∴∠PAB=∠CAB-∠CAP=20°.∵∠APC=∠PAB+∠B,
∴∠B=∠APC-∠PAB=40°-20°=20°.∴AP=PB.∴AH=BH.
∵AP=40 n mile,∴AH=AP·cos 20°≈40×0.94=37.6(n mile).
∴AB=2AH=75.2(n mile).∴轮船的航行速度为
5
三角函数的应用
第1课时
方位角问题
与方位角有关的两地间距离的计算
[例1] (2022安徽)如图所示,为了测量河对岸A,B两点间的距离,某
数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°
方向上,沿正东方向行走90 m至观测点D,测得A在D的正北方向,B在D
的北偏西53°方向上.求A,B两点间的距离(参考数据:sin 37°≈
角分别是60°和30°.则该电线杆PQ的高度是 (6+2 ) m(结果可
保留根号).
3.如图所示,小石同学在A,B两点分别测得某建筑物上条幅两端C,D两
点的仰角均为60°,若点O,A,B在同一条直线上,A,B两点间的距离为
3 m,则条幅的高CD为 3 m.
4.(2023凉山)超速容易造成交通事故.高速公路管理部门在某隧道内
)
2.如图所示,一架飞机在点 A 处测得水平地面上一个标志物 P 的俯角
为α,tan α= ,水平飞行 900 m 后,到达点 B 处,又测得标志物 P 的
俯角为β,tan β= ,飞机离地面的高度为 1 200 m.
与仰角、俯角有关的宽度计算
[例2] (2022广元)如图所示,计划在山顶A的正下方沿直线CD方向开
∴隧道 EF 的长度为(80 +70)m.