电工技术之一阶动态电路分析
- 格式:ppt
- 大小:845.50 KB
- 文档页数:39
第三章一阶电路的瞬态分析3.1.1 换路定则在换路瞬间(t=0),根据能量不能跃变的原理,则有电感电流不能跃变和电容电压不能跃变。
即t=0-表示换路前终了瞬间;t=0+表示换路后初始瞬间。
换路定则主要用来确定换路瞬间,即t=0时刻电感电流和电容电压的初始值,然后再根据基本定律确+时刻其他各个电量的初值。
定t=0+3.1.2 储能公式电感储存的磁场能量与电流有关;电容储存的电场能量与电压有关。
且注意:电感电压可以跃变;电容电流可以跃变;电阻只耗能不储能,故不产生瞬态过程,其中的电压和电流均可发生跃变。
3.1.3“三要素法”公式即f(t)=稳态分量+瞬态分量,其中f(t)表示一阶线性电路瞬态过程中的任意变量(电流或电压);f(∞)表示换路后电路已达到稳定状态时电流或电压的稳态值;f(0+)表示瞬态变量的初始值;时间常数τ是表征瞬态过程进行快慢的参数,它的大小反映了电路中能量储存或释放的速度,τ愈大,则瞬态过程时间愈长。
对于RC电路:τ=RC。
对于RL电路:τ=L/R。
注意:这里的R、L和C都是等效值,其中的R是取换路后的电路,从储能元件两端看进去的一个等值电阻。
“三要素法”只适用于求解直流电源激励的一阶线性电路的瞬态响应。
3.1.4 RC串联电路的矩形波脉冲响应特点对于RC串联电路,当输入信号为连续的矩形波脉冲周期信号时,在不同的电路时间常(τ=RC)下,从电阻或电容两端会获得不同的输出电压波形,从而使输出信号与输入信号之间可形成近似的一种微分关系或积分关系。
3.2.1 本章重点(1)换路瞬间(t=0+)各电量初始值的确定。
换路定则仅适用于换路瞬间,可根据它来确定t=0+时电路电压和电流之值。
即瞬态过程的初始值,其方法如下。
①由t=0-时的等效电路求出u C(0-)和i L(0-)。
如果换路前电路处于稳态,则电感视为短路,电容视为开路。
②在t=0+的电路中,用换路定则确定的u C(0+)和i L(0+)出t=0+的等效电路。
第6章一阶动态电路分析6.1 学习要求(1)掌握用三要素法分析一阶动态电路的方法。
(2)理解电路的暂态和稳态以及时间常数的物理意义。
(3)了解用经典法分析一阶动态电路的方法。
(4)了解一阶电路的零输入响应、零状态响应和全响应的概念。
(5)了解微分电路和积分电路的构成及其必须具备的条件。
6.2 学习指导本章重点:(1)电流、电压初始值的确定。
(2)一阶电路的三要素法分析方法。
(3)时间常数的物理意义及其计算。
本章难点:(1)电流、电压初始值的确定。
(2)一阶电路的三要素法分析方法。
(3)电流、电压变化曲线的绘制。
本章考点:(1)电流、电压初始值的确定。
(2)一阶电路的三要素法分析方法。
(3)时间常数的计算。
(4)电流、电压变化曲线的绘制。
6.2.1 换路定理1.电路中产生过渡过程的原因过渡过程是电路从一个稳定状态变化到另一个稳定状态的中间过程,因为时间极为短暂,又称暂态过程。
电路中产生过渡过程的原因是:(1)内因:电路中的能量不能突变。
电路中的电场能和磁场能不能突变是电路电工技术学习指导与习题解答124 产生过渡过程的根本原因。
(2)外因或条件:换路。
电路工作条件发生变化,如开关的接通或断开,电路连接方式或元件参数突然变化等称为换路。
换路是电路产生过渡过程的外部条件。
2.研究电路过渡过程的意义(1)利用电路的过渡过程改善波形或产生特定的波形。
(2)防止电路产生过电压或过电流损坏用电设备。
3.换路定理与初始值的确定设换路发生的时刻为0=t ,换路前的终了时刻用-=0t 表示,换路后的初始时刻用+=0t 表示。
由于换路是瞬间完成的,因此-0和+0在数值上都等于0。
根据能量不能突变,可以推出电路换路定理为:(1)电容两端电压u C 不能突变,即:)0()0(C C -+=u u(2)电感中的电流i L 不能突变,即:)0()0(L L -+=i i电路中+=0t 时的电流、电压值称为初始值。
初始值的确定步骤如下: (1)求出-=0t 时电路的)0(C -u 和)0(L -i 。
电工技术第6章(李中发版)课后习题及详细解答.(DOC)第6章一阶动态电路分析6.1图6.3所示的电路在开关S关闭之前已经处于稳定状态。
尝试在开关S关闭后立即找到电压uC和电流iC、i1和i2的初始值。
该分析首先在处的等效电路中找到,因为电路在处已经处于稳定状态,电路中各处的的电流和电压是恒定的,并且在等效电路中被替换为电容器中的电流。
绘制的电压为、和,因此此时电容C可视为开路。
然后,此时,当恒压源的电压为时,当电容器两端的电压为时,电容器c可以使用等效电路,如图6.4(a)所示根据分压公式,得到(V)。
根据开关定理,电容器两端的电压为(V)。
在瞬间,电容C可以被电压为伏的恒压源代替,由此可以得出处的电流i2为:(A)根据欧姆定律,处的电流i1为(A)根据KCL,处的电流iC相等由于4ω电阻支路已断开,因此,图6.3图6.1图6.4图6.1图6年2月,图6.5所示电路在开关闭合前处于稳定状态。
尝试在开关s闭合后立即找到电压u1和电流i1、i1、i2的初始值。
该分析首先在处的等效电路中找到,因为电路在处已经处于稳定状态,电路中各处的的电流和电压是恒定的,并且等效电路中在电感器两端的电压处的解显示为、和,因此然后,电感器l可以由电流为的恒流源代替电感电流为时的等效电路如图6.6(a)所示根据欧姆定律,得到(A)。
根据开关定理,处电感中的电流为(A)图6.5图6.2图6.6图6.2解决方案使用图在瞬间,电感可由电流为A的恒流源代替。
因此,电感两端电压为(V)的等效效应电路根据欧姆定律,得到。
根据分流公式,当获得时,电流i1和i2为(A)6.3,如图6.7所示。
在开关s闭合之前,电路处于稳定状态。
尝试找出开关s闭合后瞬时电压uC、u1和电流iL、iC、iI的初始值该分析首先在处的等效电路中发现和,因为电路在处已经处于稳定状态,和中的电流和电压是恒定的,并且电容器中的电流是恒定的,所以电容器c可以被视为开路,电感器l可以被视为短路。
第
4章
一阶线性电路的暂态分析 67
图4.2.5 RC 电路的零状态响应
4.2.2 一阶动态电路暂态分析的三要素法
通过前面的分析可知,零输入响应和零状态响应可看成是全响应的特例。
直流电源激励下的一阶动态电路中的电压或电流,其全响应总是由初始值开始,按指数规律变化而接近于稳态值。
则全响应f (t )可表示为
()()[(0)()]e t
f t f f f τ−+=+−∞∞ (4.2.12)
只要知道了初始值f (0+)、稳态值f (∞)和时间常数τ 这三个要素,就可以通过式(4.2.12)直接写出直流电源激励下的一阶动态电路的全响应,这种方法称为三要素法。
时间常数 L RC R ττ⎛⎞==⎜⎟⎝
⎠或,其中R 为等效电阻,是换路后从储能元件C (或L )两端看进去的除源网络外的入端电阻,即戴维宁或诺顿等效电路的等效电阻。
三要素法具有方便、实用和物理概念清楚等特点,是求解一阶电路常用的方法。
例4.2.1 在图4.2.6(a )所示的电路中,U S =180 V ,R 1=30Ω,R 2=60Ω,C =100μF ,电容初始电压为0,t =0时开关S 合上。
试求换路后的u C (t )
、i
1(t
)。
图4.2.6 例4.2.1题图
解:利用三要素法求解。
(1)求初始值u C (0+)、i 1(0+)
由换路定律知
u C (0+) = u C (0-) = 0
由于u C (0+ ) = 0,此时电容可视为短路,因此有换路后t = 0+时的等效电路,如图4.2.6(b )所示。
则有。