助平面,它可以起到桥梁作用,把空间问题向平面问题转化.和平面几何中添置辅助线一样,在构造辅助平面时,首先要确认这个平面是存在的,例如,本例中就是以“直线及直线外一点确定一个平面”为依据来做出辅助平面的.典型例题五例5 已知四面体ABC S -的所有棱长均为a .求:(1)异面直线AB SC 、的公垂线段EF 及EF 的长;(2)异面直线EF 和SA 所成的角.分析:依异面直线的公垂线的概念求作异面直线ABSC 、的公垂线段,进而求出其距离;对于异面直线所成的角可采取平移构造法求解.解:(1)如图,分别取AB SC 、的中点F E 、,连结CF SF 、.由已知,得SAB ∆≌CAB ∆.∴CF SF =,E 是SC 的中点,∴SC EF ⊥.同理可证AB EF ⊥∴EF 是AB SC 、的公垂线段.在SEF Rt ∆中,a SF 23=,a SE 21=. ∴22SE SF EF -=a a a 22414322=-. (2)取AC 的中点G ,连结EG ,则SA EG //.∴EF 和GE 所成的锐角或直角就是异面直线EF 和SA 所成的角.连结FG ,在EFG Rt ∆中,a EG 21=,a GF 21=,a EF 22=. 由余弦定理,得 22222124142412cos 222222=⋅⋅-+=⋅⋅-+=∠a a a a a EF EG GF EF EG GEF . ∴45=∠GEF .故异面直线EF 和SA 所成的角为 45.说明:对于立体几何问题要注意转化为平面问题来解决,同时要将转化过程简要地写出来,然后再求值.典型例题六例6 如果一条直线与一个平面平行,那么过这个平面内的一点且与这条直线平行的直线必在这个平面内.已知:直线α//a ,α∈B ,b B ∈,a b //.求证:α⊂b .分析:由于过点B 与a 平行的直线是惟一存在的,因此,本题就是要证明,在平面α外,不存在过B 与a 平行的直线,这是否定性命题,所以使用反证法.证明:如图所示,设α⊄b ,过直线a 和点B 作平面β,且'b =αβ .∵α//a ,∴α//'b .这样过B 点就有两条直线b 和'b 同时平行于直线a ,与平行公理矛盾.∴b 必在α内.说明:(1)本例的结论可以直接作为证明问题的依据.(2)本例还可以用同一法来证明,只要改变一下叙述方式.如上图,过直线a 及点B 作平面β,设'b =αβ .∵α//a ,∴α//'b . 这样,'b 与b 都是过B 点平行于a 的直线,根据平行公理,这样的直线只有一条, ∴b 与'b 重合.∵α⊂'b ,∴α⊂b .典型例题七例7 下列命题正确的个数是( ).(1)若直线l 上有无数个点不在平面α内,则α//l ;(2)若直线l 平行于平面α内的无数条直线,则α//l ;(3)若直线l 与平面α平行,则l 与平面α内的任一直线平行;(4)若直线l 在平面α外,则α//l .A .0个B .1个C .2个D .3个分析:本题考查的是空间直线与平面的位置关系.对三种位置关系定义的准确理解是解本题的关键.要注意直线和平面的位置关系除了按照直线和平面公共点的个数来分类,还可以按照直线是否在平面内来分类.解:(1)直线l 上有无数个点不在平面α内,并没有说明是所在点都不在平面α内,因而直线可能与平面平行亦有可能与直线相交.解题时要注意“无数”并非“所有”.(2)直线l 虽与α内无数条直线平行,但l 有可能在平面α内,所以直线l 不一定平行α.(3)这是初学直线与平面平行的性质时常见错误,借助教具我们很容易看到.当α//l 时,若α⊂m 且l m //,则在平面α内,除了与m 平行的直线以外的每一条直线与l 都是异面直线.(4)直线l 在平面α外,应包括两种情况:α//l 和l 与α相交,所以l 与α不一定平行.故选A .说明:如果题中判断两条直线与一平面之间的位置关系,解题时更要注意分类要完整,考虑要全面.如直线l 、m 都平行于α,则l 与m 的位置关系可能平行,可能相交也有可能异面;再如直线m l //、α//l ,则m 与α的位置关系可能是平行,可能是m 在α内.典型例题八例8 如图,求证:两条平行线中的一条和已知平面相交,则另一条也与该平面相交. 已知:直线b a //,P a =α平面 .求证:直线b 与平面α相交.分析:利用b a //转化为平面问题来解决,由b a //可确定一辅助平面β,这样可以把题中相关元素集中使用,既创造了新的线面关系,又将三维降至二维,使得平几知识能够运用. 解:∵b a //,∴a 和b 可确定平面β.∵P a =α ,∴平面α和平面β相交于过点P 的直线l .∵在平面β内l 与两条平行直线a 、b 中一条直线a 相交,∴l 必定与直线b 也相交,不妨设Q l b = ,又因为b 不在平面α内(若b 在平面α内,则α和β都过相交直线b 和l ,因此α与β重合,a 在α内,和已知矛盾).所以直线b 和平面α相交.说明:证明直线和平面相交的常用方法有:证明直线和平面只有一个公共点;否定直线在平面内以及直线和平面平行;用此结论:一条直线如果经过平面内一点,又经过平面外一点,则此直线必与平面相交(此结论可用反证法证明).典型例题九例9 如图,求证:经过两条异面直线中的一条,有且仅有一个平面与另一条直线平行. 已知:a 与b 是异面直线.求证:过b 且与a 平行的平面有且只有一个.分析:本题考查存在性与唯一性命题的证明方法.解题时要理解“有且只有”的含义.“有”就是要证明过直线b 存在一个平面α,且α//a ,“只有”就是要证满足这样条件的平面是唯一的.存在性常用构造法找出(或作出)平面,唯一性常借助于反证法或其它唯一性的结论. 证明:(1)在直线b 上任取一点A ,由点A 和直线a 可确定平面β.在平面β内过点A 作直线'a ,使a a //',则'a 和b 为两相交直线, 所以过'a 和b 可确定一平面α.∵α⊂b ,a 与b 为异面直线,∴α⊄a .又∵'//a a ,α⊂'a , ∴α//a .故经过b 存在一个平面α与a 平行.(2)如果平面γ也是经过b 且与a 平行的另一个平面,由上面的推导过程可知γ也是经过相交直线b 和'a 的. 由经过两相交直线有且仅有一个平面的性质可知,平面α与γ重合,即满足条件的平面是唯一的.说明:对于两异面直线a 和b ,过b 存在一平面α且与a 平行,同样过a 也存在一平面β且与b 平行.而且这两个平面也是平行的(以后可证).对于异面直线a 和b 的距离,也可转化为直线a 到平面α的距离,这也是求异面直线的距离的一种方法.典型例题十例10 如图,求证:如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行. 已知:l =βα ,α//a ,β//a ,求证:l a //.分析:本题考查综合运用线面平行的判定定理和性质定理的能力.利用线面平行的性质定理,可以先证明直线a 分别和两平面的某些直线平行,即线面平行可得线线平行.然后再用线面平行的判定定理和性质定理来证明a 与l 平行.证明:在平面α内取点P ,使l P ∉,过P 和直线a 作平面γ交α于b .∵α//a ,γ⊂a ,b =αγ ,∴b a //.同理过a 作平面δ交β于c .∵β//a ,δ⊂a ,c =βδ ,∴c a //.∴c b //.∵β⊄b ,β⊂c ,∴β//b .又∵α⊂b ,l =βα ,∴l b //.又∵b a //,∴l a //.另证:如图,在直线l 上取点M ,过M 点和直线a 作平面和α相交于直线1l ,和β相交于直线2l .∵α//a ,∴1//l a ,∵β//a ,∴2//l a ,但过一点只能作一条直线与另一直线平行.∴直线1l 和2l 重合.又∵α⊂1l ,β⊂2l ,∴直线1l 、2l 都重合于直线l ,∴l a //.说明:“线线平行”与“线面平行”在一定条件下是可以相互转化的,这种转化的思想在立体几何中非常重要.典型例题十一例11 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各取一点P 、Q ,且DQ AP =.求证://PQ 面BCE .分析:要证线面平行,可以根据判定定理,转化为证明线线平行.关键是在平面BCE 中如何找一直线与PQ 平行.可考察过PQ 的平面与平面BCE 的交线,这样的平面位置不同,所找的交线也不同.证明一:如图,在平面ABEF 内过P 作AB PM //交BE 于M ,在平面ABCD 内过Q 作AB QN //交BC 于N ,连结MN .∵AB PM //,∴AE PE AB PM =. 又∵CD AB QN ////,∴BD BQ DC QN =,即BD BQ AB QN =.∵正方形ABEF 与ABCD 有公共边AB ,∴DB AE =.∵DQ AP =,∴BQ PE =.∴QN PM =.又∵AB PM //,AB QN //,∴QN PM //.∴四边形PQNM 为平行四边形.∴MN PQ //.又∵⊂MN 面BCE ,∴//PQ 面BCE .证明二:如图,连结AQ 并延长交BC 于S ,连结ES .∵AD BS //,∴QB DQ QS AQ =. 又∵正方形ABEF 与正方形ABCD 有公共边AB ,∴DB AE =,∵DQ AP =,∴QB PE =.∴QS AQ QBDQ PE AP ==. ∴ES PQ //,又∵⊂ES 面BEC ,∴//PQ 面BEC .说明:从本题中我们可以看出,证线面平行的根本问题是要在平面内找一直线与已知直线平行,此时常用中位线定理、成比例线段、射影法、平行移动、补形等方法,具体用何种方法要视条件而定.此题中我们可以把“两个有公共边的正方形”这一条件改为“两个全等的矩形”,那么题中的结论是否仍然成立?典型例题十二例12 三个平面两两相交于三条交线,证明这三条交线或平行、或相交于一点.已知:a =βα ,b =γβ ,c =αγ .求证:a 、b 、c 互相平行或相交于一点.分析:本题考查的是空间三直线的位置关系,我们可以先从熟悉的两条交线的位置关系入手,根据共面的两条直线平行或相交来推论三条交线的位置关系.证明:∵a =βα ,b =γβ ,∴β⊂b a 、.∴a 与b 平行或相交.①若b a //,如图∵γ⊂b ,γ⊄a ,∴γ//a .又∵c =αγ ,α⊂a ,∴c a //.∴c b a ////.②若a 与b 相交,如图,设O b a = ,∴a O ∈,b O ∈.又∵βα =a ,γβ =b .∴α∈O ,γ∈O又∵c =γα ,∴c O ∈.∴直线a 、b 、c 交于同一点O .说明:这一结论常用于求一个几何体的截面与各面交线问题,如正方体ABCD 中, M 、N 分别是1CC 、11B A 的中点,画出点D 、M 、N 的平面与正方体各面的交线,并说明截面多边形是几边形?典型例题十三例13 已知空间四边形ABCD ,AC AB ≠,AE 是ABC ∆的BC 边上的高,DF 是BCD ∆的BC 边上的中线,求证:AE 和DF 是异面直线.证法一:(定理法)如图由题设条件可知点E 、F 不重合,设BCD ∆所在平面α.∴⇒⎪⎪⎩⎪⎪⎨⎧∉∈∉⊂DF E E A DF αααAE 和DF 是异面直线. 证法二:(反证法)若AE 和DF 不是异面直线,则AE 和DF 共面,设过AE 、DF 的平面为β.(1)若E 、F 重合,则E 是BC 的中点,这与题设AC AB ≠相矛盾.(2)若E 、F 不重合,∵EF B ∈,EF C ∈,β⊂EF ,∴β⊂BC .∵β∈A ,β∈D ,∴A 、B 、C 、D 四点共面,这与题设ABCD 是空间四边形相矛盾.综上,假设不成立.故AE 和DF 是异面直线.说明:反证法不仅应用于有关数学问题的证明,在其他方面也有广泛的应用.首先看一个有趣的实际问题:“三十六口缸,九条船来装,只准装单,不准装双,你说怎么装?”对于这个问题,同学们可试验做一做.也许你在试验几次后却无法成功时,觉得这种装法的可能性是不存在的.那么你怎样才能清楚地从理论上解释这种装法是不可能呢?用反证法可以轻易地解决这个问题.假设这种装法是可行的,每条船装缸数为单数,则9个单数之和仍为单数,与36这个双数矛盾.只须两句话就解决了这个问题.典型例题十四例14 已知AB 、BC 、CD 是不在同一平面内的三条线段,E 、F 、G 分别是AB 、BC 、CD 的中点,求证:平面EFG 和AC 平行,也和BD 平行.分析:欲证明AC //平面EFG ,根据直线和平面平等的判定定理只须证明AC 平行平面EFG 内的一条直线,由图可知,只须证明EF AC //.证明:如图,连结AE 、EG 、EF 、GF .在ABC ∆中,E 、F 分别是AB 、BC 的中点.∴EF AC //.于是AC //平面EFG .同理可证,BD //平面EFG .说明:到目前为止,判定直线和平面平行有以下两种方法:(1)根据直线和平面平行定义;(2)根据直线和平面平行的判定定理.典型例题十五例15 已知空间四边形ABCD ,P 、Q 分别是ABC ∆和BCD ∆的重心,求证:ACD PQ 平面//.分析:欲证线面平行,须证线线平行,即要证明PQ 与平面ACD 中的某条直线平行,根据条件,此直线为AD ,如图.证明:取BC 的中点E .∵P 是ABC ∆的重心,连结AE ,则1∶3=PE AE∶,连结DE , ∵Q 为BCD ∆的重心,∴1∶3=QE DE∶, ∴在AED ∆中,AD PQ //.又ACD AD 平面⊂,ACD PQ 平面⊄,∴ACD PQ 平面//.说明:(1)本例中构造直线AD 与PQ 平行,是充分借助于题目的条件:P 、Q 分别是ABC ∆和BCD ∆的重心,借助于比例的性质证明AD PQ //,该种方法经常使用,望注意把握.(2)“欲证线面平行,只须证线线平行”.判定定理给我们提供了一种证明线面平等的方法.根据问题具体情况要熟练运用.典型例题十六例16 正方体1111D C B A ABCD -中,E 、G 分别是BC 、11D C 的中点如下图.求证:D D BB EG 11//平面.分析:要证明D D BB EG 11//平面,根据线面平等的判定定理,需要在平面D D BB 11内找到与EG 平行的直线,要充分借助于E 、G 为中点这一条件.证明:取BD 的中点F ,连结EF 、F D 1.∵E 为BC 的中点,∴EF 为BCD ∆的中位线,则DC EF //,且CD EF 21=.∵G 为11D C 的中点,∴CD G D //1且CD G D 211=,∴G D EF 1//且G D EF 1=,∴四边形G EFD 1为平行四边形,∴EG F D //1,而111B BDD F D 平面⊂,11B BDD EG 平面⊄,∴11//B BDD EG 平面.典型例题十七例17 如果直线α平面//a ,那么直线a 与平面α内的( ).A .一条直线不相交B .两条相交直线不相交C .无数条直线不相交D .任意一条直线都不相交解:根据直线和平面平行定义,易知排除A 、B .对于C ,无数条直线可能是一组平行线,也可能是共点线,∴C 也不正确,应排除C .与平面α内任意一条直线都不相交,才能保证直线a 与平面α平行,∴D 正确.∴应选D .说明:本题主要考查直线与平面平行的定义.典型例题十八例18 分别和两条异面直线平行的两条直线的位置关系是( ).A .一定平行B .一定相交C .一定异面D .相交或异面解:如图中的甲图,分别与异面直线a 、b 平行的两条直线c 、d 是相交关系;如图中的乙图,分别与异面直线a 、b 平行的两条直线c 、d 是相交关系.综上,可知应选D .说明:本题主要考查有关平面、线面平行等基础知识以及空间想象能力.典型例题十九例19 a 、b 是两条异面直线,下列结论正确的是( ).A .过不在a 、b 上的任一点,可作一个平面与a 、b 平行B .过不在a 、b 上的任一点,可作一个直线与a 、b 相交C .过不在a 、b 上的任一点,可作一个直线与a 、b 都平行D .过a 可以并且只可以作一平面与b 平行解:A 错,若点与a 所确定的平面与b 平行时,就不能使这个平面与α平行了.B 错,若点与a 所确定的平面与b 平等时,就不能作一条直线与a ,b 相交.C 错,假如这样的直线存在,根据公理4就可有b a //,这与a ,b 异面矛盾.D 正确,在a 上任取一点A ,过A 点做直线b c //,则c 与a 确定一个平面与b 平行,这个平面是惟一的.∴应选D.说明:本题主要考查异面直线、线线平行、线面平行等基本概念.典型例题二十例20 (1)直线b a //,α平面//a ,则b 与平面α的位置关系是_____________.(2)A 是两异面直线a 、b 外的一点,过A 最多可作___________个平面同时与a 、b 平行. 解:(1)当直线b 在平面α外时,α//b ;当直线b 在平面α内时,α⊂b .∴应填:α//b 或α⊂b .(2)因为过A 点分别作a ,b 的平行线只能作一条,(分别称'a ,'b )经过'a ,'b 的平面也是惟一的.所以只能作一个平面;还有不能作的可能,当这个平面经过a 或b 时,这个平面就不满足条件了.∴应填:1.说明:考虑问题要全面,各种可能性都要想到,是解答本题的关键.典型例题二十一例21 如图,α//a ,A 是α的另一侧的点,a D C B ∈,,,线段AB ,AC ,AD 交α于E ,F ,G ,若4=BD ,4=CF ,5=AF ,则EG =___________.解:∵α//a ,ABD EG 平面 α=.∴EG a //,即EG BD //, ∴FC AF AF BD EG CD BC FG EF AC AF CD FG BC EF +==++===.则9204545=+⨯=+⋅=FC AF BD AF EG .∴应填:920.说明:本题是一道综合题,考查知识主要有:直线与平面平行性质定理、相似三角形、比例性质等.同时也考查了综合运用知识,分析和解决问题的能力.二,面面平行的性质与判定典型例题一例1:已知正方体1111-D C B A ABCD .求证:平面//11D AB 平面BD C 1.证明:∵1111-D C B A ABCD 为正方体,∴B C A D 11//,又 ⊂B C 1平面BD C 1,故 //1A D 平面BD C 1.同理 //11B D 平面BD C 1.又 1111D B D A D = ,∴ 平面//11D AB 平面BD C 1.说明:上述证明是根据判定定理1实现的.本题也可根据判定定理2证明,只需连接C A 1即可,此法还可以求出这两个平行平面的距离.典型例题二例2:如图,已知βα//,a A ∈,α∈A β//a .求证:α⊂a .证明:过直线a 作一平面γ,设1a =αγ ,b =γβ .∵βα//∴b a //1又β//a∴b a //在同一个平面γ内过同一点A 有两条直线1,a a 与直线b 平行∴a 与1a 重合,即α⊂a .说明:本题也可以用反证法进行证明.典型例题三例3:如果一条直线与两个平行平面中的一个相交,那么它和另一个也相交.已知:如图,βα//,A l =α .求证:l 与β相交.证明:在β上取一点B ,过l 和B 作平面γ,由于γ与α有公共点A ,γ与β有公共点B . ∴γ与α、β都相交.设a =αγ ,b =γβ .∵βα//∴b a //又l 、a 、b 都在平面γ内,且l 和a 交于A .∵l 与b 相交.所以l 与β相交.典型例题四例4:已知平面βα//,AB ,CD 为夹在a ,β间的异面线段,E 、F 分别为AB 、CD 的中点.求证: α//EF ,β//EF .证明:连接AF 并延长交β于G .∵F CD AG =∴ AG ,CD 确定平面γ,且AC =αγ ,DG =βγ .∵βα//,所以 DG AC //,∴ GDF ACF ∠=∠,又 DFG AFC ∠=∠,DF CF =,∴ △ACF ≌△DFG .∴ FG AF =.又 BE AE =,∴ BG EF //,β⊂BG .故 β//EF .同理α//EF说明:本题还有其它证法,要点是对异面直线的处理.典型例题六例6 如图,已知矩形ABCD 的四个顶点在平面上的射影分别为1A 、1B 、1C 、1D ,且1A 、1B 、1C 、1D 互不重合,也无三点共线.求证:四边形1111D C B A 是平行四边形.证明:∵α⊥1AA , α⊥1DD∴11//DD AA不妨设1AA 和1DD 确定平面β.同理1BB 和1CC 确定平面γ.又11//BB AA ,且γ⊂1BB∴γ//1AA同理γ//AD又A AD AA = 1∴γβ//又11D A =βα ,11C B =γα∴1111//C B D A .同理1111//D C B A .∴四边形1111D C B A 是平行四边形.典型例题七例7 设直线l 、m ,平面α、β,下列条件能得出βα//的是( ).A .α⊂l ,α⊂m ,且β//l ,β//mB .α⊂l ,β⊂m ,且m l //C .α⊥l ,β⊥m ,且m l //D .α//l ,β//m ,且m l //分析:选项A 是错误的,因为当m l //时,α与β可能相交.选项B 是错误的,理由同A .选项C 是正确的,因为α⊥l ,l m //,所以α⊥m ,又∵β⊥m ,∴βα//.选项D 也是错误的,满足条件的α可能与β相交.答案:C说明:此题极易选A ,原因是对平面平行的判定定理掌握不准确所致.本例这样的选择题是常见题目,要正确得出选择,需要有较好的作图能力和对定理、公理的准确掌握、深刻理解,同时要考虑到各种情况.典型例题八例8 设平面α⊥平面γ,平面β⊥平面γ,且α、β分别与γ相交于a 、b ,b a //.求证:平面α//平面β.分析:要证明两平面平行,只要设法在平面α上找到两条相交直线,或作出相交直线,它们分别与β平行(如图).证明:在平面α内作直线PQ ⊥直线a ,在平面β内作直线MN ⊥直线b .∵平面α⊥平面γ,∴PQ ⊥平面γ,MN ⊥平面γ,∴MN PQ //.又∵p a //,Q a PQ = ,N b MN = ,∴平面α//平面β.说明:如果在α、β内分别作γ⊥PQ ,γ⊥MN ,这样就走了弯路,还需证明PQ 、MN 在α、β内,如果直接在α、β内作a 、b 的垂线,就可推出MN PQ //.由面面垂直的性质推出“线面垂直”,进而推出“线线平行”、“线面平行”,最后得到“面面平行”,最后得到“面面平行”.其核心是要形成应用性质定理的意识,在立体几何证明中非常重要.典型例题九例9 如图所示,平面α//平面β,点A 、C α∈,点β∈D B 、,a AB =是α、β的公垂线,CD 是斜线.若b BD AC ==,c CD =,M 、N 分别是AB 和CD 的中点,(1)求证:β//MN ;(2)求MN 的长.分析:(1)要证β//MN ,取AD 的中点P ,只要证明MN 所在的平面β//PMN .为此证明β//PM ,β//PN 即可.(2)要求MN 之长,在CMA ∆中,CM 、CN 的长度易知,关键在于证明CD MN ⊥,从而由勾股定理可以求解.证明:(1)连结AD ,设P 是AD 的中点,分别连结PM 、PN .∵M 是AB 的中点,∴BD PM //.又β⊂BD ,∴β//PM .同理∵N 是CD 的中点,∴AC PN //.∵α⊂AC ,∴α//PN .∵βα//,P PM PN = ,∴平面β//PMN .∵MN ⊂平面PMN ,∴β//MN .(2)分别连结MC 、MD .∵b BD AC ==,a BM AM 21==,又∵AB 是α、β的公垂线,∴︒=∠=∠90DBM CAM ,∴ACM Rt ∆≌BDM Rt ∆,∴DM CM =,∴DMC ∆是等腰三角形.又N 是CD 的中点,∴CD MN ⊥.在CMN Rt ∆中,22222421c a b CN CM MN -+=-=.说明:(1)证“线面平行”也可以先证“面面平行”,然后利用面面平行的性质,推证“线面平行”,这是一种以退为进的解题策略.(2)空间线段的长度,一般通过构造三角形、然后利用余弦定理或勾股定理来求解.(3)面面平行的性质:①面面平行,则线面平行;②面面平行,则被第三个平面所截得的交线平行.典型例题十例10 如果平面α内的两条相交直线与平面β所成的角相等,那么这两个平面的位置关系是__________.分析:按直线和平面的三种位置关系分类予以研究.解:设a 、b 是平面α内两条相交直线.(1)若a 、b 都在平面β内,a 、b 与平面β所成的角都为︒0,这时α与β重合,根据教材中规定,此种情况不予考虑.(2)若a 、b 都与平面β相交成等角,且所成角在)90,0(︒︒内;∵a 、b 与β有公共点,这时α与β相交.若a 、b 都与平面β成︒90角,则b a //,与已知矛盾.此种情况不可能.(3)若a 、b 都与平面β平行,则a 、b 与平面β所成的角都为︒0,α内有两条直线与平面β平行,这时βα//.综上,平面α、β的位置关系是相交或平行.典型例题十一例11 试证经过平面外一点有且只有一个平面和已知平面平行.已知:α平面∉A ,求证:过A 有且只有一个平面αβ//.分析:“有且只有”要准确理解,要先证这样的平面是存在的,再证它是惟一的,缺一不可. 证明:在平面α内任作两条相交直线a 和b ,则由α∉A 知,a A ∉,b A ∉.点A 和直线a 可确定一个平面M ,点A 和直线b 可确定一个平面N .在平面M 、N 内过A 分别作直线a a //'、b b //',故'a 、'b 是两条相交直线,可确定一个平面β. ∵α⊄'a ,α⊂a ,a a //',∴α//'a .同理α//'b .又β⊂'a ,β⊂'b ,A b a ='' ,∴αβ//. 所以过点A 有一个平面αβ//.假设过A 点还有一个平面αγ//,则在平面α内取一直线c ,c A ∉,点A 、直线c 确定一个平面ρ,由公理2知: m =ρβ ,n =ργ ,∴c m //,c n //,又m A ∈,n A ∈,这与过一点有且只有一条直线与已知直线平行相矛盾,因此假设不成立,所以平面β只有一个.所以过平面外一点有且只有一个平面与已知平面平行.典型例题十二例12 已知点S 是正三角形ABC 所在平面外的一点,且SC SB SA ==,SG 为SAB ∆上的高,D 、E 、F 分别是AC 、BC 、SC 的中点,试判断SG 与平面DEF 内的位置关系,并给予证明分析1:如图,观察图形,即可判定//SG 平面DEF ,要证明结论成立,只需证明SG 与平面DEF 内的一条直线平行.观察图形可以看出:连结CG 与DE 相交于H ,连结FH ,FH 就是适合题意的直线. 怎样证明FH SG //?只需证明H 是CG 的中点.证法1:连结CG 交DE 于点H ,∵DE 是ABC ∆的中位线,∴AB DE //.在ACG ∆中,D 是AC 的中点,且AG DH //,∴H 为CG 的中点.∵FH 是SCG ∆的中位线,∴SG FH //.又SG ⊄平面DEF ,FH ⊂平面DEF ,∴//SG 平面DEF .分析2:要证明//SG 平面DEF ,只需证明平面SAB //平面DEF ,要证明平面DEF //平面SAB ,只需证明DF SA //,EF SB //而DF SA //,EF SB //可由题设直接推出. 证法2:∵EF 为SBC ∆的中位线,∴SB EF //.∵⊄EF 平面SAB ,⊂SB 平面SAB ,∴//EF 平面SAB .同理://DF 平面SAB ,F DF EF = ,∴平面SAB //平面DEF ,又∵⊂SG 平面SAB ,∴//SG 平面DEF .典型例题十三例13 如图,线段PQ 分别交两个平行平面α、β于A 、B 两点,线段PD 分别交α、β于C 、D 两点,线段QF 分别交α、β于F 、E 两点,若9=PA ,12=AB ,12=BQ ,ACF ∆的面积为72,求BDE ∆的面积.分析:求BDE ∆的面积,看起来似乎与本节内容无关,事实上,已知ACF ∆的面积,若BDE ∆与ACF ∆的对应边有联系的话,可以利用ACF ∆的面积求出BDE ∆的面积.解:∵平面AF QAF =α ,平面BE QAF =β ,又∵βα//,∴BE AF //.同理可证:BD AC //,∴FAC ∠与EBD ∠相等或互补,即EBD FAC ∠=∠sin sin .由BE FA //,得212412∶∶∶∶===QA QB AF BE, ∴AF BE 21=由AC BD //,得:73219∶∶∶∶===PB PA BD AC ,∴AC BD 37=. 又∵ACF ∆的面积为72,即72sin 21=∠⋅⋅FAC AC AF . ∴EBD BD BE S DBE ∠⋅⋅=∆sin 21FAC AC AF ∠⋅⋅⋅=sin 372121 FAC AC AF ∠⋅⋅⋅=sin 2167847267=⨯=.∴BDE ∆的面积为84平方单位.说明:应用两个平行的性质一是可以证明直线与直线的平行,二是可以解决线面平行的问题.注意使用性质定理证明线线平行时,一定第三个平面与两个平行平面相交,其交线互相平行.典型例题十四例14 在棱长为a 的正方体中,求异面直线BD 和C B 1之间的距离.分析:通过前面的学习,我们解决了如下的问题:若a 和b 是两条异面直线,则过a 且平行于b 的平面必平行于过b 且平行于a 的平面.我们知道,空间两条异面直线,总分别存在于两个平行平面内.因此,求两条异面直线的距离,有时可以通过求这两个平行平面之间的距离来解决.具体解法可按如下几步来求:①分别经过BD 和C B 1找到两个互相平等的平面;②作出两个平行平面的公垂线;③计算公垂线夹在两个平等平面间的长度.解:如图,根据正方体的性质,易证:1111111//////D CB BD A C D B A D B BD 平面平面⇒⎭⎬⎫连结1AC ,分别交平面BD A 1和平面11D CB 于M 和N因为1CC 和1AC 分别是平面ABCD 的垂线和斜线,AC 在平面ABCD 内,BD AC ⊥ 由三垂线定理:BD AC ⊥1,同理:D A AC 11⊥∴⊥1AC 平面BD A 1,同理可证:⊥1AC 平面11D CB。
§14.3空间直线与平面的位置关系(夹角)【知识解读】1、线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.2、线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.3、平行平面:如果两个平面没有公共点,那么这两个平面互相平行.4、推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行.5、平行平面的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.6、面面平行的另一性质:如果两个平面平行,那么其中一个平面内的直线都平行于另一个平面.7、线面角--直线l与其在平面 上的射影所成的锐角称为直线与平面所成的角FEDCBA【例题讲解】例1 、简述下列问题的结论,并画图说明:(1)直线⊂a 平面α,直线A a b = ,则b 和α的位置关系如何?(2)直线α⊂a ,直线a b //,则直线b 和α的位置关系如何?例2、已知:空间四边形ABCD 中,,E F 分别是,AB AD 的中点,求证://EF BCD 平面.例3、两个全等的正方形ABCD 和ABEF 所在平面相交于AB ,M ∈AC ,N ∈FB ,且AM =FN ,求证 MN ∥平面BCE_ CBM HS CAA例4、在正方体1111D C B A ABCD -中,棱长为a .求:(1)直线1AB 与面1111D C B A 所成的角;(2)直线1DB 与面1111D C B A ;例5、四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点, 求(1)BC 与平面SAB 所成的角。
(2)SC 与平面ABC 所成的角。
例6、如图,几何体ABCDE 中,△ABC 是正三角形,EA 和DC 都垂直于平面ABC ,且a AB EA 2==,a DC =,F 、G 分别为EB 和AB 的中点.(1)求证:FD ∥平面ABC ;(2)求证:AF ⊥BD ;【课堂练习】1、在长方体1111D C B A ABCD -中,AB=4,BC=3,1CC =2 (1)求B A 1与面ABCD 所成的角; (2)求D A 1与面ABCD 所成的角;(3)求C A 1与长方体的各个面所成的角的大小; (4)求C A 1与长方体的各条棱所成的角的大小;2、.在正方体1111D C B A ABCD -中,求B A 1和平面CD B A 11所成的角的大小;3、如图所示,在正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是BC 、CC 1、C 1D 1、A 1A 的中点.求证:(1)BF ∥HD 1;(2)EG ∥平面BB 1D 1D ;(3)平面BDF ∥平面B 1D 1H.D 1C 1B 1A 1D C BA。
高中数学总复习-第七章立体几何-空间中的平行和垂直关系【知识结构图】第3课空间中的平行关系【考点导读】1.掌握直线和平面平行、两个平面平行的判定定理和性质定理。
2.明确定义与定理的不同,定义是可逆的,既是判定也是性质,而判定定理与性质定理多是不可逆的。
3.要能灵活的对“线线平行”、“线面平行”和“面面平行”进行转化。
【基础练习】1.若ba、为异面直线,直线c∥a,则c与b的位置关系是异面或相交2.给出下列四个命题:①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行.③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行. ④若直线12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线. 其中假.命题的个数是 4 个。
3.对于任意的直线l 与平面a ,在平面a 内必有直线m ,使m 与l 垂直 。
4. 已知a 、b 、c 是三条不重合的直线,α、β、r 是三个不重合的平面,下面六个命题:①a ∥c ,b ∥c ⇒a ∥b ;②a ∥r ,b ∥r ⇒a ∥b ;③α∥c ,β∥c ⇒α∥β; ④α∥r ,β∥r ⇒α∥β;⑤a ∥c ,α∥c ⇒a ∥α;⑥a ∥r ,α∥r ⇒a ∥α. 其中正确的命题是 ①④ 。
【范例导析】例1.如图,在四面体ABCD 中,截面EFGH 是平行四边形. 求证:AB ∥平面EFG . 证明 :∵面EFGH 是截面.∴点E ,F ,G ,H 分别在BC ,BD ,DA ,AC 上. ∴EH面ABC ,GF面ABD ,由已知,EH ∥GF .∴EH ∥面ABD . 又 ∵EH 面BAC ,面ABC ∩面ABD=AB∴EH ∥AB . ∴AB ∥面EFG .例2. 如图,在正方体ABCD —A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,并且CM=DN.求证:MN ∥平面AA 1B 1B.分析:“线线平行”、“线面平行”、“面面平行”是可以互相转化的。
空间中直线、平面之间的位置关系编稿:丁会敏 审稿:王静伟【学习目标】1.了解空间中两条直线的三种位置关系,并能对直线的位置关系进行分类、判断;2.掌握平行公理及等角定理,并由此知道异面直线所成的角的概念和异面直线垂直的概念;3.了解空间中直线与平面的位置关系;了解空间中平面与平面的位置关系.【要点梳理】要点一、空间两直线的位置关系1.空间两条直线的位置关系:(1)相交直线:同一平面内,有且只有一个公共点;(2)平行直线:同一平面内,没有公共点;(3)异面直线:不同在任何一个平面内,没有公共点.2.异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线.要点诠释:(1)异面直线具有既不相交也不平行的特点.(2)异面直线定义中“不同在任何一个平面内”是指这两条直线“不能确定一个平面”,其中的“任何”是异面直线不可缺少的前提条件.不能把“不同在任何一个平面内”误解为“不同在某一平面内”,例如下图甲中,直线a ⊂α,直线b β⊂,a ∥b ,不能由a 、b 不同在平面α内就误认为a 与b 异面,实际上,由a ∥b 可知a 与b 共面,它们不是异面直线.(3)“不同在任何一个平面内的两条直线”与“分别在某两个平面内的两条直线”的含义是截然不同的,前者是说不可能找到一个同时包含这两条直线的平面,而后者“分别在某两个平面内的两条直线”指的是画在某两个平面内的直线,并不能确定这两条直线异面.它们可以是平行直线,如下图甲所示,也可以是相交直线,如下图乙所示.(4)画异面直线时,为了突出它们不共面的特点,常常需要面作衬托,明显地体现出异面直线既不相交也不平行的特点,如下图甲、乙、丙所示.3.异面直线的判定方法:利用定义判断两直线不可能在同一平面内.4.平行直线:公理4:平行于同一条直线的两条直线互相平行。
符号表示为://a b ,////b c a c ⇒.公理4说明平行具有传递性,在平面、空间都适用.定理:如果一个角的两边和另一个角的两边分别对应平行,那么这两个角相等或互补.5.异面直线所成的角:直线a 、b 是异面直线,经过空间中一点O ,分别引直线'//a a ,'//b b ,相交直线a '、b '所成的锐角(或直角)叫做异面直线a 、b 形成的角,如右图所示.当两条异面直线所成的角是直角时,这两条异面直线互相垂直.要点诠释:异面直线所成角θ的取值范围是090θ<≤o o ;求两条异面直线所成角的步骤可以归纳为四步:选点→平移→定角→计算.要点二、直线和平面的位置关系1.直线和平面的位置关系(1)直线和平面平行:如果一条直线和一个平面没有公共点,那么这条直线和这个平面平行.如果直线a 和平面α平行,记作//a α.(2)直线和平面相交:如果一条直线和一个平面只有一个公共点,那么这条直线和这个平面相交. 如果直线a 和平面α相交于点A ,记作a A α=I .(3)直线在平面内:如果一条直线上的所有的点都在一个平面内,那么这条直线在这个平面内,记作a α⊂.2.直线与平面位置关系的分类(1)按公共点个数分类⎧⎪⎨⎪⎩直线与平面相交—有且只有一个公共点直线在平面内—有无数个公共点直线与平面平行—无公共点 (2)按直线是否在平面内分类⎧⎪⎧⎨⎨⎪⎩⎩直线在平面内直线与平面相交直线不在平面内(直线在平面外)直线与平面平行 3.直线与平面位置关系的图形表示和符号表示 位置关系直线a 在平面α内 直线a 与平面α相交 (直线不在平面内) 直线a 与平面α平行 (直线不在平面内) 符号表示a α⊂ a A α=I //a α图形表示要点三、两个平面的位置关系1.两个平面的位置关系(1)两个平面平行——没有公共点.(2)两个平面相交——有一条公共直线(或至少有一个公共点).位置关系 图形表示 符号表示 公共点个数两平面平行//αβ无公共点两平面相交斜交aαβ=I有一条公共直线垂直αβ⊥且aαβ=I有一条公共直线3.两个平面平行的画法画两个平行平面时,要注意把表示平面的平行四边形画成对应边平行,如下图(1),而(2)的画法是不恰当的.4.两个相交平面的画法(1)先画表示两个平面的平行四边形的相交两边,如下图(1).(2)再画出表示两个平面交线的线段,如下图(2).(3)过图(1)中线段的端点分别引线段,使它们平行且等于图(2)中表示交线的线段,如下图(3).(4)画出上图(3)中表示两个平面的平行四边形的第四边(被遮住的线,可以用虚线,也可以不画,如图上(4)).【典型例题】类型一、空间两条直线的位置关系例1.异面直线是指()A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线【答案】D【解析】应根据异面直线的定义“不同在任何一个平面内的两条直线”予以判断.对于A,空间两条不相交的直线有两种可能:一是平行(共面),二是异面,∴A项排除.对于B,分别位于两个不同平面内的直线,既可能平行,也还可能相交,还可能异面,如上图,就是相交的情况,B应排除.对于C,如上图中的a,b可看作是平面α内的一条直线a与平面α外的一条直线b,显然它们是相交直线,∴C应排除.只有D符合定义,∴应选D.【总结升华】解答这类立体几何的命题的真假判定问题,一方面需要掌握立体几何中的有关概念和公理、定理;另一方面要善于寻找特例,构造相关模型,特例模型能快速、有效地排除相关的选择项.举一反三:【变式1】 判断下列说法是否正确?若正确,请简述理由;若不正确,请在下列给出的图形中找出反例,并给予说明.(1)没有公共点的两条直线是异面直线;(2)分别在两个平面内的直线一定是异面直线;(3)分别与两条相交直线都相交的两条直线共面;(4)分别与两条异面直线都相交的两条直线异面.【答案】(1)不正确,如下图①③中的直线a ,b ;(2)不正确,如下图②③中的直线AC ,BC 及a ,b .(3)不正确,如下图②中的直线AB 与l ;(4)不正确,如下图④中,直线AD 与BC 是异面直线AB ,AC 都与AD ,BC 相交,但AB ,AC 是共面直线.例2.已知a ,b ,c 是三条直线,如果a 与b 是异面直线,b 与c 是异面直线,那么a 与c 有怎样的位置关系?并画图说明.【答案】平行、相交或异面【解析】对空间直线与直线的三种位置关系逐一判断.直线a 与直线c 的位置关系可以是平行、相交、异面.如下图(1)(2)(3).【总结升华】不论是在空间还是在同一平面内,平行直线都具有传递性,而异面直线不具有这一特点.本例中的三条直线,由于位置关系不确定,因此,要按照直线位置关系的三种情况逐一分析,而画出示意图对问题的解决是很有帮助的.举一反三:【高清课堂:空间直线与平面的位置关系 例2】【变式1】如图,正方体1111ABCD A B C D 中,点,,E F G 分别是棱11,,AA AB CC 的中点,判断下列直线的位置关系:(1)AB 与1DD :(2)1D E 与BC :(3)1D E 与BG :(4)1D E 与CF .【答案】(1)异面(2)异面(3)共面(4)共面类型二、平行公理与等角定理的应用例3.如右图所示,在空间四边形ABCD (不共面的四边形称为空间四边形)中,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点.(1)求证:四边形EFGH 是平行四边形;(2)如果AC=BD ,求证:四边形EFGH 是菱形.【解析】 (1)在△ABD 中,∵E ,H 分别为AB 、AD 的中点,∴EH ∥BD 且12EH BD =,同理在△BCD 中,FG ∥BD 且12FG BD =. ∴EH ∥FG 且EH=FG ,∴四边形EFGH 为平行四边形. (2)由(1)同理可得:12EF HG AC ==,而BD=AC , ∴EH=HG=GF=FE .∴四边形EFGH 是菱形.【总结升华】到现在为止,证明两条直线平行的方法有:一是利用定义,即证在同一平面内的两条直线不相交;二是利用平行公理,即利用第三条平行直线来作传递.例4.如右图所示,△ABC 和△'''A B C 的对应顶点的连线AA ',BB ',CC '交于同一点D ,且2'''3AO BO CO OA OB OC ===. (1)求证://''AB A B ,//''AC A C ,//''BC B C ;(2)求'''ABC A B C S S ∆∆的值. 【解析】(1)∵AA '与BB '相交于O 点,且''AO BO OA OB =,∴//''AB A B .同理,//''AC A C ,//''BC B C .(2)∵//''AB A B ,//''AC A C ,∴AB 和AC ,''A B 和''A C 所成的锐角(或直角)相等,即∠BAC=∠'''B A C .同理,∠ABC=∠'''A B C ,∠ACB=∠'''A C B . ∴△ABC ∽△'''A B C .又2'''3AB AO A B OA ==,∴2''2439ABC A B C S S ∆∆⎛⎫== ⎪⎝⎭. 【总结升华】“等角定理”是平面几何中等角定理的类比推广,但平面几何中的“如果一个角的两边分别垂直于另一个角的两边,则这两个角相等或互补”推广到空间中就不成立.因此,我们必须慎重地类比推广平面几何中的相关结论.在运用“等角定理”判定两个角是相等还是互补的途径有二:一是判定两个角的方向是否相同,若相同则必相等,若相反则必互补;二是判定这两个角是否均为锐角或均为钝角,若均是则相等,若不均是则互补. 举一反三:【变式1】 已知E 、E 1分别是正方体ABCD-A 1B 1C 1D 1的棱AD 、A 1D 1的中点.求证:∠BEC=∠B 1E 1C 1.证明:如右图,连接EE 1,∵E 1、E 分别为A 1D 1、AD 的中点,∴A 1E 1//AE ,∴四边形A 1E 1EA 为平行四边形,∴A 1A //E 1E .又∵A 1A //B 1B ,∴E 1E //B 1B ,∴四边形E 1EBB 1为平行四边形,∴E 1B 1∥EB .同理E 1C 1∥EC .又∠C 1E 1B 1与∠CEB 方向相同,∴∠C 1E 1B 1=∠CEB .类型三、异面直线所成的角例5.如下图,正方体AC 1中,E ,F 分别是A 1B 1,B 1C 1的中点,求异面直线DB 1与EF 所成角的大小.【解析】解法一:(直接平移法)如下图1,连接A 1C 1,B 1D 1,并设它们相交于点O ,取DD 1的中点G ,连接OG ,GA 1,GC 1,则OG ∥DB 1,EF ∥A 1C 1,∴∠GOA 1为异面直线DB 1与EF 所成的角或其补角.∵GA 1=GC 1,O 为A 1C 1的中点,∴GO ⊥A 1C 1.∴异面直线DB 1与EF 所成的角为90°.解法二:分别取AA 1,CC 1的中点M ,N ,连接MN ,则MN ∥EF ,如上图2所示,连接DM ,B 1N ,B 1M ,DN ,则B 1N ∥DM 且B 1N=DM ,∴四边形DMB 1N 为平行四边形,∴MN 与B 1D 必相交,设交点为P ,并设正方体的棱长为1,则22MP =,52DM =,32DP =, ∴DM 2=DP 2+MP 2,∴∠DPM=90°,即DB 1⊥EF .∴异面直线DB 1与EF 所成的角为90°.【总结升华】求异面直线所成角的过程是将空间角转化为平面角求解的过程.通常是通过解三角形求得. 举一反三:【变式1】如右图,在正方体ABCD-A 1B 1C 1D 1中,(1)AC 和DD 1所成的角大小为________;(2)AC 和D 1C 1所成的角大小为________;(3)AC 和A 1B 所成的角大小为________.【答案】(1)90°(2)45°(3)60°【变式2】直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于A .30°B .45°C .60°D .90°【答案】C【解析】分别取AB 、AA 1、A 1C 1的中点D 、E 、F ,则1//BA DE ,1//AC EF ,所以异面直线1BA 与1AC所成的角为∠DEF (或其补角),设12AB AC AA ===,则2DE EF ==,6DF =,由余弦定理得120DEF ∠=o ,故选C .类型四、直线与平面的位置关系例6.下列命题中正确命题的个数为( )①如果一条直线与一平面平行,那么这条直线与平面内的任意一条直线平行;②如果一条直线与一平面相交,那么这条直线与平面内的无数条直线垂直;③过平面外一点有且只有一条直线与平面平行;④一条直线上有两点到一个平面的距离相等,则这条直线平行于这个平面.A .0B .1C .2D .3【答案】B【解析】对于①,直线与平面平行,只是说明直线与平面没有公共点,也就是直线与平面内的直线没有公共点,没有公共点的两条直线,其位置关系除了平行之外,还有异面.如下图(1)中正方体ABCD-A 1B 1C 1D 1,A 1B 1∥平面ABCD , A 1B 1与BC 的位置关系是异面,并且容易知道,异面直线A 1B 1与BC 所成的角为90°,因此命题①是错误的.对于③,如上图(1),∵A 1B 1∥AB ,A 1D 1∥AD 且AD ,AB ⊂平面ABCD ,A 1D 1,A 1B 1⊄平面ABCD ,∴A 1B 1∥平面ABCD ,A 1D 1∥平面ABCD ,可以说明过平面外一点不只有一条直线与已知平面平行,而是有无数多条.可以想象,经过平面A 1B 1C 1D 1内一点A 1的任一条直线,与平面ABCD 的位置关系都是平行的,∴命题③也是错误的.对于④,我们可以继续借助正方体ABCD- A 1B 1C 1D 1来举反例,如上图(2),分别取AD ,BC 的中点E ,F ,A 1D 1,B 1C 1的中点G ,H ,顺次连接E 、F 、H 、G ,∵E ,F ,H ,G 分别为AD ,BC ,B 1C 1,A 1D 1的中点,∴可以证明四边形EFHG 为平行四边形,且该截面恰好把正方体一分为二,A ,D 两个点到该截面的距离相等,直线AD ∩平面EFHG=E ,∴命题④也是错误的.对于②,把一直角三角板的一直角边放在桌面内,让另一直角边抬起,即另一直角边与桌面的位置关系是相交,可以得出在桌面内与直角边所在的直线平行的直线与另一直角边垂直.∴正确的命题只有一个,∴应选B .【总结升华】对于直线与平面位置关系的命题真假的判断问题,要注意想象空间图形,要把直线与平面的各种位置关系都考虑到,特别是有些极端情形.正方体(或长方体)是立体几何中的一个重要又最基本的模型.而且立体几何的直线与平面的位置关系都可以在这个模型中得到反映,因而人们给它以“百宝箱”之称.本例中的命题①③④就是利用这个“百宝箱”来判定它们的真假的.举一反三:【变式1】 下列命题中正确的个数是( ).①如果a 、b 是两条直线,a ∥b ,那么a 平行于过b 的任何一个平面;②如果直线a 满足a ∥α,那么a 与平面α内的任何一条直线平行;③如果直线a 、b 满足a ∥α,b ∥α,则a ∥b ;④如果直线a 、b 和平面α满足a ∥b ,a ∥α,b ⊄α,那么b ∥α;⑤如果a 与平面α内的无数条直线平行,那么直线a 必平行于平面α.A .0B .2C .1D .3【答案】C类型五、平面与平面的位置关系例7.已知下列说法:①两平面//αβ,,,a b αβ⊂⊂则//a b ;②若两个平面//αβ,,,a b αβ⊂⊂则a 与b 是异面直线;③若两个平面//αβ,,,a b αβ⊂⊂则a 与b 一定不相交;④若两个平面//αβ,,,a b αβ⊂⊂则a 与b 平行或异面;⑤若两个平面b αβ=I ,a α⊂,则α与β一定相交.其中正确的序号是(将你认为正确的序号都填上).【答案】③④【解析】①错.a 与b 也可能异面.②错.a 与b 也可能平行.③对.//αβQ ,α∴与β无公共点.又,a b αβ⊂⊂Q ,∴a 与b 无公共点.④对.由已知③知:a 与b 无公共点,那么//a b 或a 与b 异面.⑤错.α与β也可能平行.【总结升华】解答此类问题,要把符号语言转化为自然语言,根据两平面间的位置关系,借助空间想象能力求解.举一反三:【变式1】若两个平面互相平行,则分别在这两个平行平面内的直线( )A .平行B .异面C .相交D .平行或异面【答案】D【解析】本题主要考查两平面平行的特点.当两平面平行时,这两个平面没有公共点,分别在这两个平面内的直线也必然没有公共点,因此它们不是平行就是异面.【总结升华】两个平面平行的主要特点就是它们没有公共点,这一重要特点是解题时常用的结论.。
空间平面的性质空间直线与直线之间的位置关系一、平面及其表示法(一)平面:平的,没有厚度的,在空间无限延伸的图形叫做平面.数学中的平面的概念是现实中平面形象抽象的结果.比如平静的湖面、桌面等.平面的表示方法:(1)用大写的英文字母表示:平面M,平面N等;(2)用小写的希腊字母表示:平面α,平面β等;(3)用平面上的三个(或三个以上)点的字母表示:(如图14-1)平面ABCD等.平面的直观图画法:正视图垂直放置的平面M 水平放置的平面M注意:看得见的线用实线,看不见的线用虚线.(二)空间点、线、面的位置关系的集合语言表示法在空间,我们把点看作元素,直线和平面看作是由元素点所组成的集合,建立了如下点、线、面的集合语言表示法.1.点与线:2. 点与平面:点A在直线L上:A l∈(直线L经过点A);点A在平面α内:Aα∈(平面α经过点A);点Q不在直线L上:Q l∉点B不在平面α内:Bα∉;3.直线与平面:○1直线L 在平面α上: ○2直线L 在平面α外:直线L 上所有的点都在平面α上, 当直线L 与平面α只有一个公共点A 时, 即直线L 在平面α上,或平面α 称直线L 与平面α相交于点A , 经过直线L ,记作l α⊂≠. 记作l A α= ;○3直线与平面平行 ○4直线与直线相交:当直线L 与平面α没有公共点时,称直 直线a 与直线b 相交于点A ,记作a b A = . 线L 与平面α平行,记作l α=∅ 或//l α.○5平面与平面: 两平面重合:当平面α上所有的点都在平面β上时,称平面α与平面β重合;两平面相交:当不同的两个平面α与β有公共点时,将它们的公共点的集合记为L ,称平面α与平面β相交于L ,记作l αβ= .两平面平行:当两个平面α与β没有公共点时,称平面α与平面β平行,记作αβ=∅ 或//αβ.(三)例题解析例1观察下面图形,说明它们的摆放位置不同.解:我们看到了这个几何体的前后两个面. [说明]培养学生的空间想象能力.例2 (口答)正方体的各顶点如图所示,正方体的三个面所在平面1111,,AC A B B C ,分别记作,,αβχ,试用适当的符号填空.,_______)2(1γB 1_______C γ,_______)3(1βA 1_______D β11_______)4(B A =βα,1_______BB βγ=,________)5(11αB A 1________BB β,11________A B γ解:(1),;(2),;(3),;(4),;(5),,∈∈∈∈∈∉⋂⋂⊂⊂⊄≠≠[说明]能够熟练运用集合符号来说明点、线、面间的位置关系.练习、根据下列符号表示的语句,说出有关点、线、面的关系,并画出图形.(1),A B αα∈∉; (2),l mαα⊂⊄≠; (3)l αβ⋂=; (4),,,P l P Q l Q αα∈∉∈∈. 解:(1)点A 在平面α内,点B 不在平面α内;(2)直线L 在平面α上,直线m 在平面α外;L(3)平面α交平面β与直线L ;(4)点P 在直线L 上,不在平面α上;点Q 在直线L 上,也在平面α上.,_______)1(1αA 1_______B α二、三个公理三个推论(一)公理1:如果直线l 上有两个点在平面α上,那么直线l 在平面α上.(直线在平面上)。
【同步教育信息】一. 本周教学内容:期中复习[知识串讲]空间直线和平面: (一)知识结构(二)平行与垂直关系的论证1、线线、线面、面面平行关系的转化:线线∥线面∥面面∥公理4(a//b,b//c a//c)线面平行判定 αβαγβγ//,//I I ==⇒⎫⎬⎭a b a b面面平行判定1a b a b a //,//⊄⊂⇒⎫⎬⎭ααα面面平行性质 a b a b A a b ⊂⊂=⇒⎫⎬⎪⎭⎪ααββαβ,//,////I 线面平行性质a ab a b////αβαβ⊂=⇒⎫⎬⎪⎭⎪I 面面平行性质1αβαβ////a a ⊂⇒⎫⎬⎭面面平行性质αγβγαβ//////⎫⎬⎭⇒A bα aβ abα2. 线线、线面、面面垂直关系的转化:线线⊥线面⊥面面⊥三垂线定理、逆定理PA AO POaa OA a POa PO a AO⊥⊂⊥⇒⊥⊥⇒⊥ααα,为在内射影则线面垂直判定1面面垂直判定a ba b Ol a l bl,,⊂=⊥⊥⇒⊥⎫⎬⎪⎭⎪ααIaa⊥⊂⇒⊥⎫⎬⎭αβαβ线面垂直定义lal a⊥⊂⇒⊥⎫⎬⎭αα面面垂直性质,推论2αβαββα⊥=⊂⊥⇒⊥⎫⎬⎪⎭⎪I ba a ba,αγβγαβγ⊥⊥=⇒⊥⎫⎬⎪⎭⎪I aa面面垂直定义αβαβαβI=--⇒⊥⎫⎬⎭l l,且二面角成直二面角3. 平行与垂直关系的转化:线线∥线面⊥面面∥线面垂直判定2面面平行判定2面面平行性质3a bab//⊥⇒⊥⎫⎬⎭ααaba b⊥⊥⇒⎫⎬⎭αα//aa⊥⊥⇒⎫⎬⎭αβαβ//αβαβ//aa⊥⊥⎫⎬⎭a4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。
”5. 唯一性结论:(三)空间中的角与距离1. 三类角的定义:(1)异面直线所成的角θ:0°<θ≤90°(2)直线与平面所成的角:0°≤θ≤90° (时,∥或)θαα=︒⊂0b b(3)二面角:二面角的平面角θ,0°≤θ≤180°2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角; (2)证明其符合定义; (3)指出所求作的角; (4)计算大小。
3. 空间距离:将空间距离转化为两点间距离——构造三角形,解三角形,求该线段的长。
4. 点到面的距离,线线间距离、线面间距离、面面间距离都可转化为点到面的距离。
常用方法:三垂线法、垂面法、体积法、向量法等。
简单几何体:(一)棱柱(两底面平行,侧棱平行的多面体)性质侧棱都相等侧面是平行四边形对角面是平行四边形两个底面与平行于底面的截面是全等的多边形直截面周长侧棱长底面积高直截面面积侧棱长侧柱S V =⨯=⨯=⨯⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪(二)棱锥(底面是多边形,其余各面是由有一个公共顶点的三角形所围成的多面体)hS 31V ⋅=底锥定理:截面与底面平行则有221h h S S =底截正棱锥的性质⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧∆=+=-=∆α=+=+=∆θ=α=-=∆OEB Rt n 180sin2a a 41r h l R SEB Rt cos r a 41l r h h SOE Rt sin l sin h R l h SOBRt 2222222222ο图)及元素之间的关系四个直角三角形(如上全等的等腰三角形侧棱都相等,侧面都是O O OO S S 11221=λ是两个平行截面且、如图)(与定比分点公式比较则λ+λ+=1SS S 21概率与统计(一)散型随机变量的分布列性质:⎩⎨⎧=++=≥1p p 21i 0p 21i ΛΛ,,二项分布:)p 1q (npq Dnp E )p n k (b q p C )p n (B ~kn k k n -==ξ=ξ=⋅ξ-,,,,, ξΛΛi 21x x x pΛΛi21p p p 若b a +ξ=η则b aE )b a (E E +ξ=+ξ=ηξ-=+ξ=ηD a )b a (D D 2期望:ΛΛ++++=ξn n 2211p x p x p x E方差:ΛΛ+ξ-++ξ-+ξ-=ξn 2n 222121p )E x (p )E x (p )E x (D(二)抽样方法⎪⎩⎪⎨⎧分层抽样系统抽样简单随机抽样【典型例题】例1. 如图,在四面体ABCD 中作截面EFG ,若EG ,DC 的延长线交于M ,FG 、BC 的延长线交于N ,EF 、DB 的延长线交于P ,求证M 、N 、P 三点共线。
证明:由已知,显然M 、N 、P 在平面EFG 上 又M 、N 、P 分别在直线DC 、BC 、DB 上故也在平面BCD 上即M 、N 、P 是平面BCD 与平面EFG 的公共点 ∴它们必在这两个平面的交线上 根据公理2. M 、N 、P 三点共线例2. 在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么AM 与CM 所成角的余弦值为( )52.D 53.C 210.B 23.A分析:如图,取AB 中点E ,CC 1中点F 连结B 1E 、B 1F 、EF则B 1E//AM ,B 1F//NC∴∠EB 1F 为AM 与CN 所成的角 又棱长为1∴===B E B F EF 11525262,,∴∠=+-⋅=cos EB F B E B F EF B E B F 11212211225 ∴选D例3. 已知直线平面,直线平面,有下面四个命题:l m ⊥⊂αβ①②③④αβαβαβαβ/⇒⊥⊥⇒⇒⊥⊥⇒///////l m l ml m l m 其中正确的两个命题是( ) A. ①与② B. ③与④ C. ②与④D. ①与③分析:对于①①正确l l m l m ⊥⎫⎬⎭⇒⊥⊂⎫⎬⎭⇒⊥∴ααβββ//对于②,如图l a m l m ⊥⊥⊂⎫⎬⎪⎭⎪⇒αββ///∴②错对于③③正确l l m m m ⊥⎫⎬⎭⇒⊥⊂⎫⎬⎭⇒⊥∴ααβαβ//对于④,如图l l m m ⊥⊥⊂⎫⎬⎪⎭⎪⇒αβαβ///∴④错∴①③正确,选D例4. 如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F 。
(1)证明PA//面EDB 。
(2)PB ⊥平面EFD 。
证:(1)连AC ,AC 交BD 于O ,连EO ∵底面ABCD 是正方形 ∴点O 是AC 中点 又E 为PC 中点 ∴EO//PA又面,且面EO EDB PA EDB ⊂⊄ ∴PA//面EDB(2)∵PD ⊥底面ABCD ∴BC ⊥PD又且BC DC PD DC D ⊥=I ∴BC ⊥面PDC ∴BC ⊥DE 又E 为等直角三角形中点∴⊥=DE PC PC BC C 且I ∴DE ⊥面PBC ∴DE ⊥PB 又已知且EF PB EF DE E ⊥=I ∴PB ⊥面DEF例5. 正三棱柱ABC -A 1B 1C 1中,AB 1⊥BC 1,求证:A 1C ⊥BC 1。
证明:设E 、E 1分别是BC 、B 1C 1的中点,连AE ,A 1E 1,B 1E ,E 1C 则面,面及AE B BCC A E B BCC EB E C ⊥⊥11111111//AE B BCC AB BC EB BC EB E C E C BC A E B BCC A C BC ⊥⊥⎫⎬⎭⇒⊥⎫⎬⎭⇒⊥⊥⎫⎬⎭⇒⊥面面1111111111111111//注:三垂线定理是证明两直线异面垂直的常用手段。
例6. 下列正方体中,l 是一条体对角线,M 、N 、P 分别为其所在棱的中点,如何证明l ⊥面MNP 。
(1) D 1 P C 1 MA 1B 1lD CN(2) D C 1A 1B 1 l NMD C P(3) D C 1A 1 PB 1N lD C M分析:①在侧面的射影显然与、垂直l MP MN ∴⊥⊥∴⊥MP l MN ll MNP ,面②显然分别与在底面上射影垂直及与垂直l MN MP∴⊥l MNP 面③如图,取棱A 1A 、DC 、B 1C 1的中点,分别记为E 、F 、G ,显然EMFNGP 为平面图形,而D 1B 与该平面垂直 ∴l ⊥面MNP例7. 如图,斜三棱柱中,,,,ABC A B C AC A B AA AC AB -⊥===''''''810∠ACB=90°,侧棱与底面成60°的角。
()求证:面面;1AA C C ABC ''⊥ ()求侧面的面积。
2AA B B ''分析:要证明面面,只要证明面,又,只要AA C C ABC BC AA C C BC AC ''''⊥⊥⊥证明,故只要证明平面。
BC AC AC A BC ⊥⊥'''证明:()∵为菱形1AA C C '' ∴⊥AC A C '' 又面AC A BAC A BC AC BC '''''⊥∴⊥∴⊥又∠ACB=90°,即AC ⊥BC∴⊥BC AA C C 面'' 又面面面BC ABC ABC AA C C ⊂∴⊥''()作于2A D AC D '⊥Θ面面,为交线AA C C ABC AC ''⊥∴⊥A D ABC '面°与底面成的角,即∠为侧棱∠60AC 'A AA AD 'A =∴ 过作于,连结,则D DE AB E A E A E AB ⊥⊥'' 又,AD A D =︒==︒=860486043cos 'sin ∴D 为AC 中点 在中Rt ABC ∆ ΘDE BC ADABDE =∴=⨯=4610125∴=+=+=A E A D DE ''()()2222431258521∴=⨯=⨯=S AB A EA ABB 平行四边形'''1085211621例8. 已知Rt △ABC 中,∠C=90°,AC=8,BC=6,D 、E 分别是AB 、AC 的中点,沿DE 将△ABC 折成直二面角,使A 到A’的位置(如图)。
求: (1)C 到A’D 的距离;(2)D 到平面A’BC 的距离;(3)A’D 与平面A’BC 所成角的正弦值。
解:(1)∵二面角A’-DE -B 是直二面角又A’E ⊥ED ,CE ⊥ED∴ED ⊥面A’EC 及EC ⊥面A’ED作EF ⊥A’D 于F ,连结CF ,则CF ⊥A’D ∴CF 即为C 点到直线A’D 的距离 在Rt △A’ED 中,EF ·A’D=A’E ·ED∴=⨯=EF 435125∴=+=+=FC EF EC 222212544345()/BC 'A DE BC 'A BC BC //DE 2面,面,)(⊂⊂Θ ∴DE//面A’BC∴E 到面A’BC 的距离即为D 点到平面A’BC 的距离 过E 作EM ⊥A’C 于M ∵ED ⊥面A’EC 又BC//ED∴BC ⊥面A’EC ∴BC ⊥EM∴EM ⊥面A’BC∴为点到平面的距离即为点到面的距离且EM E A BC D A BC EM ''=22 或者用体积法: 由V V D A BC A BCD --=''即1313S h S A E A BC BCD ∆∆''⋅=⋅∴=⋅=⋅⋅⋅=h S A E S BC CE A EBC A C BCD A BC∆∆''''121222()设与平面所成角为3A D A BC ''θ5D 'A 22h BC 'A D 2==及的距离为点到面)知又由( ∴==sin 'θh A D 225例9. 如图,直三棱柱中,∠°,,,侧棱ABC A B C ACB AC CB -===1119012AA AA B B D B C M 111111=,侧面的两条对角线交点为,的中点为。