2016-2017学年第一学期九年级数学期末试题及答案
- 格式:doc
- 大小:608.00 KB
- 文档页数:13
主视方向(D )(C )(B )(A ) 5 题FEDCBA7 题FEDCBA北师大版九年级数学第一学期期末考试试题及答案1.在1-,0,2-,1这四个数中,最小的数是( )A . 2-B . 1-C . 0D .1 2. 如图所示几何体的左视图是( )3.从编号为1 ~ 10的10个完全相同的球中,任取一球,其号码能被3整除的概率是 ( ) (A )101 (B )151 (C )103 (D )52 4.如图是一个支架(一种小零件),支架的两个台阶的高度个宽度都是同一长度,则它的三种视图是 ( )5.如图,在平行四边形ABCD 中,AB = 2,BC = 3,∠ABC 、∠BCD 的平分线分别交AD 于点E 、F ,则EF 的长是 ( ) (A )3 (B )2 (C )1.5 (D ) 16.某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x ,则下列方程中正确的是 ( )(A )256)1(2892=-x (B )289)1(2562=-x (C )256)21(289=-x (D )289)21(256=-x 7.如图,在房子屋檐E 处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是( ) (A )⊿ACE (B )⊿ADF (C ) ⊿ABD (D )四边形BCED8.若反比例函数图象经过点(1-,6),则下列点也在此函数上的是( ) (A )(3-,2) (B )(3,2) (C )(2,3) (D )(6,1)9.从1,2,3-三个数中,随机抽取两个数相乘,积是正数的概率是 ( ) (A )0 (B )31 (C )32(D )1 A . B .15题图yx-3-2-1123321-1-2-310 题10.反比例函数xky =的图象如图所示,则当1>x 时,函数值y 的取值范围是 ( )(A )1>y (B )10<<y (C )2<y (D )20<<y二、填空题:(本大题6个小题,每小题4分,共24分)请将正确答案直接填写在题中的横线上.11.︒2cos30=___________.12.为估计某地区黄羊的只数,先捕捉20只黄羊分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊 _只.13.反比例函数xm y 3-=的图象在第二、四象限内,那么m 的取值范围是 _. 14.小亮的身高为1.8米,他在路灯下的影子长为2米;小亮距路灯杆底部为3米,则路灯灯泡距离地面的高度为 _米.15.如图,是二次函数2(0)y ax bx c a =++≠的图象的一部分,给出下列命题 :①0abc <;②2b a >;③0a b c ++= ④20ax bx c ++=的两根分别为-3和1;⑤80a c +>.其中正确的命题是 _.16.某商场出售甲、乙、丙三种型号的电动车,已知甲型车在第一季度销售额占这三种车总销售额的56%,第二季度乙、丙两种型号的车的销售额比第一季度减少了a %,但该商场电动车的总销售额比第一季度增加了12%,且甲型车的销售额比第一季度增加了23%,则a 的值为 三、解答题:(本大题4个小题,每小题6分,共24分) 下列各题解答时必须给出必要的演算过程或推理步骤.17.(6分)解方程: 2(2)x x x -=-18.(6分)如图,在ABC ∆中,AB = AC ,D 是底边BC 的中点,作DE ⊥AB 于E ,DF ⊥AC 于F求证:DE = DF.证明:C B AC AB ∠=∠∴=, (① )在∆BDE 和CDF ∆中,CD BD CFD BED C B =∠=∠∠=∠,,,BDE ∆∴≌CDF ∆(② ) DF DE =∴(③ )⑴上面的证明过程是否正确?若正确,请写出①、②和③的推理根据. ⑵请你写出另一种证明此题的方法.FE DCBA19.如图,已知四边形ABCD 是平行四边形,P 、Q 是对角线BD 上的两个点,且AP ∥QC . 求证:BP =DQ ..20.为了打造重庆市“宜居城市”, 某公园进行绿化改造,准备在公园内的一块四边形 ABCD 空地里栽一棵银杏树(如图),要 求银杏树的位置点P 到点A 、D 的距离相 等,且到线段AD 的距离等于线段a 的长. 请用尺规作图在所给图中作出栽种银杏树 的位置点P .(要求不写已知、求作和作法, 只需在原图上保留作图痕迹).QPBCDA19题图四、解答题:(本大题4个小题,每小题10分,共40分) 下列各题解答时必须给出必要的演算过程或推理步骤.21.某中学九年级学生在学习“直角三角形的边角关系”时,组织开展测量物体高度的实践活动.要测量学校一幢教学楼的高度(如图),他们先在点C 测得教学楼 AB 的顶点A 的仰角为︒37,然后向教学楼前进10米到达点D ,又测得点A 的仰角 为45°.请你根据这些数据,求出这幢教学楼的高度. (参考数据:,75.037tan ,80.037cos ,60.037sin ≈︒≈︒≈︒41.12≈)22.如图,在平面直角坐标系xOy 中,一次函数b kx y +=与反比例函数xmy =的图象交于点A ,与x 轴交于点B , AC ⊥x 轴于点C ,2tan =∠ABC ,AB =132,OB =OC . (1)求反比例函数和一次函数的解析式; (2)若一次函数与反比例函数的图象的 另一交点为D ,作DE ⊥y 轴于点E , 连结OD ,求△DOE 的面积.23.小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字3、4、5,现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.如果和为奇数,则小明胜;和为偶数,则小亮胜.ABCD(1)请你用画树状图或列表的方法,求出这两数和为8的概率; (2)你认为这个游戏对双方公平吗?说说你的理由.24.如图,在梯形ABCD 中,AB //CD ,︒=∠90A BD ,AB =BD ,在BC 上截取BE ,使BE =BA ,过点B 作BC BF ⊥于B ,交AD 于点F .连接AE ,交BD 于点G ,交BF 于点H . (1)已知AD =24,CD =2,求D B C sin ∠的值; (2)求证:BH +CD =BC .EDCBAFH G五、解答题:(本大题2个小题,25题10分,26题12分)下列各题解答时必须给出必要的演算过程或推理步骤.25. 2011年11月28日至12月9日,联合国气候变化框架公约第17次缔约方会议在南非德班召开,大会通过了“德班一揽子决议”(DurbanPackageOutcome ),建立德班增强行动平台特设工作组,决定实施《京都议定书》第二承诺期并启动绿色气候基金,中国的积极态度赢得与会各国的尊重.在气候对人类生存压力日趋加大的今天,发展低碳经济,全面实现低碳生活逐渐成为人们的共识.某企业采用技术革新,节能减排. 从去年1至6月,该企业二氧化碳排放量1y (吨)与月份x (61≤≤x ,且x 取整数)之间的函数关系如下表:去年7至12月,二氧化碳排放量2y (吨)与月份x (127≤≤x ,且x 取整数)的变化情况满足二次函数)0(22≠+=a bx ax y ,且去年7月和去年8月该企业的二氧化碳排放量都为56吨. (1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出1y 与x 之间的函数关系式.并且直接写出2y 与x 之间的函数关系式;(2) 政府为了鼓励企业节能减排,决定对每月二氧化碳排放量不超过600吨的企业进行奖励. 去年1至6月奖励标准如下,以每月二氧化碳排放量600吨为标准,不足600吨的二氧化碳排放量每吨奖励z (元)与月份x 满足函数关系式x x z -=2(61≤≤x ,且x 取整数),如该企业去年3月二氧化碳排放量为200吨,那么该企业得到奖励的吨数为(200600-)吨;去年7至12月奖励标准如下:以每月二氧化碳排放量600吨为标准,不足600吨的二氧化碳排放量每吨奖励30元,如该企业去年7月份的二氧化碳排放量为56吨,那么该企业得到奖励的吨数为(56600-)吨.请你求出去年哪个月政府奖励该企业的资金最多,并求出这个最多资金;(3)在(2)问的基础上,今年1至6月,政府继续加大对节能减排企业的奖励,奖励标准如下:以每月二氧化碳排放量600吨为标准,不足600吨的部分每吨补助比去年12月每吨补助提高m %.在此影响下,该企业继续节能减排,1至3月每月的二氧化碳排放量都在去年12月份的基础上减少24吨.4至6月每月的二氧化碳排放量都在去年12月份的基础上减少m %,若政府今年1至6月奖励给该企业的资金为162000元,请你参考以下数据,估算出 m 的整数值. (参考数据:1024322=,1089332=,1156342=,1225352=,1296362=)26. 如图,已知:△ABC 为边长是34的等边三角形,四边形DEFG 为边长是6的正方形.现将等边△ABC 和正方形DEFG 按如图1的方式摆放,使点C 与点E 重合,点B 、C (E )、F 在同一条直线上,△ABC 从图1的位置出发,以每秒1个单位长度的速度沿EF 方向向右匀速运动,当点C 与点F 重合时暂停运动,设△ABC 的运动时间为t 秒(0≥t ).(1)在整个运动过程中,设等边△ABC 和正方形DEFG 重叠部分的面积为S ,请直接写出S 与t之间的函数关系式;(2)如图2,当点A 与点D 重合时,作ABE ∠的角平分线EM 交AE 于M 点,将△ABM 绕点A逆时针旋转,使边AB 与边AC 重合,得到△ACN .在线段AG 上是否存在H 点,使得△ANH 为等腰三角形.如果存在,请求出线段EH 的长度;若不存在,请说明理由.(3)如图3,若四边形DEFG 为边长为34的正方形,△ABC 的移动速度为每秒3个单位长度,其余条件保持不变.△ABC 开始移动的同时,Q 点从F 点开始,沿折线FG -GD 以每秒32个单位长度开始移动,△ABC 停止运动时,Q 点也停止运动.设在运动过程中,DE 交折线BA -AC 于P 点,则是否存在t 的值,使得EQ PC ⊥,若存在,请求出t 的值;若不存在,请说明理由.26题图1FG26题图2FG参考答案一、ADCAD ACABD11.3; 12. 600; 13.3m <; 14. 4.5;15.①③④⑤(答对一个得1分,答错一个倒扣一分);16.2 17.(6分)解:2(2)x x x -=- x -2=x 2-2xx 2-3x +2=0 …… (4分) 解得:x 1=1,x 2=2 ……(6分)18.(6分)解:(1)①等边对等角; …… (1分)②AAS ;③全等三角形的对应边相等。
人教版九年级2016--2017期末数学试卷一.选择题(共12分)1.方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣12.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.如图,四边形ABCD为⊙O的内接四边形,若∠BOD=90°,则∠BCD的大小为()A.90°B.125°C.135°D.145°4.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.45.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.6.对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大二.填空题(共24分)7.三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为.8.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为.9.二次函数y=x2+4x﹣3的最小值是.10.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为.11.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=度.12.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.13.关于x的一元二次方程ax2+bx﹣2016=0有一个根为x=1,写出一组满足条件的实数a,b的值:a=,b=.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.三.解答题(共84分)15.解方程:x2+4x﹣1=0.16.如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.17.已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0(Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求△ABC的周长.18.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.19.如图,在半径为2的⊙O中,弦AB长为2.(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.20.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.21.两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.22.如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C (0,5),点D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.23.把一张边长为40cm的正方形硬纸板进行裁剪,折成一个长方体盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.(1)若剪掉的正方形的边长为9cm时,长方体盒子的底面边长为cm,高为cm.(2)要使折成的长方体盒子的底面积为484cm2,那么剪掉的正方形边长为多少?(3)折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.24.已知,如图,△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A、B、D三点.(1)求证:AB是⊙O的直径;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.25.如图,∠C=90°,⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,连接OE,OF.AO的延长线交BC于点D,AC=6,CD=2.(1)求证:四边形OECF为正方形;(2)求⊙O的半径;(3)求AB的长.26.已知一次函数y=﹣x+1与抛物线y=x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.九年级2016--2017期末数学试卷一.选择题(共6小题)1.(2016秋•南京期中)方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣1【解答】解:x2=x,x2﹣x=0,x(x﹣1)=0,x=0,x﹣1=0,x1=0,x2=1,故选C.2.(2016•哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.3.(2016•长春模拟)如图,四边形ABCD为⊙O的内接四边形,若∠BOD=90°,则∠BCD 的大小为()A.90°B.125°C.135°D.145°【解答】解:∵∠BOD=90°,∴∠A=∠BOD=45°,∵四边形ABCD为⊙O的内接四边形,∴∠A+∠BCD=180°,∴∠BCD=135°,故选:C.4.(2016•抚顺)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.5.(2016•张家界)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.【解答】解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=>0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=<0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向上,对称轴x=>0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.6.(2016•三明)对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大【解答】解:“某市明天下雨的概率是75%”说明某市明天下雨的可能性较大,故选:D.二.填空题(共8小题)7.(2016•临夏州)三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为12.【解答】解:x2﹣13x+40=0,(x﹣5)(x﹣8)=0,所以x1=5,x2=8,而三角形的两边长分别是3和4,所以三角形第三边的长为5,所以三角形的周长为3+4+5=12.故答案为12.8.(2016•本溪)关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为1.【解答】解:∵关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,∴k≠0且b2﹣4ac>0,即,解得k>﹣1且k≠0,∴k的最小整数值为:1.故答案为:1.9.(2016•兰州)二次函数y=x2+4x﹣3的最小值是﹣7.【解答】解:∵y=x2+4x﹣3=(x+2)2﹣7,∵a=1>0,∴x=﹣2时,y有最小值=﹣7.故答案为﹣7.10.(2016•黔东南州)如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为π.【解答】解:∵,∴S 阴影==πAB2=π.故答案为:π.11.(2016•牡丹江)如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=30度.【解答】解:连接AC,∵AB是直径,∴∠ACB=90°,∵AB=6,BC=3,∴sin∠CAB===,∴∠CAB=30°,∴∠BDC=30°,故答案为:30.12.(2016•聊城)如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.【解答】解:∵随机地闭合开关S1,S2,S3,S4,S5中的三个共有10种可能,能够使灯泡L1,L2同时发光有2种可能(S1,S2,S4或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是=.故答案为.13.(2016春•延庆县期末)关于x的一元二次方程ax2+bx﹣2016=0有一个根为x=1,写出一组满足条件的实数a,b的值:a=1,b=2015.【解答】解:把x=1代入ax2+bx﹣2016=0得a+b﹣2016=0,当a=1时,b=2015.故答案为:1,2015.14.(2016•长春)如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为15.【解答】解:∵D是抛物线y=﹣x2+6x上一点,∴设D(x,﹣x2+6x),∵顶点C的坐标为(4,3),∴OC==5,∵四边形OABC是菱形,∴BC=OC=5,BC∥x轴,∴S△BCD=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+15,∵﹣<0,∴S△BCD有最大值,最大值为15,故答案为15.三.解答题(共12小题)15.(2016•淄博)解方程:x2+4x﹣1=0.【解答】解:∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.16.(2015•香坊区三模)如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.【解答】解:(1)如图1所示:(2)如图2所示:四边形ACBE的面积为:2×4=8.17.(2016春•南开区期末)已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0 (Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求△ABC的周长.【解答】(1)证明:∵△=(2k+3)2﹣4(k2+3k+2)=1,∴△>0,∴无论k取何值时,方程总有两个不相等的实数根;(2﹚解:∵△ABC是等腰三角形;∴当AB=AC时,△=b2﹣4ac=0,∴(2k+3)2﹣4(k2+3k+2)=0,解得k不存在;当AB=BC时,即AB=5,∴5+AC=2k+3,5AC=k2+3k+2,解得k=3或4,∴AC=4或6.∴△ABC的周长为14或16.18.(2016•宁波)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,点P的坐标为:(1,2).19.(2015秋•玄武区期末)如图,在半径为2的⊙O中,弦AB长为2.(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.【解答】解:(1)过点O作OD⊥AB于点D,连接AO,BO.如图1所示:∵OD⊥AB且过圆心,AB=2,∴AD=AB=1,∠ADO=90°,在Rt△ADO中,∠ADO=90°,AO=2,AD=1,∴OD==.即点O到AB的距离为.(2)如图2所示:∵AO=BO=2,AB=2,∴△ABO是等边三角形,∴∠AOB=60°.若点C在优弧上,则∠BCA=30°;若点C在劣弧上,则∠BCA=(360°﹣∠AOB)=150°;综上所述:∠BCA的度数为30°或150°.20.(2015•宁波)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.21.(2014•黔南州)两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.【解答】证明:(1)如图②,∵由题意知,AD=GD,ED=CD,∠ADC=∠GDE=90°,∴∠ADC+∠CDE=∠GDE+∠CDE,即∠ADE=∠GDC,在△AED与△GCD中,,∴△AED≌△GCD(SAS);(2)如图③,∵α=45°,BC∥EH,∴∠NCE=∠NEC=45°,CN=NE,∴∠CNE=90°,∴∠DNH=90°,∵∠D=∠H=90°,∴四边形MHND是矩形,∵CN=NE,∴DN=NH,∴矩形MHND是正方形.22.(2016春•荣成市校级月考)如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C(0,5),点D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.【解答】解:(1)根据题意得,解得,所以二次函数解析式为y=﹣x2+4x+5;(2)y=﹣x2+4x+5=﹣(x﹣2)2+9,则M点坐标为(2,9),设直线MC的解析式为y=mx+n,把M(2,9)和C(0,5)代入得,解得,所以直线CM的解析式为y=2x+5;(3)把y=0代入y=2x+5得2x+5=0,解得x=﹣,则E点坐标为(﹣,0),把y=0代入y=﹣x2+4x+5得﹣x2+4x+5=0,解得x1=﹣1,x2=5,所以S△MCB=S△MBE﹣S△CBE=××9﹣××5=15.23.(2016秋•孝感校级月考)把一张边长为40cm的正方形硬纸板进行裁剪,折成一个长方体盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.(1)若剪掉的正方形的边长为9cm时,长方体盒子的底面边长为22cm,高为9cm.(2)要使折成的长方体盒子的底面积为484cm2,那么剪掉的正方形边长为多少?(3)折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.【解答】解:(1)如图所示,由已知得:BC=9cm,AB=40﹣2×9=22cm,故答案为:22,9;(2)设剪掉的正方形的边长为x cm,则(40﹣2x)2=484,即40﹣2x=±22,解得x1=31(不合题意,舍去),x2=9;答:剪掉的正方形边长为9cm;③折成的长方体盒子的侧面积有最大值,设剪掉的正方形的边长为x cm,盒子的侧面积为y cm2,则y与x的函数关系式为y=4(40﹣2x)x,即y=﹣8x2+160x,y=﹣8(x﹣10)2+800,∵﹣8<0,∴y有最大值,∴当x=10时,y最大=800;答:折成的长方体盒子的侧面积有最大值,这个最大值是800cm2,此时剪掉的正方形的边长是10cm.24.(2016春•合肥校级月考)已知,如图,△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A、B、D三点.(1)求证:AB是⊙O的直径;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.【解答】(1)证明:如图1,连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB是⊙O的直径;(2)证明:如图2,连接OD,∵AO=BO,BD=DC,∴DO是△BAC的中位线,∴DO∥AC,∴DO⊥DE,∴DE为⊙O的切线;(3)解:如图3,∵AO=3,∴AB=6,又∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AD=3,∵AC×DE=CD×AD,∴6×DE=3×3,解得:DE=.25.(2015•南丹县一模)如图,∠C=90°,⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,连接OE,OF.AO的延长线交BC于点D,AC=6,CD=2.(1)求证:四边形OECF为正方形;(2)求⊙O的半径;(3)求AB的长.【解答】(1)证明:∵⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,∴∠C=∠CFO=∠CEO=90°,∴四边形CFOE是矩形,∵OF=OE,∴四边形OECF为正方形;(2)解:由题意可得:EO∥AC,∴△DEO∽△DCA,∴=,设⊙O的半径为x,则=,解得:x=1.5,故⊙O的半径为1.5;(3)解:∵⊙O的半径为1.5,AC=6,∴CF=1.5,AF=4.5∴AG=4.5,设BG=BE=y,∴在Rt△ACB中AC2+BC2=AB2,∴62+(y+1.5)2=(4.5+y)2,解得:y=3,∴AB=AG+BG=4.5+3=7.5.26.(2016•亭湖区一模)已知一次函数y=﹣x+1与抛物线y=x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.【解答】解:(1)把A(0,1),代入y=x2+bx+c,解得c=1,将y=10代入y=﹣x+1,得x=﹣9,∴B点坐标为(﹣9,10),将B (﹣9,10),代入y=x2+bx+c得b=2;(2)△ABC是直角三角形,理由如下:∵y=x2+2x+1=(x+3)2﹣2,∴点C的坐标为(﹣3,﹣2),分别作BG垂直于y轴,CH垂直于y轴∵BG=AG=9,∴∠BAG=45°,同理∠CAH=45°,∴∠CAB=90°∴△ABC是直角三角形;(3)∵BG=AG=9,∴AB=9,∵CH=AH=3,∴AC=3,∵四边形ADEF为平行四边形,∴AD∥EF,又∵F为CD中点,∴CE=BE,即EF为△DBC的中位线,EF∴EF=AD=BD,∵AB=9,∴EF=AD=3在Rt△ACD中,AD=3,AC=3,∴CD=6,∴AF=3,∴平行四边形ADEF周长为6+6.第21页(共21页)。
北师大版九年级数学第一学期期末考试试题及答案第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.如图所示的六角螺栓,其俯视图是( )A. B. C. D.2.关于菱形的性质,以下说法不正确的是( )A. 四条边相等B. 对角线互相垂直C. 对角线相等D. 是轴对称图形3.关于x的一元二次方程x2−6x+m=0有两个不相等的实数根,则m的值可能是( )A. 8B. 9C. 10D. 114.对于反比例函数y=−5,给出下列结论:①图象经过点(1,−5);②图象位于第二、第四象限;③当x<0时,xy随x的增大减小;④当x>0时,y随x的增大而增大.其中正确的结论个数为( )A. 1个B. 2个C. 3个D. 4个5.如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m时,标准视力表中最大的“E”字高度为72.7mm,当测试距离为3m时,最大的“E”字高度为( )A. 4.36mmB. 29.08mmC. 43.62mmD. 121.17mm6.如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB的倾斜角为37°,大厅两层之间的距离BC=6米,则自动扶梯AB的长约为(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)( )第2页,共21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………A. 7.5米B. 8米C. 9米D. 10米7. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O.点E 、F 分别是AB ,AO 的中点,且AC =8.则EF 的长度为( )A. 2B. 4C. 6D. 88. 如图所示,E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC ,EG ⊥CD ,垂足分别是F 、G ,若CG =4,CF =3,则AE 的长是( )A. 3B. 4C. 5D. 79. 如图,在正方形网格中:△ABC 、△EDF 的顶点都在正方形网格的格点上,△ABC∽△EDF ,则∠ABC +∠ACB 的度数为( )A. 30°B. 45°C. 60°D. 75°10. 两个相似三角形对应中线的长分别为6cm 和12cm ,若较大三角形的面积是12cm 2,则较小的三角形的面积为( )A. 6cm 2B. 4cm 2C. 3cm 2D. 1cm 211. 一次函数y =ax +b(a ≠0)与二次函数y =ax 2+bx +c(a ≠0)在同一平面直角坐标系中的图象可能是( )A. B.C. D.12.如图,二次函数y=ax2+bx+c的图象经过点A(−1,0),B(3,0),与y轴交于点C.给出下列结论:①a>0;②当x>0时,y随x的增大而增大;③3a+c=0;④a+b≥am2+bm.其中正确的结论个数为( )A. 1个B. 2个C. 3个D. 4个第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)13.关于x的方程2x2+mx−4=0的一根为x=1,则另一根为______.14.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y(单位:m)与它距离喷头的水平距离x(单位:m)之间满足函数关系式y=−2x2+4x+1喷出水珠的最大高度是______ m.15.《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水面DF,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD=______米.第4页,共21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………16. 如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高 米.(结果保留根号)17. 如图,在矩形ABCD 中,AB =6,BC =10,以点B 为圆心、BC 的长为半径画弧交AD 于点E ,再分别以点C ,E 为圆心、大于12CE 的长为半径画弧,两弧交于点F ,作射线BF 交CD 于点G ,则CG 的长为______.18. 如图,点A ,B 在反比例函数y =kx(k >0)的图象上,点A 的横坐标为2,点B 的纵坐标为1,OA ⊥AB ,则k 的值为______.三、计算题(本大题共1小题,共8.0分)19. (1)计算:2sin30°+3cos60°+(14)−1−5tan45°;(2)用配方法求抛物线y =2x 2−4x −6的顶点坐标.四、解答题(本大题共6小题,共52.0分。
2016-2017学年新疆九年级(上)期末数学试卷一、选择题(本大题共8题,每题4分,共32分;每题只有一个正确的答案,请将正确答案的序号填入下表)1.(4分)下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(4分)已知抛一枚均匀硬币正面朝上的概率为,下列说法正确的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次,不可能正面都朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的3.(4分)如图,已知AB为⊙O的直径,点C在⊙O上,∠C=15°,则∠BOC的度数为()A.15°B.30°C.45°D.60°4.(4分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°5.(4分)已知关于x的一元二次方程2x2﹣8x+m=0有一个根是x1=1,则另一个根x2是()A.﹣5B.﹣3C.3D.26.(4分)用配方法解方程x2﹣8x+1=0时,方程可变形为()A.(x﹣4)2=15B.(x﹣1)2=15C.(x﹣4)2=1D.(x+4)2=15 7.(4分)要得到函数y=(x﹣3)2+4的图象则需将抛物线y=x2作如下平移()A.向右平移3个单位,再向上平移4个单位B.向右平移3个单位,再向下平移4个单位C.向左平移3个单位,再向上平移4个单位D.向左平移3个单位,再向下平移4个单位8.(4分)如图所示,扇形AOB的圆心角为120°,半径为2,则图中阴影部分的面积为()A.B.C.D.二、填空题(本大题共6题,每题3分,共18分,请将正确答案直接写在题后的横线上)9.(3分)在平面直角坐标系中,点(3,﹣2)关于原点的对称点的坐标是:.10.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是.11.(3分)在半径为3cm的圆中,120°的圆心角所对的弧长等于.12.(3分)不透明的袋子里装有3个红球5个白球,它们除颜色外其它都相同,从中随机摸出一个球,则摸到红球的概率是.13.(3分)某商品原价289元,经过两次连续降价后售价为256元,设平均每次降价的百分率为x,则由题意所列方程.14.(3分)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:从表可知,下列说法中正确的是.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=;④在对称轴左侧,y随x增大而增大.三、解答题(本大题共8题,共50分解答题应写出文字说明、演算步骤).15.(8分)解下列方程:(1)x2﹣6x+2=0(2)3x(x+1)=3x+316.(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.17.(6分)如图,把长为40cm,宽为30cm的长方形铁片的四角截去一个大小相同的正方形,然后把每边折起来,做成一个无盖的盒子,使它的底面积(阴影部分)是原来铁片面积的一半,求盒子的高.18.(6分)在如图的网格图中,每个小正方形的边长为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.①试作出△ABC以A为旋转中心沿顺时针方向旋来90°后的图形△AB1C1;②若点C的坐标为(﹣4,﹣1),试建立合适的直角坐标系,并写出A,B两点的坐标;③在所建的直角坐标系中,作出与△ABC关于原点对称的图形△A2B2C219.(5分)某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径.如图,若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.20.(7分)如图已知二次函数y=x2+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)写出该二次函数图象的对称轴、顶点坐标;(3)设该二次函数的对称轴与x轴交于点C,连结BA、BC,求△ABC的面积.21.(6分)如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC 的中点,连结DE.(1)若AD=DB,OC=5,求切线AC的长;(2)求证:ED是⊙O的切线.22.(6分)某商品的进价为每件50元,售价为每件60元,每个月可卖出200件,如果每件商品的售价上涨1元,则每个月少买10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?2016-2017学年新疆九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8题,每题4分,共32分;每题只有一个正确的答案,请将正确答案的序号填入下表)1.(4分)下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,也是中心对称图形,故本选项符合题意;B、不是轴对称图形,也不是中心对称图形,故本选项不合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、不是轴对称图形,也不是中心对称图形,故本选项不合题意.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(4分)已知抛一枚均匀硬币正面朝上的概率为,下列说法正确的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次,不可能正面都朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【解答】解:A、连续抛一枚均匀硬币2次有可能一次正面朝上,2次正面朝上,0次正面朝上,故A错误;B、连续抛一枚均匀硬币10次,有可能正面都朝上,故B错误;C、大量反复抛一枚均匀硬币,平均每100次出现正面朝上的次数不确定,故C错误;D、通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的,故D正确;故选:D.【点评】考查利用频率估计概率.大量反复试验下频率稳定值即概率.注意随机事件发生的概率在0和1之间.3.(4分)如图,已知AB为⊙O的直径,点C在⊙O上,∠C=15°,则∠BOC的度数为()A.15°B.30°C.45°D.60°【分析】由于OA、OC都是⊙O的半径,由等边对等角,可求出∠A的度数;进而可根据圆周角定理求出∠BOC的度数.【解答】解:∵OA=OC,∴∠A=∠C=15°;∴∠BOC=2∠A=30°;故选:B.【点评】此题主要考查的是圆周角定理:同弧所对的圆周角是圆心角的一半.4.(4分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,故选:B.【点评】此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.5.(4分)已知关于x的一元二次方程2x2﹣8x+m=0有一个根是x1=1,则另一个根x2是()A.﹣5B.﹣3C.3D.2【分析】将x1=1代入方程求出m的值,再利用根与系数的关系即可求出另一根.【解答】解:∵方程2x2﹣8x+m=0有一个根是x1=1,另一个根x2,∴1+x2=4,即x2=3,即方程另一根x2是3.故选:C.【点评】此题考查了根与系数的关系,熟练掌握根与系数的关键是解本题的关键.6.(4分)用配方法解方程x2﹣8x+1=0时,方程可变形为()A.(x﹣4)2=15B.(x﹣1)2=15C.(x﹣4)2=1D.(x+4)2=15【分析】将方程的常数项1变号后移到方程右边,然后方程左右两边都加上一次项系数一半的平方16,方程左边写成完全平方式,右边合并即可得到结果.【解答】解:方程x2﹣8x+1=0,移项得:x2﹣8x=﹣1,两边都加上16得:x2﹣8x+16=﹣1+16,变形得:(x﹣4)2=15,则用配方法解方程x2﹣8x+1=0时,方程可变形为:(x﹣4)2=15.故选:A.【点评】此题考查了利用配方法解一元二次方程,利用此方法解方程时,首先将方程的二次项系数化为1,然后将常数项移项到方程右边,接着方程两边都加上一次项系数一半的平方,方程左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.7.(4分)要得到函数y=(x﹣3)2+4的图象则需将抛物线y=x2作如下平移()A.向右平移3个单位,再向上平移4个单位B.向右平移3个单位,再向下平移4个单位C.向左平移3个单位,再向上平移4个单位D.向左平移3个单位,再向下平移4个单位【分析】先确定抛物线y=x2的顶点坐标为(0,0),抛物线y=(x﹣3)2+4的顶点坐标为(3,4),根据点平移的规律得到点(0,0)先向右平移3个单位,再向上平移4个单位得到点(3,4),于是可判断抛物线平移的方向与单位.【解答】解:抛物线y=x2的顶点坐标为(0,0),而抛物线y=(x﹣3)2+4的顶点坐标为(3,4),因为点(0,0)先向右平移3个单位,再向上平移4个单位得到点(3,4),故选:A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.(4分)如图所示,扇形AOB的圆心角为120°,半径为2,则图中阴影部分的面积为()A.B.C.D.【分析】过点O作OD⊥AB,先根据等腰三角形的性质得出∠OAD的度数,由直角三角形的性质得出OD的长,再根据S阴影=S扇形OAB﹣S△AOB进行计算即可.【解答】解:过点O作OD⊥AB,∵∠AOB=120°,OA=2,∴∠OAD===30°,∴OD=OA=×2=1,AD===,∴AB=2AD=2,∴S阴影=S扇形OAB﹣S△AOB=﹣×2×1=.故选:A.【点评】本题考查的是扇形面积的计算及三角形的面积,根据题意得出S阴影=S扇形OAB ﹣S△AOB是解答此题的关键.二、填空题(本大题共6题,每题3分,共18分,请将正确答案直接写在题后的横线上)9.(3分)在平面直角坐标系中,点(3,﹣2)关于原点的对称点的坐标是:(﹣3,2).【分析】根据两个点关于原点对称时,它们的坐标符号相反可直接得到答案.【解答】解:点(3,﹣2)关于原点的对称点的坐标是(﹣3,2),故答案为:(﹣3,2).【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.10.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是k>﹣1且k≠0.【分析】由关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,即可得判别式△>0且k≠0,则可求得k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=0∴k≠0,∴k的取值范围是:k>﹣1且k≠0.故答案为:k>﹣1且k≠0.【点评】此题考查了一元二次方程根的判别式的应用.此题比较简单,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.(3分)在半径为3cm的圆中,120°的圆心角所对的弧长等于2πcm.【分析】根据弧长公式即可直接求解.【解答】解:弧长是:=2π(cm).故答案是:2πcm.【点评】本题考查了弧长的计算,要熟练掌握弧长公式l=.12.(3分)不透明的袋子里装有3个红球5个白球,它们除颜色外其它都相同,从中随机摸出一个球,则摸到红球的概率是.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:袋子里装有3个红球,5个白球共8个球,从中摸出一个球是红球的概率是;故答案为:.【点评】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(3分)某商品原价289元,经过两次连续降价后售价为256元,设平均每次降价的百分率为x,则由题意所列方程289×(1﹣x)2=256.【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=256,把相应数值代入即可求解.【解答】解:第一次降价后的价格为289×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为289×(1﹣x)×(1﹣x),则列出的方程是289×(1﹣x)2=256.【点评】考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.14.(3分)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:从表可知,下列说法中正确的是.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=;④在对称轴左侧,y随x增大而增大.【分析】根据表中数据和抛物线的对称性,可得到抛物线的开口向下,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);因此可得抛物线的对称轴是直线x=3﹣=,再根据抛物线的性质即可进行判断.【解答】解:根据图表,当x=﹣2,y=0,根据抛物线的对称性,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);∴抛物线的对称轴是直线x=3﹣=,根据表中数据得到抛物线的开口向下,∴当x=时,函数有最大值,而不是x=0,或1对应的函数值6,并且在直线x=的左侧,y随x增大而增大.所以①③④正确,②错.故答案为:①③④.【点评】本题考查了抛物线y=ax2+bx+c的性质:抛物线是轴对称图形,它与x轴的两个交点是对称点,对称轴与抛物线的交点为抛物线的顶点;a<0时,函数有最大值,在对称轴左侧,y随x增大而增大.三、解答题(本大题共8题,共50分解答题应写出文字说明、演算步骤).15.(8分)解下列方程:(1)x2﹣6x+2=0(2)3x(x+1)=3x+3【分析】(1)利用配方法得到(x﹣3)2=7,然后利用直接开平方法解方程;(2)先变形得到3x(x+1)﹣3(x+1)=0,然后利用因式分解法解方程.【解答】解:(1)x2﹣6x=﹣2,x2﹣6x+9=7,(x﹣3)2=7,x﹣3=±,所以x1=3+,x2=3﹣;(2)3x(x+1)﹣3(x+1)=0,(x+1)(3x﹣3)=0,x+1=0或3x﹣3=0,所以x1=﹣1,x2=1.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法解一元二次方程.16.(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.(6分)如图,把长为40cm,宽为30cm的长方形铁片的四角截去一个大小相同的正方形,然后把每边折起来,做成一个无盖的盒子,使它的底面积(阴影部分)是原来铁片面积的一半,求盒子的高.【分析】首先设高为x,根据题意可知现在的面积为(30﹣2x)(40﹣2x),现在底面积为原铁片面积的一半,利用一元二次方程求解.【解答】解:设高为x.2(30﹣2x)(40﹣2x)=40×30得出x2﹣35x+150=0故x=5或者x=30(舍去).【点评】本题难度不大,关键是要结合图形来求解.考生应注意结合一元二次方程应用解答.18.(6分)在如图的网格图中,每个小正方形的边长为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.①试作出△ABC以A为旋转中心沿顺时针方向旋来90°后的图形△AB1C1;②若点C的坐标为(﹣4,﹣1),试建立合适的直角坐标系,并写出A,B两点的坐标;③在所建的直角坐标系中,作出与△ABC关于原点对称的图形△A2B2C2【分析】①利用网格特点和旋转的性质画出B、C的对应点B1、C1即可;②利用C点坐标画出直角坐标系,然后写出A、B点的坐标;③利用关于原点对称的点的坐标特征写出A2、B2、C2的坐标,然后描点即可.【解答】解:①如图,△AB1C1为所作;②如图,A,B两点的坐标分别为(﹣1,﹣1),(﹣4,3).③如图,△A2B2C2为所作.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.19.(5分)某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径.如图,若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.【分析】先过点O作OC⊥AB于D,交⊙O于C,连接OB,得出BD=AB,再设半径为xcm,则OD=(x﹣4)cm,根据OD2+BD2=OB2,得出(x﹣4)2+82=x2,再求出x 的值即可.【解答】解:过点O作OC⊥AB于D,交⊙O于C,连接OB,∵OC⊥AB∴BD=AB=×16=8cm由题意可知,CD=4cm∴设半径为xcm,则OD=(x﹣4)cm在Rt△BOD中,由勾股定理得:OD2+BD2=OB2(x﹣4)2+82=x2解得:x=10.答:这个圆形截面的半径为10cm.【点评】此题考查了垂径定理的应用,关键是做出辅助线,构造直角三角形,用到的知识点是垂径定理、勾股定理,要能把实际问题转化成数学问题.20.(7分)如图已知二次函数y=x2+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)写出该二次函数图象的对称轴、顶点坐标;(3)设该二次函数的对称轴与x轴交于点C,连结BA、BC,求△ABC的面积.【分析】(1)二次函数图象经过A(2,0)、B(0,﹣6)两点,两点代入y=x2+bx+c,算出b和c,即可得解析式.(2)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值.【解答】解:(1)把A(2,0)、B(0,﹣6)代入y=x2+bx+c,得:,解得,∴这个二次函数的解析式为y=﹣+4x﹣6.(2)∵该抛物线对称轴为直线x=﹣=4,∴点C的坐标为(4,0),∴AC=OC﹣OA=4﹣2=2,∴S△ABC=×AC×OB=×2×6=6.【点评】本题考查了待定系数法求二次函数的解析式,要会求二次函数的对称轴,会运用面积公式.21.(6分)如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC 的中点,连结DE.(1)若AD=DB,OC=5,求切线AC的长;(2)求证:ED是⊙O的切线.【分析】(1)连接CD,由直径所对的圆周角为直角可得:∠BDC=90°,即可得:CD ⊥AB,然后根据AD=DB,进而可得CD垂直平分AB,进而可得AC=BC=2OC=10;(2)连接OD,先由直角三角形中线的性质可得DE=EC,然后根据等边对等角可得∠1=∠2,由OD=OC,根据等边对等角可得∠3=∠4,然后根据切线的性质可得∠2+∠4=90°,进而可得:∠1+∠3=90°,进而可得:DE⊥OD,从而可得:ED是⊙O的切线.【解答】(1)解:连接CD,∵BC是⊙O的直径,∴∠BDC=90°,即CD⊥AB,∵AD=DB,OC=5,∴CD垂直平分AB,∴AC=BC=2OC=10;(2)证明:连接OD,如图所示,∵∠ADC=90°,E为AC的中点,∴DE=EC=AC,∴∠1=∠2,∵OD=OC,∴∠3=∠4,∵AC切⊙O于点C,∴AC⊥OC,∴∠1+∠3=∠2+∠4=90°,即DE⊥OD,∴ED是⊙O的切线.【点评】此题考查了切线的判定与性质,解题的关键是:熟记切线的判定定理与性质定理,经过半径的外端,并且垂直于这条半径的直线是圆的切线;圆的切线垂直于过切点的直径.22.(6分)某商品的进价为每件50元,售价为每件60元,每个月可卖出200件,如果每件商品的售价上涨1元,则每个月少买10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?【分析】(1)根据题意,得出每件商品的利润以及商品总的销量,即可得出y与x的函数关系式.(2)根据题意利用配方法得出二次函数的顶点形式,进而得出当x=5时得出y的最大值.【解答】解:(1)设每件商品的售价上涨x元(x为正整数),则每件商品的利润为:(60﹣50+x)元,总销量为:(200﹣10x)件,商品利润为:y=(60﹣50+x)(200﹣10x),=(10+x)(200﹣10x),=﹣10x2+100x+2000.∵原售价为每件60元,每件售价不能高于72元,∴0<x≤12且x为正整数;(2)y=﹣10x2+100x+2000,=﹣10(x2﹣10x)+2000,=﹣10(x﹣5)2+2250.故当x=5时,最大月利润y=2250元.这时售价为60+5=65(元).【点评】此题主要考查了二次函数的应用以及二次函数的最值问题,根据每天的利润=一件的利润×销售量,建立函数关系式,借助二次函数解决实际问题是解题关键.。
北师大版九年级数学第一学期期末试题及答案一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)已知a、b、c、d是成比例线段,其中a=3,b=0.6,c=2,则线段d的长为()A.0.4B.0.6C.0.8D.42.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)如图,四边形ABCD与四边形AEFG是位似图形,点A是位似中心,且AC:AF=2:3,则四边形ABCD 与四边形AEFG的面积之比等于()A.2:3B.4:9C.1:4D.1:24.(3分)关于x的一元二次方程x2﹣3x+n=0没有实数根,则实数n的值可以为()A.0B.1C.2D.35.(3分)已知反比例函数y=,在下列结论中,不正确的是()A.图象必经过点(1,2)B.图象在第一、二象限C.图象在第一、三象限D.若x=2,则y=16.(3分)如图,在矩形ABCD中,AC,BD相交于点O,若△AOB的面积是3,则矩形ABCD的面积是()A.6B.9C.12D.157.(3分)笼子里关着一只小松鼠(如图).笼子主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先过第一道门(A或B),再过第二道门(C,D或E)才能出去,则松鼠走出笼子的路线是“先经过A门、再经过D门”的概率为()A.B.C.D.8.(3分)如图,△ABC中,∠ACB=90°,分别以AB,AC为边作正方形ABPQ,ACFH,BP交FH于点O.若BC=BF=2,则OP的长为()A.B.2C.D.2二、填空题(共5小题,每小题3分,计15分)9.(3分)已知关于x的一元二次方程x2﹣mx+6=0.其中一个解x=3,则m的值为.10.(3分)地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而(增大、变小).11.(3分)在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是.12.(3分)如图,点A在反比例函数的图象上,点B在反比例函数的图象上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为.13.(3分)如图,在平行四边形ABCD中,E是AB的中点,F在AD上,且AF:AD=1:3,EF交AC于G.若AC=40,则AG=.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:y(y﹣7)+2y﹣14=0.15.(5分)画出如图所示的正三棱柱的三视图.16.(5分)如图,菱形ABCD的边长为4,∠B=60°,以AC为边长作正方形ACEF,求这个正方形的周长.17.(5分)已知反比例函数y=,当x<0时,y随x的增大而减小,求正整数m的值.18.(5分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形.19.(5分)某游泳池有1200立方米水,设放水的平均速度为v立方米/小时,将池内的水放完需t小时.(1)求v关于t的函数表达式;(2)若要求在3小时之内把游泳池的水放完,则每小时应至少放水多少立方米?20.(5分)如图,延长正方形ABCD的一边CB至E,ED与AB相交于点F,过F作FG∥BE交AE于点G,求证:GF=FB.21.(6分)解读诗词(通过列方程算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?诗词大意:周瑜三十岁当东吴都督,去世时的年龄是两位数,十位数字比个位数字小三,个位数字的平方等于他去世时的年龄.22.(7分)学习了相似三角形相关知识后,小明和同学们想利用“标杆”测量大楼的高度.如图,小明站立在地面点F处,他的同学在点B处竖立“标杆”AB,使得小明的头顶E、标杆顶端A、大楼顶端C在一条直线上(点F、B、D也在一条直线上).已知小明的身高EF=1.5米,“标杆“AB=2.5米,BD=23米,FB=2米,EF、AB、CD均垂直于地面BD.求大楼的高度CD.23.(7分)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有三个种类的奶制品:A:纯牛奶,B:酸奶,C:核桃奶;伊利品牌有两个种类的奶制品:D:纯牛奶,E:核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请用列表法或画树状图法求出两人选购到同一种类奶制品的概率.24.(8分)如图,在△ABC中,D为AC延长线上一点,AC=3CD,∠CBD=∠A,过点D作DE∥AB交BC的延长线于点E.(1)求证:△ECD∽△EDB;(2)求△DCE与△ACB的周长比.25.(8分)如图,直角坐标系中,点B坐标为(6,0),且AO=AB=5,AH⊥x轴于点H,过B作BC⊥x轴交过点A的双曲线于点C,连接OC交AB于点D,交AH于点M.(1)求双曲线的表达式;(2)求的值.26.(10分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长交AD于点E,交BA的延长线于点F.(1)求证:△APD≌△CPD;(2)求证:△APE∽△FP A;(3)若PE=4,PF=12,求PC的长.参考答案与试题解析一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)已知a、b、c、d是成比例线段,其中a=3,b=0.6,c=2,则线段d的长为()A.0.4B.0.6C.0.8D.4【分析】由a、b、c、d四条线段是成比例的线段,根据成比例线段的定义,即可得=,又由a=3,b=0.6,c=2,即可求得d的值.【解答】解:∵a、b、c、d四条线段是成比例的线段,∴=,∵a=3,b=0.6,c=2,∴=解得:d=0.4.故选:A.【点评】此题考查了比例线段,此题比较简单,解题的关键是注意掌握比例线段的定义.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是两个同心圆,内圆要画成实线.故选:C.【点评】本题考查了简单几何体的三视图,从左边看得到的图形是左视图.3.(3分)如图,四边形ABCD与四边形AEFG是位似图形,点A是位似中心,且AC:AF=2:3,则四边形ABCD 与四边形AEFG的面积之比等于()A.2:3B.4:9C.1:4D.1:2【分析】根据位似图形的概念得到EF∥BC,证明△BAC∽△EAF,根据相似三角形的性质求出,根据相似多边形的性质计算即可.【解答】解:∵四边形ABCD与四边形AEFG是位似图形,∴四边形ABCD∽四边形AEFG,EF∥BC,∴△BAC∽△EAF,∴==,∴四边形ABCD与四边形AEFG的面积之比为4:9,故选:B.【点评】本题考查的是位似变换的概念和性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.4.(3分)关于x的一元二次方程x2﹣3x+n=0没有实数根,则实数n的值可以为()A.0B.1C.2D.3【分析】根据方程没有实数根得出(﹣3)2﹣4×1×n<0,解之求出n的范围,结合各选项可得答案.【解答】解:根据题意,得:(﹣3)2﹣4×1×n<0,解得:n>,∴n的值可以是3,故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.5.(3分)已知反比例函数y=,在下列结论中,不正确的是()A.图象必经过点(1,2)B.图象在第一、二象限C.图象在第一、三象限D.若x=2,则y=1【分析】由k=2>0即可判断B,C;把x=2,代入y=可判断A,D.【解答】解:A.把(2,1)代入y=得:左边=右边,故本选项不符合题意;B.k=2>0,图象在第一、三象限内,故本选项符合题意;C.k=2>0,图象在第一、三象限内,故本选项不符合题意;D.把x=2,代入y=得y=1,故本选项不符合题意;故选:B.【点评】本题主要考查了反比例函数的性质,能熟练地根据反比例函数的性质进行判断是解此题的关键.6.(3分)如图,在矩形ABCD中,AC,BD相交于点O,若△AOB的面积是3,则矩形ABCD的面积是()A.6B.9C.12D.15【分析】由矩形的性质可得AO=CO=BO=DO,可得S△AOB=S△BOC=S△AOD=S△OCD=3,即可求解.【解答】解:∵四边形ABCD是矩形,∴AO=CO=BO=DO,∴S△AOB=S△BOC=S△AOD=S△OCD=3,∴矩形ABCD的面积=12,故选:C.【点评】本题考查了矩形的性质,掌握矩形的对角线互相平分且相等是解题的关键.7.(3分)笼子里关着一只小松鼠(如图).笼子主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先过第一道门(A或B),再过第二道门(C,D或E)才能出去,则松鼠走出笼子的路线是“先经过A门、再经过D门”的概率为()A.B.C.D.【分析】画树状图,即可得出答案.【解答】解:画树状图如下:共有6种等可能的结果,先经过A门、再经过D门只有1种结果,所以先经过A门、再经过D门的概率为,故选:D.【点评】此题考查的是用树状图法.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;正确画出树状图是解题的关键.8.(3分)如图,△ABC中,∠ACB=90°,分别以AB,AC为边作正方形ABPQ,ACFH,BP交FH于点O.若BC=BF=2,则OP的长为()A.B.2C.D.2【分析】根据正方形的性质得到△FOB∽△CBA,根据相似三角形的性质得到OF,利用勾股定理分别求出OB,PB进而可求.【解答】解:∵四边形ABPQ,ACFH为正方形,∴PB=AB,AC=CF=CB+BF=4,∠F=∠C=90°,∠PBA=90°,∴∠FOB+∠FBO=90°,∠ABC+∠FBO=90°∴∠FOB=∠ABC,∴△FOB∽△CBA,∴=,即=,∴OF=1,在Rt△FBO中,由勾股定理得,OB===,在Rt△ABC中,由勾股定理得,AB===2,∴OP=PB﹣OB=,故选:A.【点评】本题考查了正方形的性质和相似三角形的性质与判定,利用正方形的性质得到△FOB∽△CBA,根据相似三角形的性质得到OF是解题的关键.二、填空题(共5小题,每小题3分,计15分)9.(3分)已知关于x的一元二次方程x2﹣mx+6=0.其中一个解x=3,则m的值为5.【分析】把x=3代入方程x2﹣mx+6=0得到关于m的方程,然后解关于m的方程即可.【解答】解:把x=3代入方程x2﹣mx+6=0得9﹣3m+6=0,解得m=5.故答案为:5.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.(3分)地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而变小(增大、变小).【分析】可连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.【解答】解:连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.则他在墙上投影长度随着他离墙的距离变小而变小.故答案为变小.【点评】本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.11.(3分)在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是10.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,=0.2,解得,a=10.故可以推算出a大约是10个.故答案为:10.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.12.(3分)如图,点A在反比例函数的图象上,点B在反比例函数的图象上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.【分析】首先延长BA交y轴于点E,易得四边形ADOE与四边形BCOE是矩形,又由点A在反比例函数的图象上,点B在反比例函数的图象上,即可得S矩形ADOE=1,S矩形BCOE=3,继而求得答案.【解答】解:延长BA交y轴于点E,∵四边形ABCD为矩形,且AB∥x轴,点C、D在x轴上,∴AE⊥y轴,∴四边形ADOE与四边形BCOE是矩形,∵点A在反比例函数的图象上,点B在反比例函数的图象上,∴S矩形ADOE=1,S矩形BCOE=3,∴S矩形ABCD=S矩形BCOE﹣S矩形ADOE=3﹣1=2.故答案为:2.【点评】此题考查了反比例函数的系数k的几何意义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(3分)如图,在平行四边形ABCD中,E是AB的中点,F在AD上,且AF:AD=1:3,EF交AC于G.若AC=40,则AG=8.【分析】设AC的中点为O,连接EO,根据题意可得OE是△ABC的中位线,从而可得OE=BC,OE∥BC,进而可证8字模型相似三角形△AFG∽△OEG,然后利用相似三角形的性质进行计算即可解答.【解答】解:设AC的中点为O,连接EO,∴AO=AC=20,∵E是AB的中点,∴OE是△ABC的中位线,∴OE=BC,OE∥BC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD∥OE,∴∠F AG=∠AOE,∠AFG=∠OEG,∴△AFG∽△OEG,∴=,∵AF:AD=1:3,∴=,∴==,∴=,∴AG=8,故答案为:8.【点评】本题考查了平行四边形的性质,相似三角形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:y(y﹣7)+2y﹣14=0.【分析】根据因式分解法即可求出答案.【解答】解:y(y﹣7)+2y﹣14=0,y(y﹣7)+2(y﹣7)=0,分解因式得:(y﹣7)(y+2)=0,则y﹣7=0或y+2=0,解得:y1=7,y2=﹣2.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.15.(5分)画出如图所示的正三棱柱的三视图.【分析】根据题意可得正三棱柱的主视图为中间有一条竖的实心线的矩形,左视图为矩形,俯视图为正三角形,从而可画出三视图.【解答】解:如图所示:【点评】此题考查了作图﹣三视图,属于基础题,解答本题的关键是掌握三视图的观察方法,要求一定的空间想象能力.16.(5分)如图,菱形ABCD的边长为4,∠B=60°,以AC为边长作正方形ACEF,求这个正方形的周长.【分析】根据已知可求得△ABC是等边三角形,从而得到AC=AB,再根据正方形的周长公式计算即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是16.【点评】本题考查菱形与正方形的性质,关键是根据已知可求得△ABC是等边三角形.17.(5分)已知反比例函数y=,当x<0时,y随x的增大而减小,求正整数m的值.【分析】先根据反比例函数的性质列出关于m的不等式,求出m的取值范围即可.【解答】解:∵反比例函数y=,当x<0时,y随x的增大而减小,∴3﹣2m>0,解得m<,∴正整数m的值是1.【点评】本题考查的是反比例函数的性质,即反比例函数y=(k≠0)的图象是双曲线;当k>0时,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.18.(5分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形.【分析】根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.【点评】本题考查了平行四边形的性质,矩形的判定,熟练掌握矩形的判定定理是解题关键.19.(5分)某游泳池有1200立方米水,设放水的平均速度为v立方米/小时,将池内的水放完需t小时.(1)求v关于t的函数表达式;(2)若要求在3小时之内把游泳池的水放完,则每小时应至少放水多少立方米?【分析】(1)由题意得vt=900,即v=,自变量的取值范围为t>0,(2)把t=3代入求出相应的v的值,即可求出放水速度.【解答】解:(1)由题意得:vt=1200,即:v=,答:v关于t的函数表达式为v=,自变量的取值范围为t>0.(2)当t=3时,v==400,所以每小时应至少放水400立方米.【点评】考查求反比例函数的应用,根据常用的数量关系得出函数关系式是解题的关键.20.(5分)如图,延长正方形ABCD的一边CB至E,ED与AB相交于点F,过F作FG∥BE交AE于点G,求证:GF=FB.【分析】结合条件可得到GF∥AD,则有=,由BF∥CD可得到=,又因为AD=CD,可得到GF =FB.【解答】证明:∵四边形ABCD为正方形,∴BF∥CD,∴=,∵FG∥BE,∴GF∥AD,∴=,∴=,且AD=CD,∴GF=BF.【点评】本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等.21.(6分)解读诗词(通过列方程算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?诗词大意:周瑜三十岁当东吴都督,去世时的年龄是两位数,十位数字比个位数字小三,个位数字的平方等于他去世时的年龄.【分析】设周瑜去世时的年龄的个位数字为x,则十位数字为x﹣3.根据题意建立方程求出其值就可以求出其结论.【解答】解:设周瑜去世时的年龄的个位数字为x,则十位数字为x﹣3,依题意得:10(x﹣3)+x=x2,解得x1=5,x2=6,当x=5时,25<30,(不合题意,舍去),当x=6时,36>30(符合题意),答:周瑜去世时的年龄为36岁.【点评】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人30岁的年龄是关键.22.(7分)学习了相似三角形相关知识后,小明和同学们想利用“标杆”测量大楼的高度.如图,小明站立在地面点F处,他的同学在点B处竖立“标杆”AB,使得小明的头顶E、标杆顶端A、大楼顶端C在一条直线上(点F、B、D也在一条直线上).已知小明的身高EF=1.5米,“标杆“AB=2.5米,BD=23米,FB=2米,EF、AB、CD均垂直于地面BD.求大楼的高度CD.【分析】如图1中,过点E作EH⊥CD于点H,交AB于点J.则四边形EFBJ,四边形EFDH都是矩形.利用相似三角形的性质求出CH,可得结论.【解答】解:如图中,过点E作EH⊥CD于点H,交AB于点J.则四边形EFBJ,四边形EFDH都是矩形.∴EF=BJ=DH=1.5米,BF=EJ=2米,DB=JH=23米,∵AB=2.5米.∴AJ=AB﹣BJ=2.5﹣1.5=1(米),∵AJ∥CH,∴△EAJ∽△ECH,∴=,∴=,∴CH=12.5(米),∴CD=CH+DH=12.5+1.5=14(米).答:大楼的高度CD为14米.【点评】本题考查相似三角形的应用,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.23.(7分)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有三个种类的奶制品:A:纯牛奶,B:酸奶,C:核桃奶;伊利品牌有两个种类的奶制品:D:纯牛奶,E:核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请用列表法或画树状图法求出两人选购到同一种类奶制品的概率.【分析】(1)根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是,故答案为:;(2)列表如下:A B CD(A,D)(B,D)(C,D)E(A,E)(B,E)(C,E)由表知,共有6种等可能结果,其中两人选购到同一种类奶制品的有2种结果,所以两人选购到同一种类奶制品的概率为=.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.24.(8分)如图,在△ABC中,D为AC延长线上一点,AC=3CD,∠CBD=∠A,过点D作DE∥AB交BC的延长线于点E.(1)求证:△ECD∽△EDB;(2)求△DCE与△ACB的周长比.【分析】(1)由DE∥AB得∠EDC=∠A,因为∠CBD=∠A,所以∠EDC=∠EBD,而∠A=∠A,可证明△ECD ∽△EDB;(2)由DE∥AB可证明△DCE∽△ACB,而AC=3CD,所以△DCE的周长:△ACB的周长=CD:AC=1:3,即可得出问题的答案.【解答】(1)证明:如图,∵DE∥AB,∴∠EDC=∠A,∵∠CBD=∠A,∴∠EDC=∠CBD,即∠EDC=∠EBD,∵∠E=∠E,∴△ECD∽△EDB;(2)解:∵DE∥AB,∴△DCE∽△ACB,∵AC=3CD,∴△DCE的周长:△ACB的周长=CD:AC=1:3=,∴△DCE与△ACB的周长比为.【点评】此题考查平行线的性质、相似三角形的判定与性质等知识,其中证明△DCE∽△ACB是解题的关键.25.(8分)如图,直角坐标系中,点B坐标为(6,0),且AO=AB=5,AH⊥x轴于点H,过B作BC⊥x轴交过点A的双曲线于点C,连接OC交AB于点D,交AH于点M.(1)求双曲线的表达式;(2)求的值.【分析】(1)根据B坐标为(6,0),得到OB=6,根据等腰三角形的性质得到OH=BH=OB=3,根据勾股定理得到AH===4,求得A坐标为(3,4),于是得到结论;(2)设C坐标为(6,m),根据y=(x>0)经过点C,求得BC=2,根据相似三角形的性质得到=,根据三角形的中位线定理得到MH=BC=×2=1于是得到结论.【解答】解:(1)∵B坐标为(6,0),∴OB=6,∵AO=AB=5,AH⊥x轴于点H,∴OH=BH=OB=3,在Rt△AOH中,AO2=AH2+OH2,∴AH===4,∴A坐标为(3,4),∵y=(x>0)经过点A,∴4=,∴k=12,∴双曲线表达式为y=(x>0);(2)设C坐标为(6,m),∵y=(x>0)经过点C,∴m==2,∴BC=2,∵AH⊥x轴,BC⊥x轴,∴AM∥CB,∴△ADM∼△ABC,∴=,∵OH=BH,∴OM=CM,∴MH是△OBC的中位线,∴MH=BC=×2=1,∴AM=AH﹣MH=3,∴=.【点评】本题考查了待定系数法求反比例函数的解析式,相似三角形的判定和性质,三角形的中位线定理,熟练掌握待定系数法求函数的解析式是解题的关键.26.(10分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长交AD于点E,交BA的延长线于点F.(1)求证:△APD≌△CPD;(2)求证:△APE∽△FP A;(3)若PE=4,PF=12,求PC的长.【分析】(1)由四边形ABCD是菱形,根据菱形的性质得AD=CD=AB=CB,还有BD是公共边,可证明△ADB ≌△CDB,得∠PDA=∠PDC,再证明△APD≌△CPD即可;(2)由CD∥AB得∠F=∠PCD,由△APD≌△CPD得∠P AE=∠PCD,所以∠P AE=∠F,而∠P AE=∠FP A,即可证明△APE∽△FP A;(3)由△APE∽△FP A得=,其中PE=4,PF=12,可求出P A的长,由△APD≌△CPD可知PC=P A,即可求得PC的长.【解答】(1)证明:如图,∵四边形ABCD是菱形,∴AD=CD=AB=CB,在△ADB和△CDB中,,∴△ADB≌△CDB(SSS),∴∠PDA=∠PDC,在△APD和△CPD中,,∴△APD≌△CPD(SAS).(2)证明:如图,∵CD∥AB,∴∠F=∠PCD,∵∠P AE=∠PCD,∴∠P AE=∠F,∵∠P AE=∠FP A,∴△APE∽△FP A.(3)解:如图,∵△APE∽△FP A,∴=,∵PE=4,PF=12,∴P A2=PE•PF=4×12=48,∴P A==4,∴PC=P A=4.∴PC的长为4.【点评】此题考查菱形的性质、全等三角形的判定与性质、相似三角形的判定与性质等知识,根据菱形的性质找出相等的角并证明角相等是解题的关键.。
2016-2017学年北京市朝阳区九年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个.1.二次函数y=(x﹣1)2﹣3的最小值是()A.2 B.1 C.﹣2 D.﹣32.下列事件中,是必然事件的是()A.明天太阳从东方升起B.射击运动员射击一次,命中靶心C.随意翻到一本书的某页,这页的页码是奇数D.经过有交通信号灯的路口,遇到红灯3.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A.B.C.D.4.如图,在△ABC中,DE∥BC,DE分别交AB,AC于点D,E,若AD:DB=1:2,则△ADE与△ABC的面积之比是()A.1:3 B.1:4 C.1:9 D.1:165.已知点A(1,a)与点B(3,b)都在反比例函数y=﹣的图象上,则a与b之间的关系是()A.a>b B.a<b C.a≥b D.a=b6.已知圆锥的底面半径为2cm,母线长为3cm,则它的侧面展开图的面积为()A.18πcm2B.12πcm2C.6πcm2D.3πcm27.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.则用电阻R表示电流I的函数表达式为()A.B.C.D.8.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为5,AC=8.则cosB的值是()A.B.C.D.9.《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是()A.5步B.6步C.8步D.10步10.已知二次函数y1=ax2+bx+c(a≠0)和一次函数y2=kx+n(k≠0)的图象如图所示,下面有四个推断:①二次函数y1有最大值②二次函数y1的图象关于直线x=﹣1对称③当x=﹣2时,二次函数y1的值大于0④过动点P(m,0)且垂直于x轴的直线与y1,y2的图象的交点分别为C,D,当点C位于点D上方时,m的取值范围是m<﹣3或m>﹣1.其中正确的是()A.①③ B.①④ C.②③ D.②④二、填空题(本题共18分,每小题3分)11.将二次函数y=x2﹣2x﹣5化为y=a(x﹣h)2+k的形式为y= .12.抛物线y=x2﹣2x+m与x轴有两个公共点,请写出一个符合条件的表达式为.13.如图,若点P在反比例函数y=﹣(x<0)的图象上,过点P作PM⊥x轴于点M,PN⊥y轴于点N,则矩形PMON 的面积为.14.某农科所在相同条件下做某种作物种子发芽率的试验,结果如表所示:则该作物种子发芽的概率约为.15.如图,△ABC中,D、E分别是AB、AC边上一点,连接DE.请你添加一个条件,使△ADE∽△ABC,则你添加的这一个条件可以是(写出一个即可).16.阅读下面材料:①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是;(2)∠APB=∠ACB的依据是.、解答题(本题共72分,第17-26题每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)计算:2sin45°+tan60°+2cos30°﹣.18.(5分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=,AD=1,求DB的长.19.(5分)已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如表:(1)求二次函数的表达式,并写出这个二次函数图象的顶点坐标;(2)求出该函数图象与x轴的交点坐标.20.(5分)如图,在平面直角坐标系xOy中,△ABC的三个顶点分别为A(2,6),B(4,2),C(6,2).(1)以原点O为位似中心,将△ABC缩小为原来的,得到△DEF.请在第一象限内,画出△DEF.(2)在(1)的条件下,点A的对应点D的坐标为,点B的对应点E的坐标为.21.(5分)如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM 经过圆心O交⊙O于点E,CD=10,EM=25.求⊙O的半径.22.(5分)如图,在Rt△ABC中,∠C=90°,点D是BC边的中点,CD=2,tanB=.(1)求AD和AB的长;(2)求sin∠BAD的值.23.(5分)已知一次函数y=﹣2x+1的图象与y轴交于点A,点B(﹣1,n)是该函数图象与反比例函数y=(k ≠0)图象在第二象限内的交点.(1)求点B的坐标及k的值;(2)试在x轴上确定点C,使AC=AB,直接写出点C的坐标.24.(5分)如图,用一段长为40m的篱笆围成一个一边靠墙的矩形花圃ABCD,墙长28m.设AB长为x m,矩形的面积为y m2.(1)写出y与x的函数关系式;(2)当AB长为多少米时,所围成的花圃面积最大?最大值是多少?(3)当花圃的面积为150m2时,AB长为多少米?25.(5分)如图,AB是⊙O的直径,C,D是⊙O上两点,且=,过点C的直线CF⊥AD于点F,交AB的延长线于点E,连接AC.(1)求证:EF是⊙O的切线;(2)连接FO,若sinE=,⊙O的半径为r,请写出求线段FO长的思路.26.(5分)某“数学兴趣小组”根据学习函数的经验,对函数y=﹣x2+2|x|+1的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x的取值范围是全体实数,x与y的几组对应数值如表:其中m= ;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)根据函数图象,写出:①该函数的一条性质;②直线y=kx+b经过点(﹣1,2),若关于x的方程﹣x2+2|x|+1=kx+b有4个互不相等的实数根,则b的取值范围是.27.(7分)在平面直角坐标系xOy中,直线y=﹣x+n经过点A(﹣4,2),分别与x,y轴交于点B,C,抛物线y=x2﹣2mx+m2﹣n的顶点为D.(1)求点B,C的坐标;(2)①直接写出抛物线顶点D的坐标(用含m的式子表示);②若抛物线y=x2﹣2mx+m2﹣n与线段BC有公共点,求m的取值范围.28.(7分)在Rt△ABC中,∠ACB=90°,O为AB边上的一点,且tanB=,点D为AC边上的动点(不与点A,C 重合),将线段OD绕点O顺时针旋转90°,交BC于点E.(1)如图1,若O为AB边中点,D为AC边中点,则的值为;(2)若O为AB边中点,D不是AC边的中点,①请根据题意将图2补全;②小军通过观察、实验,提出猜想:点D在AC边上运动的过程中,(1)中的值不变.小军把这个猜想与同学们进行交流,通过讨论,形成了求的值的几种想法:想法1:过点O作OF⊥AB交BC于点F,要求的值,需证明△OEF∽△ODA.想法2:分别取AC,BC的中点H,G,连接OH,OG,要求的值,需证明△OGE∽△OHD.想法3:连接OC,DE,要求的值,需证C,D,O,E四点共圆.…请你参考上面的想法,帮助小军写出求的值的过程(一种方法即可);(3)若=(n≥2且n为正整数),则的值为(用含n的式子表示).29.(8分)在平面直角坐标系xOy中,⊙C的半径为r(r>1),P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:若直线CP与⊙C交于点A,B,满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图为⊙C及其“完美点”P的示意图.(1)当⊙O的半径为2时,①在点M(,0),N(0,1),T(﹣,﹣)中,⊙O的“完美点”是;②若⊙O的“完美点”P在直线y=x上,求PO的长及点P的坐标;(2)⊙C的圆心在直线y=x+1上,半径为2,若y轴上存在⊙C的“完美点”,求圆心C的纵坐标t的取值范围.数学试题答案一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个.1.【考点】二次函数的最值.【分析】由顶点式可知当x=1时,y取得最小值﹣3.【解答】解:∵y=(x﹣1)2﹣3,∴当x=1时,y取得最小值﹣3,故选:D.【点评】本题主要考查二次函数的最值,熟练掌握二次函数的性质是解题的关键.2.【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念,可得答案.【解答】解:A、明天太阳从东方升起是必然事件,故A正确;B、射击运动员射击一次,命中靶心是随机事件,故B错误;C、随意翻到一本书的某页,这页的页码是奇数是随机事件,故C错误;D、经过有交通信号灯的路口,遇到红灯是随机事件,故D错误;故选:A.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【考点】概率公式.【分析】直接利用概率公式求解.【解答】解:从该盒子中任意摸出一个球,摸到黄球的概率==.故选A.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.4.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,即可证得△ADE∽△ABC,然后根据相似三角形的面积的比等于相似比的平方,即可求解.【解答】解:∵AD:DB=1:2,∴AD:AB=1:3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了三角形的判定和性质:熟练掌握相似三角形的面积比是相似比的平方是解题的关键.5.【考点】反比例函数图象上点的坐标特征.【分析】把所给点的横纵坐标代入反比例函数的解析式,求出a与b的值,比较大小即可.【解答】解:点A(1,a)在反比例函数y=﹣的图象上,a=﹣12,点(3,b)在反比例函数y=﹣的图象上,b=﹣4,∴a<b.故选:B.【点评】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积等于比例系数.6.【考点】圆锥的计算.【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:它的侧面展开图的面积=•2π•2•3=6π(cm2).故选C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.【考点】反比例函数的应用;根据实际问题列反比例函数关系式.【分析】根据函数图象可用电阻R表示电流I的函数解析式为I=,再把(2,3)代入可得k的值,进而可得函数解析式.【解答】解:设用电阻R表示电流I的函数解析式为I=,∵过(2,3),∴k=3×2=6,∴I=,故选:D.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.8.【考点】三角形的外接圆与外心;解直角三角形.【分析】连接CD,则可得∠ACD=90°,且∠B=∠D,在Rt△ADC中可求得CD,则可求得cosD,即可求得答案.【解答】解:如图,连接CD,∵AD⊙O的直径,∴∠ACD=90°,且∠B=∠D,在Rt△ACD中,AD=5×2=10,AC=8,∴CD=6,∴cosD===,∴cosB=cosD=,故选B.【点评】本题主要考查圆周角定理及三角函数的定义,构造直角三角形是解题的关键.9.【考点】三角形的内切圆与内心.【分析】由勾股定理可求得斜边长,分别连接圆心和三个切点,设内切圆的半径为r,利用面积相等可得到关于r 的方程,可求得内切圆的半径,则可求得内切圆的直径.【解答】解:如图,在Rt△ABC中,AC=8,BC=15,∠C=90°,∴AB==17,∴S△ABC=AC•BC=×8×15=60,设内切圆的圆心为O,分别连接圆心和三个切点,及OA、OB、OC,设内切圆的半径为r,∴S△ABC=S△AOB+S△BOC+S△AOC=×r(AB+BC+AC)=20r,∴20r=60,解得r=3,∴内切圆的直径为6步,故选B.【点评】本题主要考查三角形的内切圆,连接圆心和切点,把三角形的面积分成三个三个角形的面积得到关于r的方程是解题的关键.10.【考点】二次函数图象上点的坐标特征;一次函数图象与系数的关系;二次函数的最值.【分析】根据函数的图象即可得到结论.【解答】解:∵二次函数y1=ax2+bx+c(a≠0)的图象的开口向上,∴二次函数y1有最小值,故①错误;观察函数图象可知二次函数y1的图象关于直线x=﹣1对称,故②正确;当x=﹣2时,二次函数y1的值小于0,故③错误;当x<﹣3或x>﹣1时,抛物线在直线的上方,∴m的取值范围为:m<﹣3或m>﹣1,故④正确.故选D.【点评】本题考查了二次函数图象上点的坐标特征以及函数图象,熟练运用二次函数图象上点的坐标特征求出二次函数解析式是解题的关键.二、填空题(本题共18分,每小题3分)11.【考点】二次函数的三种形式.【分析】利用配方法整理即可得解;【解答】解:(1)y=x2﹣2x﹣5=x2﹣2x+1﹣6=(x﹣1)2﹣6,故答案为:(x﹣1)2﹣6.【点评】本题考查了二次函数的三种形式的转化,二次函数的性质,熟练掌握配方法是解题的关键.12.【考点】抛物线与x轴的交点.【分析】根据判别式的意义得到△=(﹣2)2﹣4m>0,然后解不等式组求出m的范围,再在此范围内写出一个m的值即可.【解答】解:根据题意得到△=(﹣2)2﹣4m>0,解得m<1,若m取0,抛物线解析式为y=x2﹣2x.故答案为y=x2﹣2x.【点评】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.13.【考点】反比例函数系数k的几何意义.【分析】设PN=a,PM=b,根据P点在第二象限得P(﹣a,b),根据矩形的面积公式即可得到结论.【解答】解:设PN=a,PM=b,∵P点在第二象限,∴P(﹣a,b),代入y=中,得k=﹣ab=﹣3,∴矩形PMON的面积=PN•PM=ab=3,故答案为:3.【点评】本题考查了反比例函数系数k的几何意义.过反比例函数图象上一点作x轴、y轴的垂线,所得矩形的面积为反比例函数系数k的绝对值.14.【考点】模拟实验.【分析】选一个表格中发芽种子频率比较按近的数,如0.900、0.910等都可以.【解答】解:答案不唯一,如:0.910.故答案为:0.910.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.15.【考点】相似三角形的判定.【分析】利用有两组角对应相等的两个三角形相似添加条件.【解答】解:∵∠DAE=∠BAC,∴当∠ADE=∠B时,△ADE∽△ABC.故答案为∠ADE=∠B.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.16.【考点】作图—复杂作图;线段垂直平分线的性质;三角形的外接圆与外心.【分析】(1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论.(2)根据同弧所对的圆周角相等即可得出结论.【解答】解:(1)如图2中,∵MN垂直平分AB,EF垂直平分BC,∴OA=OB,OB=OC(线段垂直平分线上的点与这条线段两个端点的距离相等),∴OA=OB=OC(等量代换)故答案为①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换.(2)∵=,∴∠APB=∠ACB(同弧所对的圆周角相等).故答案为同弧所对的圆周角相等.【点评】本题考查作图﹣复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质,属于中考常考题型.三、解答题(本题共72分,第17-26题每小题5分,第27题7分,第28题7分,第29题8分)17.【考点】实数的运算;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=2×++2×﹣2=.【点评】此题主要考查了实数运算以及特殊角的三角函数值,正确记忆相关数据是解题关键.18.【考点】相似三角形的判定与性质.【分析】由∠ACD=∠ABC与∠A是公共角,根据有两角对应相等的三角形相似,即可证得△ADC∽△ACB,又由相似三角形的对应边成比例,即可求得AB,进而得到DB的长.【解答】解:∵∠ACD=∠ABC,∠A=∠A,∴△ACD∽△ABC.∴,∴.∴AB=3,∴DB=AB﹣AD=2.【点评】此题考查了相似三角形的判定与性质.此题难度不大,解题的关键是注意方程思想与数形结合思想的应用.19.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)由待定系数法即可得出答案;(2)求出y=0时x的值,即可得出答案.【解答】解:(1)由题意,得c=﹣3.将点(2,5),(﹣1,﹣4)代入,得解得∴y=x2+2x﹣3.顶点坐标为(﹣1,﹣4).(2)当y=0时,x2+2x﹣3,解得:x=﹣3或x=1,∴函数图象与x轴的交点坐标为(﹣3,0),(1,0).【点评】本题考查了待定系数法求二次函数的解析式、抛物线与x轴的交点;求出二次函数的解析式是解决问题的关键.20.【考点】作图-位似变换.【分析】(1)分别连接OA、OB、OC,然后分别取它们的中点得到D、E、F;(2)利用线段中点坐标公式可得到D点和E点坐标.【解答】解:(1)如图,△DEF为所作;(2)D(1,3),E(2,1).故答案为(1,3),(2,1).【点评】本题考查了作图﹣位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.21.【考点】垂径定理的应用.【分析】根据垂径定理得出EM⊥CD,则CM=DM=2,在Rt△COM中,有OC2=CM2+OM2,进而可求得半径OC.【解答】解:如图,连接OC,∵M是弦CD的中点,EM过圆心O,∴EM⊥CD.∴CM=MD.∵CD=10,∴CM=5.设OC=x,则OM=25﹣x,在Rt△COM中,根据勾股定理,得52+(25﹣x)2=x2.解得 x=13.∴⊙O的半径为13.【点评】此题主要考查了垂径定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形.22.【考点】解直角三角形.【分析】(1)由中点定义求BC=4,根据tanB=得:AC=3,由勾股定理得:AB=5,AD=;(2)作高线DE,证明△DEB∽△ACB,求DE的长,再利用三角函数定义求结果.【解答】解:(1)∵D是BC的中点,CD=2,∴BD=DC=2,BC=4,在Rt△ACB中,由 tanB=,∴,∴AC=3,由勾股定理得:AD===,AB===5;(2)过点D作DE⊥AB于E,∴∠C=∠DEB=90°,又∠B=∠B,∴△DEB∽△ACB,∴,∴,∴,∴sin∠BAD===.【点评】本题考查了解直角三角形,熟练掌握直角三角形的边角关系是解题的关键.23.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点B的横坐标利用一次函数图象上点的坐标特征即可求出点B的坐标,根据点B的坐标利用反比例函数图象上点的坐标特征即可求出k值;(2)令x=0利用一次函数图象上点的坐标特征可求出点A的坐标,设点C的坐标为(m,0),根据两点间的距离公式结合AC=AB即可得出关于m无理方程,解之即可得出m的值,进而得出点C的坐标.【解答】解:(1)∵点B(﹣1,n)在直线y=﹣2x+1上,∴n=2+1=3.∴点B的坐标为(﹣1,3).∵点B(﹣1,3)在反比例函数的图象上,∴k=﹣3.(2)当x=0时,y=﹣2x+1=1,∴点A的坐标为(0,1).设点C的坐标为(m,0),∵AC=AB,∴==,解得:m=±2.∴点C的坐标为(2,0)或(﹣2,0).【点评】本题考查了反比例函数与一次函数的交点问题、一次函数图象上点的坐标特征以及反比例函数图象上点的坐标特征,根据一次函数图象上点的坐标特征找出点A、B的坐标是解题的关键.24.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据题意可以得到y与x的函数关系式;(2)根据(1)中的函数关系式化为顶点式,注意x的取值范围;(3)根据(1)和(2)中的关系可以求得AB的长.【解答】解:(1)y=x(40﹣2x)=﹣2x2+40x,即y与x的函数关系式是y=﹣2x2+40x;(2)由题意,得,解得,6≤x<20.由题意,得 y=﹣2x2+40x=﹣2(x﹣10)2+200,∴当x=10时,y有最大值,y的最大值为200,即当AB长为10m时,花圃面积最大,最大面积为200m2;(3)令y=150,则﹣2x2+40x=150.解得,x1=5,x2=15,∵6≤x<20,∴x=15,即当AB长为15m时,面积为150m2.【点评】本题考查二次函数的应用、一元二次方程的应用,解题的关键是明确题意,找出所求问题需要的条件.25.【考点】切线的判定;圆心角、弧、弦的关系;解直角三角形.【分析】(1)连接OC,根据等腰三角形的性质得到∠1=∠2,根据圆周角定理得到∠1=∠3,推出OC∥AF,根据切线的判定定理即可得到结论;(2)由sinE=,推出△AEF,△OEC都为含30°的直角三角形;推出△ACF为含30°的直角三角形;由勾股定理可求OF的长.【解答】(1)证明:如图,连接OC,∵OC=OA,∴∠1=∠2,∵=,∴∠1=∠3,∴∠2=∠3,∴OC∥AF,∵CF⊥AD,∴∠CFA=90°,∴∠OCF=90°,∴OC⊥EF,∵OC为⊙O的半径,∴EF是⊙O的切线;(2)解:求解思路如下:①在Rt△AEF和Rt△OEC中,由sinE=,可得△AEF,△OEC都为含30°的直角三角形;②由∠1=∠3,可知△ACF为含30°的直角三角形;③由⊙O的半径为r,可求OE,AE的长,从而可求CF的长;④在Rt△COF中,由勾股定理可求OF的长.【点评】本题考查了切线的判定,直角三角形的性质,圆周角定理,平行线的判定和性质,正确的作出辅助线是解题的关键.26.【考点】抛物线与x轴的交点;一次函数的图象;一次函数与一元一次方程;二次函数的图象.【分析】(1)把x=﹣2代入函数解释式即可得m的值;(2)描点、连线即可得到函数的图象;(3)①根据函数图象得到函数y=x2﹣2|x|+1的图象关于y轴对称;当x>1时,y随x的增大而减少;②根据函数的图象即可得到b的取值范围是1<b<2.【解答】解:(1)当x=﹣2时,m=﹣(﹣2)2+2×|﹣2|+1=﹣4+4+1=1.(2)如图所示:(3)①答案不唯一.如:函数图象关于y轴对称.②由函数图象知:∵关于x的方程﹣x2+2|x|+1=kx+b有4个互不相等的实数根,∴b的取值范围是1<b<2.故答案为:1;函数图象关于y轴对称;1<b<2.【点评】本题考查了抛物线与x轴的交点,二次函数的图象和性质,正确的识别图象是解题的关键.27.【考点】二次函数的性质;一次函数的性质;一次函数图象上点的坐标特征.【分析】(1)把A点坐标代入直线解析式,可求得n的值,可得直线解析式,即可求得B、C的坐标;(2)①把抛物线解析式化为顶点式,结合(1)中所求n的值,可求得D点坐标;②把B、C两点的坐标分别代入抛物线解析式,可求得m的值,从而可求得其取值范围.【解答】解:(1)把A(﹣4,2)代入y=x+n中,得n=1,∴直线解析式为y=x+1,令y=0可求得x=4,令x=0可得y=1,∴B(4,0),C(0,1);(2)①∵y=x2﹣2mx+m2﹣n=(x﹣m)2﹣1,∴D(m,﹣1);②将点(0,1)代入y=x2﹣2mx+m2﹣1中,得1=m2﹣1,解得m=或m=﹣,将点(4,0)代入y=x2﹣2mx+m2﹣1中,得0=16﹣8m+m2﹣1,解得m=5或m=3,∴.【点评】本题主要考查二次函数的性质,求得抛物线的解析式是解题的关键,注意数形结合.28.【考点】相似形综合题;相似三角形的判定与性质.【分析】(1)根据O为AB边中点,D为AC边中点,得出四边形CDOE是矩形,再根据tanB==tan∠AOD,得出=,进而得到=;(2)①根据题意将图2补全即可;②法1:过点O作OF⊥AB交BC于点F,要求的值,需证明△OEF∽△ODA;法2:分别取AC,BC的中点H,G,连接OH,OG,要求的值,需证明△OGE∽△OHD;法3:连接OC,DE,要求的值,需证C,D,O,E四点共圆.分别根据三种方法进行解答即可;(3)先过点O作OF⊥AB交BC于点F,要求的值,需证明△OEF∽△ODA,得出,再根据=(n≥2且n为正整数),得到=即可.【解答】解:(1)如图1,∵O为AB边中点,D为AC边中点,∴OD∥BC,∠CDO=90°,又∵∠ACB=90°,∠DOE=90°,∴四边形CDOE是矩形,∴OE=CD=AD,∵OD∥BC,∴∠AOD=∠B,∴tanB==tan∠AOD,即=,∴=.故答案为:;(2)①如图所示:②法1:如图,过点O作OF⊥AB交BC于点F,∵∠DOE=90°,∴∠AOD+∠DOF=∠DOF+∠FOE=90°,∴∠AOD=∠FOE,∵∠ACB=90°,∴∠A+∠B=∠OFE+∠B=90°,∴∠A=∠OFE,∴△OEF∽△ODA,∴,∵O为AB边中点,∴OA=OB.在Rt△FOB中,tanB=,∴,∴,∴;法2:如图,分别取AC,BC的中点H,G,连接OH,OG,∵O为AB边中点,∴OH∥BC,OH=,OG∥AC.∵∠ACB=90°,∴∠OHD=∠OGE=90°,∴∠HOG=90°,∵∠DOE=90°,∴∠HOD+∠DOG=∠DOG+∠GOE=90°,∴∠HOD=∠GOE,∴△OGE∽△OHD,∴,∵tanB=,∴,∵OH=GB,∴,∴;法3:如图,连接OC,DE,∵∠ACB=90°,∠DOE=90°,∴DE的中点到点C,D,O,E的距离相等,∴C,D,O,E四点共圆,∴∠ODE=∠OCE,∵O为AB边中点,∴OC=OB,∴∠B=∠OCE,∴∠ODE=∠B,∵tanB=,∴;(3)如图所示,过点O作OF⊥AB交BC于点F,∵∠DOE=90°,∴∠AOD+∠DOF=∠DOF+∠FOE=90°,∴∠AOD=∠FOE.∵∠ACB=90°,∴∠A+∠B=∠OFE+∠B=90°,∴∠A=∠OFE,∴△OEF∽△ODA,∴,∵=,∴可设OB=1,则AB=n,AO=n﹣1,∵在Rt△FOB中,tanB=,∴OF=,∴==,∴=.故答案为:.【点评】本题属于相似形综合题,主要考查了相似三角形的判定与性质的综合应用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有时可单独使用,有时需要综合运用.29.【考点】圆的综合题.【分析】(1)①利用圆的“完美点”的定义直接判断即可得出结论;②先确定出满足圆的“完美点”的OP的长度,然后分情况讨论计算即可得出结论;(2)先判断出圆的“完美点”的轨迹,然后确定出取极值时⊙C与y轴的位置关系即可得出结论.【解答】解:(1)①∵点M(,0),∴设⊙O与x轴的交点为A,B,∵⊙O的半径为2,∴取A(﹣2,0),B(2,0),∴|MA﹣MB|=|(+2)﹣(﹣2)|=4≠2,∴点M不是⊙O的“完美点”,同理:点N,T是⊙O的“完美点”.故答案为N,T;②如图1,根据题意,|PA﹣PB|=2,∴|OP+2﹣(2﹣OP)|=2,∴OP=1.若点P在第一象限内,作PQ⊥x轴于点Q,∵点P在直线上,OP=1,∴OQ=,PQ=.∴P(,).若点P在第三象限内,根据对称性可知其坐标为(﹣,﹣).综上所述,PO的长为1,点P的坐标为(,)或(﹣,﹣).(2)对于⊙C的任意一个“完美点”P都有|PA﹣PB|=2,∴|CP+2﹣(2﹣CP)|=2.∴CP=1.∴对于任意的点P,满足CP=1,都有|CP+2﹣(2﹣CP)|=2,∴|PA﹣PB|=2,故此时点P为⊙C的“完美点”.因此,⊙C的“完美点”是以点C为圆心,1为半径的圆.设直线与y轴交于点D,如图2,当⊙C移动到与y轴相切且切点在点D的下方时,t的值最小.设切点为E,连接CE,∵⊙C的圆心在直线y=x+1上,∴此直线和x轴,y轴的交点C(0,1),F(﹣,0),∴OF=,OD=1,∵CE∥OF,∴△DOF∽△DEC,∴,∴,∴DE=2.∴OE=t的最小值为1﹣2.当⊙C移动到与y轴相切且切点在点D的上方时,t的值最大.同理可得t的最大值为1+2.综上所述,t的取值范围为1﹣2≤t≤1+2。
2017-2018学年福建省漳州市九年级(上)期末数学试卷一、选择题(本题共10个小题,每小题4分,共40分,每小题只有一个正确的选项)1.式子有意义,则x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤12.方程x2=4的解是()A.x=2 B.x=﹣2 C.x1=1,x2=4 D.x1=2,x2=﹣23.一元二次方程x2+2x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根4.下列各式计算正确的是()A.6﹣2=4 B.2+3=5C.2×3=6D.6÷2=3 5.在△ABC中,∠ACB=90°,BC=1,AC=2,则下列正确的是()A.sinA=B.tanA=C.cosB=D.tanB=6.用配方法解方程x2﹣6x﹣5=0,下列配方结果正确的是()A.(x﹣6)2=41 B.(x﹣3)2=14 C.(x+3)2=14 D.(x﹣3)2=47.下列事件中,是必然事件的是()A.打开电视机,它正在直播排球比赛B.抛掷5枚硬币,结果是2个正面朝上与3个反面朝上C.黑暗中从一大串钥匙中随便选中一把,用它打开了门D.投掷一枚普通的正方体骰子,正面朝上的数不是奇数便是偶数8.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm9.下列关于相似的命题中,①等边三角形都相似;②直角三角形都相似;③等腰直角三角形都相似;④矩形都相似,其中真命题有()A.①②B.①③C.①③④D.①②③④10.如图,E为▱ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则▱ABCD的面积为()A.30 B.27 C.14 D.32二、填空题(本大题共6小题,每小题4分,共26分)11.已知=,则=.12.已知锐角α满足cosα=,则锐角α的度数是度.13.把二次根式化成最简二次根式,则=.14.同时投掷二枚正四面体骰子,所得的点数之和恰为偶数的概率是.15.若关于x的一元二次方程x2﹣x+k=0的一个根是0,则另一个根是.16.将矩形纸片ABCD按如图方式折叠,BE、CF为折痕,折叠后点A和点D都落在点O处,若△EOF是等边三角形,则的值为.三、解答题(本大题共9小题,共86分)17.计算:2+tan60°﹣2sin45°.18.解方程:(x﹣1)2=2(1﹣x)19.如图,在△ABC中,DE∥BC中,AD=1,BD=2,DE=2,求BC的长.20.用一个字来回顾2016年漳州的楼市,这个字就是“涨”!根据漳州房地产联合网不完全统计,2016年市区某在售的楼盘十月份房价为8100元/m2,到了十二月房价均价为12100元/m2,求十月到十二月房价均价的平均月增长率是多少?21.如图所示,有一个绳索拉直的木马秋千,秋千绳索AB的长度为4米,将它往前推进2米(即DE=2米),求此时秋千的绳索与静止时所夹的角度及木马上升的高度.(精确到0.1米)22.在学习概率知识的课堂上,老师组织小组讨论一道题目:在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,要求同学们按两种规则摸球,规则一:搅匀后从中摸出一个球,放回搅匀后再摸出第二个球;规则二:搅匀后从中一次任意摸出两个球,请你通过画树状图或列表法计算说明哪种规则摸出两个红球的概率较大?23.观察下列各式:=1+﹣=1;=1+﹣=1;=1+﹣=1,…请你根据以上三个等式提供的信息解答下列问题①猜想:==;②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:;③应用:计算.24.如图,在平面直角坐标系中,▱ABCD的边BC在x轴上,点A在y轴上,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求cos∠ABC的值;(2)点P由B出发沿BC方向匀速运动,速度为每秒2个单位长度,点Q由D 出发沿DA方向匀速运动,速度为每秒1个单位长度,设运动时间为t秒(0<t ≤3),是否存在某一时刻;使△AOP与△QAO相似?若存在,求此时t的值;若不存在,请说明理由.25.探究证明:(1)如图1,矩形ABCD中,点M、N分别在边BC,CD上,AM⊥BN,求证:=.(2)如图2,矩形ABCD中,点M在边BC上,EF⊥AM,EF分别交AB,CD于点E、点F,试猜想与有什么数量关系?并证明你的猜想.拓展应用:综合(1)、(2)的结论解决以下问题:(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.2017-2018学年福建省漳州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10个小题,每小题4分,共40分,每小题只有一个正确的选项)1.式子有意义,则x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤1【考点】二次根式有意义的条件.【分析】根据二次根式的被开方数是非负数列出不等式x﹣1≥0,通过解该不等式即可求得x的取值范围.【解答】解:根据题意,得x﹣1≥0,解得,x≥1.故选:C.2.方程x2=4的解是()A.x=2 B.x=﹣2 C.x1=1,x2=4 D.x1=2,x2=﹣2【考点】解一元二次方程﹣直接开平方法.【分析】直接开平方法求解可得.【解答】解:∵x2=4,∴x1=2,x2=﹣2,故选:D.3.一元二次方程x2+2x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根【考点】根的判别式.【分析】先计算出根的判别式△的值,根据△的值就可以判断根的情况.【解答】解:∵在方程x2+2x﹣1=0中,△=22﹣4×1×(﹣1)=8>0,∴方程x2+2x﹣1=0有两个不相等的实数根.故选A.4.下列各式计算正确的是()A.6﹣2=4 B.2+3=5C.2×3=6D.6÷2=3【考点】二次根式的混合运算.【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=2,所以A选项错误;B、2与3不能合并,所以B选项错误;C、原式=6=6,所以C选项正确;D、原式=3,所以D选项错误.故选C.5.在△ABC中,∠ACB=90°,BC=1,AC=2,则下列正确的是()A.sinA=B.tanA=C.cosB=D.tanB=【考点】锐角三角函数的定义.【分析】先根据勾股定理得出AB,再根据三角函数的定义分别得出sinA,tanA,cosB,tanB即可.【解答】解:∵∠ACB=90°,BC=1,AC=2,∴AB===,∴sinA===,tanA==,cosB===,tanB==2,故选C.6.用配方法解方程x2﹣6x﹣5=0,下列配方结果正确的是()A.(x﹣6)2=41 B.(x﹣3)2=14 C.(x+3)2=14 D.(x﹣3)2=4【考点】解一元二次方程﹣配方法.【分析】将常数项移到等式的右边,再在两边都配上一次项系数一半的平方即可得.【解答】解:∵x2﹣6x=5,∴x2﹣6x+9=5+9,即(x﹣3)2=14,故选:B.7.下列事件中,是必然事件的是()A.打开电视机,它正在直播排球比赛B.抛掷5枚硬币,结果是2个正面朝上与3个反面朝上C.黑暗中从一大串钥匙中随便选中一把,用它打开了门D.投掷一枚普通的正方体骰子,正面朝上的数不是奇数便是偶数【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、打开电视机,它正在直播排球比赛是随机事件,故A错误;B、抛掷5枚硬币,结果是2个正面朝上与3个反面朝上是随机事件,故B错误;C、黑暗中从一大串钥匙中随便选中一把,用它打开了门是随机事件,故C错误;D、投掷一枚普通的正方体骰子,正面朝上的数不是奇数便是偶数是必然事件,故D正确;故选:D.8.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm【考点】解直角三角形;线段垂直平分线的性质.【分析】根据垂直平分线的性质得出BD=AD,再利用cos∠BDC==,即可求出CD的长,再利用勾股定理求出BC的长.【解答】解:∵∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,∴BD=AD,∴CD+BD=8,∵cos∠BDC==,∴=,解得:CD=3,BD=5,∴BC=4.故选A.9.下列关于相似的命题中,①等边三角形都相似;②直角三角形都相似;③等腰直角三角形都相似;④矩形都相似,其中真命题有()A.①②B.①③C.①③④D.①②③④【考点】命题与定理.【分析】判断两个多边形是否相似,需要看对应角是否相等,对应边的比是否相等.矩形、三角形、都属于形状不唯一确定的图形,即对应角、对应边的比不一定相等,故不一定相似,而两个等边三角形和等腰直角三角形,对应角都是相等,对应边的比也都相当,故一定相似.【解答】解:①等边三角形都相似,正确;②直角三角形不一定相似,错误;③等腰直角三角形都相似,正确;④矩形不一定相似,错误;故选B10.如图,E为▱ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则▱ABCD的面积为()A .30B .27C .14D .32【考点】相似三角形的判定与性质;平行四边形的性质.【分析】用相似三角形的面积比等于相似比的平方,以及面积的和差求解.【解答】解:∵四边形ABCD 是平行四边形,∴AB=CD ,CD ∥AB ,BC ∥AB ,∴△BEF ∽△AED , ∵, ∴, ∴,∵△BEF 的面积为4,∴S △AED =25,∴S 四边形ABFD =S △AED ﹣S △BEF =21,∵AB=CD ,, ∴, ∵AB ∥CD ,∴△BEF ∽△CDF , ∴,∴S △CDF =9,∴S 平行四边形ABCD =S 四边形ABFD +S △CDF =21+9=30,故选A .二、填空题(本大题共6小题,每小题4分,共26分)11.已知=,则= .【考点】比例的性质.【分析】根据等式的性质,可用m表示n,根据分式的性质,可得答案.【解答】解:由=,得n=3m.∴==,故答案为:.12.已知锐角α满足cosα=,则锐角α的度数是60度.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:由锐角α满足cosα=,则锐角α的度数是60度,故答案为:60.13.把二次根式化成最简二次根式,则=.【考点】最简二次根式.【分析】根据二次根式的性质把根号内的因式开出来即可.【解答】解:==,故答案为:.14.同时投掷二枚正四面体骰子,所得的点数之和恰为偶数的概率是.【考点】列表法与树状图法.【分析】画树状图展示所有16种等可能的结果数,再找出所得的点数之和恰为偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中所得的点数之和恰为偶数的结果数为8,所以所得的点数之和恰为偶数的概率==.15.若关于x的一元二次方程x2﹣x+k=0的一个根是0,则另一个根是1.【考点】根与系数的关系.x2=﹣,来求方程的另一个根.【分析】根据一元二次方程的根与系数的关系x1+【解答】解:设x1,x2是关于x的一元二次方程x2﹣x+k=0的两个根,∵关于x的一元二次方程x2﹣x+k=0的一个根是0,∴由韦达定理,得x1+x2=1,即x2=1,即方程的另一个根是1.故答案为1.16.将矩形纸片ABCD按如图方式折叠,BE、CF为折痕,折叠后点A和点D都落在点O处,若△EOF是等边三角形,则的值为.【考点】翻折变换(折叠问题);等边三角形的性质;矩形的性质.【分析】由△EOF是等边三角形,可得EF=OE=OF,∠OEF=60°,又由由折叠的性质可得:OE=AE,OF=DF,∠AEB=∠OEB,则可得AD=3AE,∠AEB=60°,则可证得AB=AE,继而求得答案.【解答】解:∵△EOF是等边三角形,∴EF=OE=OF,∠OEF=60°,由折叠的性质可得:OE=AE,OF=DF,∠AEB=∠OEB,∴AD=3AE,∠AEB==60°,∵四边形ABCD是矩形,∴∠A=90°,∴tan∠AEB==,∴AB=AE,∴=.故答案为:.三、解答题(本大题共9小题,共86分)17.计算:2+tan60°﹣2sin45°.【考点】实数的运算;特殊角的三角函数值.【分析】把tan60°、sin45°的特殊三角函数值代入代数式,再进行加减运算.【解答】解:原式=2×+﹣2×==.18.解方程:(x﹣1)2=2(1﹣x)【考点】解一元二次方程﹣因式分解法.【分析】先移项得到(x﹣1)2+2(x﹣1)=0,然后利用因式分解法解方程.【解答】解:(x﹣1)2+2(x﹣1)=0,(x﹣1)(x﹣1+2)=0,x﹣1=0或x﹣1+2=0,所以x1=1,x2=﹣1.19.如图,在△ABC中,DE∥BC中,AD=1,BD=2,DE=2,求BC的长.【考点】相似三角形的判定与性质.【分析】求出AB=3,证明△ADE∽△ABC,得出比例式,即可得出结果.【解答】解:∵AD=1,BD=2,∴AB=AD+BD=3,∵DE∥BC,∴△ADE∽△ABC,∴=,∴BC=3DE=3×2=6.20.用一个字来回顾2016年漳州的楼市,这个字就是“涨”!根据漳州房地产联合网不完全统计,2016年市区某在售的楼盘十月份房价为8100元/m2,到了十二月房价均价为12100元/m2,求十月到十二月房价均价的平均月增长率是多少?【考点】一元二次方程的应用.【分析】首先根据题意可得十二月的房价=十一月的房价×(1+增长率),十一月的房价=十月的房价×(1+增长率),由此可得方程.【解答】解:设十月到十二月房价均价的平均月增长率是x,根据题意得:8100(1+x)2=12100,解得x1=≈22%,x2=﹣(不合题意,舍去)答:十月到十二月房价均价的平均月增长率约为22%.21.如图所示,有一个绳索拉直的木马秋千,秋千绳索AB的长度为4米,将它往前推进2米(即DE=2米),求此时秋千的绳索与静止时所夹的角度及木马上升的高度.(精确到0.1米)【考点】勾股定理的应用.【分析】作CF⊥AB,由sin∠CAB=可得∠CAB度数,根据勾股定理求得AF的长,可得BF的长度.【解答】解:过点C作CF⊥AB于点F,根据题意得:AB=AC=4,CF=DE=2,在Rt△ACF中,sin∠CAB===,∴∠CAB=30°,由勾股定理可得AF2+CF2=AC2,∴AF===2,∴BF=AB﹣AF=4﹣2≈0.5,∴此时秋千的绳索与静止时所夹的角度为30度,木马上升的高度约为0.5米.22.在学习概率知识的课堂上,老师组织小组讨论一道题目:在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,要求同学们按两种规则摸球,规则一:搅匀后从中摸出一个球,放回搅匀后再摸出第二个球;规则二:搅匀后从中一次任意摸出两个球,请你通过画树状图或列表法计算说明哪种规则摸出两个红球的概率较大?【考点】列表法与树状图法.【分析】列举出所有情况,看两次都摸到红球的情况占总情况的多少即可知道哪种方法摸到两个红球的概率较大.【解答】解:规则一、摸出一个球后放回,再摸出一个球时,,共有16种等可能的结果数,其中两个都是红球的占4种,所以两次都摸到红球的概率=;规则二、一次性摸两个球时,∴一共有12种情况,有2种情况两次都摸到红球,∴两次都摸到红球的概率是=.∵>,∴第一规则摸出两个红球的概率较大.23.观察下列各式:=1+﹣=1;=1+﹣=1;=1+﹣=1,…请你根据以上三个等式提供的信息解答下列问题①猜想:=1+﹣=1;②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:=1+﹣=;③应用:计算.【考点】二次根式的性质与化简.【分析】①直接利用利用已知条件才想得出答案;②直接利用已知条件规律用n(n为正整数)表示的等式即可;③利用发现的规律将原式变形得出答案.【解答】解:①猜想:=1+﹣=1;故答案为:1+﹣,1;②归纳:根据你的观察,猜想,写出一个用n(n为正整数)表示的等式:=1+﹣=;③应用:===1+﹣=1.24.如图,在平面直角坐标系中,▱ABCD的边BC在x轴上,点A在y轴上,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求cos∠ABC的值;(2)点P由B出发沿BC方向匀速运动,速度为每秒2个单位长度,点Q由D 出发沿DA方向匀速运动,速度为每秒1个单位长度,设运动时间为t秒(0<t ≤3),是否存在某一时刻;使△AOP与△QAO相似?若存在,求此时t的值;若不存在,请说明理由.【考点】相似形综合题.【分析】(1)先解一元二次方程得出OA=4,OB=3,再用勾股定理即求出AB,最后用三角函数的定义即可得出结论;(2)分点P在OB和OC上两种情况,当点P在OB上时①分△AOP∽△OAQ和△AOP∽△QAO,用比例式建立方程求解即可;当点P在OC上时,同点P在OB 上的方法即可得出结论.【解答】解:(1)由方程x2﹣7x+12=0解得,x=4,或x=3,∵OA>OB,∴OA=4,OB=3,在Rt△AOB中,AB==5,∴cos∠ABC=,(2)如图,由题意得,BP=2t,AQ=6﹣t,当点P在OB上时,0<t<1.5,∵∠AOP=∠OAQ=90°,∴①当时,△AOP∽△OAQ,∴,∴t=(舍)或t=,②当时,△AOP∽△QAO,∴3﹣2t=6﹣t,∴t=﹣3(舍),当点P在OC上时,1.5≤t≤3,∵∠AOP=∠OAQ=90°,∴①当,△AOP∽△OAQ,∴此时方程无实数解,②当,∴2t﹣3=6﹣t,∴t=3,综上可得当t=或t=3时,△AOP与△QAO相似25.探究证明:(1)如图1,矩形ABCD中,点M、N分别在边BC,CD上,AM⊥BN,求证:=.(2)如图2,矩形ABCD中,点M在边BC上,EF⊥AM,EF分别交AB,CD于点E、点F,试猜想与有什么数量关系?并证明你的猜想.拓展应用:综合(1)、(2)的结论解决以下问题:(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.【考点】相似形综合题.【分析】(1)根据两角对应相等两三角形相似即可证明.(2)结论:=.如图2中,过点B作BG∥EF交CD于G,首先证明四边形BEFG是平行四边形,推出BG=EF,由△GBC∽△MAB,得=,由此即可证明.(3)如图3中,过点D作平行于AB的直线交过点A平行于BC的直线于R,交BC的延长线于S,连接AC,则四边形ABSR是平行四边形.由(2)中结论可得:=,想办法求出BS即可解决问题.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴∠ABC=∠C=90°∴∠NBA+∠NBC=90°,∵AM⊥BN,∴∠MAB+∠NBA=90°,∴∠NBC=∠MAB,∴△BCN∽△ABM,∴=.(2)结论:=.理由:如图2中,过点B作BG∥EF交CD于G,∵四边形ABCD是矩形,∴AB∥CD,∴四边形BEFG是平行四边形,∴BG=EF,∵EF⊥AM,∴BG⊥AM,∴∠GBA+∠MAB=90°,∵∠ABC=∠C=90°,∴∠GBC+∠GBA=90°,∴∠MAB=∠GBC,∴△GBC∽△MAB,∴=,∴=.(3)如图3中,过点D作平行于AB的直线交过点A平行于BC的直线于R,交BC的延长线于S,连接AC,则四边形ABSR是平行四边形.∵∠ABC=90°,∴四边形ABSR是矩形,∴∠R=∠S=90°,RS=AB=10,AR=BS,∵AM⊥DN,∴由(2)中结论可得:=,∵AB=AD,CB=CD,AC=AC,∴△ACD≌△ACB,∠ADC=∠ABC=90°,∴∠SDC+∠RDA=90°,∵∠RAD+∠RDA=90°,∴∠RAD=∠SDC,∴△RAD∽△SDC,∴∴=,设SC=x,∴=,∴RD=2x,DS=10﹣2x,在Rt△CSD中,∵CD2=DS2+SC2,∴52=(10﹣2x)2+x2,∴x=3或5(舍弃),∴BS=5+x=8,∴===.高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ …………………………密………………………………….封……………………….线…………………………………………………………………………..5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..5.(2016·宁波中考)如图所示的几何体的主视图为( )6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )。
2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。
2016-2017学年第一学期期末测试九年级数学试卷(时间120分钟,满分120分)一、 选择题(本大题共10小题,每小题3分,共30分,请将答案填涂在答题卡上) 1、-5的倒数是( )A 、B 、C 、-5D 、52、a 2•a 3等于( )A 、3a 2B 、a 5C 、a 6D 、a 83、下列事件为必然事件的是( )A 、打开电视机,它正在播广告B 、抛掷一枚硬币,一定正面朝上C 、投掷一枚普通的正方体骰子,掷得的点数小于7D 、某彩票的中奖机会是1%,买1张一定不会中奖4、下面如图是一个圆柱体,则它的主视图是( )A B C D5.下列命题中,假命题是( ) A . 平行四边形是中心对称图形B . 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C . 对于简单的随机样本,可以用样本的方差去估计总体的方差D . 若x 2=y 2,则x=y6.若关于x 的不等式⎩⎨⎧≤-<-1270x m x 的整数解共有4个,则m 的取值范围是A .76<<mB .76<≤mC .76≤≤mD .76≤<m7.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( ) A .3 B .4 C .5 D .6ABCDFE8.如图是一块△ABC 余料,已知AB=20cm ,BC=7cm ,A C=15cm ,现将余料裁剪成一个圆形材料,则该圆的最大面积是( )A . πcm 2B . 2πcm 2C . 4πcm 2D . 8πcm 29.如图,△ABC 中,∠ACB=90°,∠A=30°,AB=16.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边A C (或边CB )于点Q .设AP=x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致是( )A .B .C .D .10. 如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交CE于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有A .1个B .2个C .3个D .4个A BCDEFG二、填空题(本大题共8小题,11--14每小题3分,15--18每小题4分,共28分,请将答案填在后面的表格里)11.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘,其浓度为0.000 0963贝克/立方米.数据“0.000 0963”用科学记数法可表示为_ 12. 因式分解:22a b ab b ++= .13.随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是 .14.现有一张圆心角为108°,半径为40cm 的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为 .15.如图,已知正方形ABCD 的边长是8,M 在DC 上,且DM=2,N 是AC 边上的一动点,则DN+NM 的最小值是_______.16. 如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .17.如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC=10,则PQ 的长为xyABO1S2S16题图18.如图,点M 是反比例函数y=在第一象限内图象上的点,作MB⊥x 轴于B .过点M 的第一条直线交y 轴于点A 1,交反比例函数图象于点C 1,且A 1C 1=A 1M ,△A 1C 1B 的面积记为S 1;过点M 的第二条直线交y 轴于点A 2,交反比例函数图象于点C 2,且A 2C 2=A 2M ,△A 2C 2B 的面积记为S 2;过点M 的第三条直线交y 轴于点A 3,交反比例函数图象于点C 3,且A 3C 3=A 3M ,△A 3C 3B 的面积记为S 3;以此类推…;则S 1+S 2+S 3+…+S 8= _________ .11 12 13 1415 16 17 18三.解答题:本大题共7小题,总分62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分7分,第⑴题3分,第⑵题4分)(1) 计算:1021()(52)18(2)23---+--⋅(2) 先化简再计算:(x -1x -x -2x +1)÷2x 2-x x 2+2x +1,其中x 满足x 2-x -1=0.20. (本题满分8分)某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市20000 名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:(1)表中a和b所表示的数分别为:a=___________,b=_______________;(2)请在图中补全额数分布直方图;(3)如果把成绩在70分以上(含70分)定为合格,那么该市20000名九年级考生数学成绩为合格的学生约有多少名?21.(本题满分8分)如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.22. (本题满分8分)周末,小亮一家在东昌湖游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)23. (本题满分9分)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.24.(本题满分10分)已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P 是线段DE上一定点(其中EP<PD)(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.①求证:PG=PF;②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DF、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请直接写出它们所满足的数量关系式,不需要说明理由.25.(本题满分12分)如图,抛物线经过(40)(10)(02),,,,,三点.A B C-(1)求出抛物线的解析式;⊥轴,垂足为M,是否存在P点,使得以A,P,M为(2)P是抛物线上一动点,过P作PM x△相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;顶点的三角形与OAC△的面积最大,求出点D的坐标.(3)在直线AC上方的抛物线上有一点D,使得DCAO xy AB C 4 12-(第25题图) O xyAB C4 12-(备用)数学答案1—10题:ABCAD,DDCDD 11---18题:9.63×10-5b(a+1)27/8, 18. 10 4 3 255/51219题:2-221xx 1 20题:解:(1)a=40,b=0.09;(2)如图:;(3)(0.12+0.09+0.08)×24000 =0.29×24000=6960(人)答:该市24000名九年级考生数学成绩为优秀的学生约有6960名。
21题:3(1)连接OA . ∵∠B=60°,∴∠AOC==120°, 又∵OA=OC,∴∠ACO=∠OAC=30°, ∴∠AOP=60°, ∵AP=AC,∴∠P=∠ACP=30°, ∴∠OAP=90°,∴OA ⊥AP ,又∵OA 为半径 ∴AP 是⊙O 的切线, (2)连接AD .∵CD 是⊙O 的直径, ∴∠CAD=90°, ∴AD=AC•tan30°=3×3/3=3 ∵∠ADC=∠B=60°, ∴∠PAD=30°, ∵∠P=∠PAD, ∴PD=AD=322题:考点:解直角三角形的应用-方向角问题。
分析:作PD⊥AB于点D,分别在直角三角形PAD和直角三角形PBD中求得PD和PB即可求得结论.解答:解:作PD⊥AB于点D,由已知得PA=200米,∠APD=30°,∠B=37°,在Rt△PAD中,由cos30°=,得PD=PAcos30°=200×=100米,在Rt△PBD中,由sin37°=,得PB=≈≈288米.答:小亮与妈妈的距离约为288米.点评:本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并求解.23题:解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度是:(360×2)÷(480÷60﹣1﹣1)=720÷6=120(千米/小时)∴t=360÷120=3(小时).(2)①当0≤x≤3时,设y=k1x,把(3,360)代入,可得3k1=360,解得k1=120,∴y=120x(0≤x≤3).②当3<x≤4时,y=360.③4<x≤7时,设y=k2x+b,把(4,360)和(7,0)代入,可得解得∴y=﹣120x+840(4<x≤7).(3)①(480﹣60﹣120)÷(120+60)+1=300÷180+1==(小时)②当甲车停留在C地时,(480﹣360+120)÷60=240÷6=4(小时)③两车都朝A地行驶时,设乙车出发x小时后两车相距120千米,则60x﹣[120(x﹣1)﹣360]=120,所以480﹣60x=120,所以60x=360,解得x=6.综上,可得乙车出发后两车相距120千米.24题【解答】解:(1)①∵∠GPF=∠HPD=90°,∠ADC=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,∴∠PDF=∠ADP=45°,∴△HPD为等腰直角三角形,∴∠DHP=∠PDF=45°,在△HPG和△DPF中,∵,∴△HPG≌△DPF(ASA),∴PG=PF;②结论:DG+DF=DP,由①知,△HPD为等腰直角三角形,△HPG≌△DPF,∴HD=DP,HG=DF,∴HD=HG+DG=DF+DG,∴DG+DF=DP;(2)不成立,数量关系式应为:DG ﹣DF=DP ,如图,过点P 作PH ⊥PD 交射线DA 于点H ,∵PF ⊥PG ,∴∠GPF=∠HPD=90°, ∴∠GPH=∠FPD ,∵DE 平分∠ADC ,且在矩形ABCD 中,∠ADC=90°, ∴∠HDP=∠EDC=45°,得到△HPD 为等腰直角三角形, ∴∠DHP=∠EDC=45°,且PH=PD ,HD=DP ,∴∠GHP=∠FDP=180°﹣45°=135°,在△HPG 和△DPF 中, ∵∴△HPG ≌△DPF , ∴HG=DF ,∴DH=DG ﹣HG=DG ﹣DF , ∴DG ﹣DF=DP .25解:(1) 该抛物线过点(02)C -,,∴可设该抛物线的解析式为22y ax bx =+-. 将(40)A ,,(10)B ,代入, 得1642020a b a b .+-=⎧⎨+-=⎩,解得1252a b .⎧=-⎪⎪⎨⎪=⎪⎩,∴此抛物线的解析式为215222y x x =-+-. ······························································· (3分) (2)存在. ························································································································· (4分)如图,设P 点的横坐标为m , 则P 点的纵坐标为215222m m -+-, 当14m <<时,4AM m =-,215222PM m m =-+-.又90COA PMA ∠=∠= °,∴①当21AM AO PM OC ==时, APM ACO △∽△,即21542222m m m ⎛⎫-=-+- ⎪⎝⎭.解得1224m m ==,(舍去),(21)P ∴,. ②当12AM OC PM OA ==时,APM CAO △∽△,即2152(4)222m m m -=-+-. 解得14m =,25m =(均不合题意,舍去)∴当14m <<时,(21)P ,.) 类似地可求出当4m >时,(52)P -,. 当1m <时,(314)P --,. 综上所述,符合条件的点P 为(21),或(52)-,或(314)--,. ································· (9分) (3)如图,设D 点的横坐标为(04)t t <<,则D 点的纵坐标为215222t t -+-. 过D 作y 轴的平行线交AC 于E .由题意可求得直线AC 的解析式为122y x =-. ······· )E ∴点的坐标为122t t ⎛⎫- ⎪⎝⎭,.2215112222222DE t t t t t ⎛⎫∴=-+---=-+ ⎪⎝⎭. ··················22211244(2)422DAC S t t t t t ⎛⎫∴=⨯-+⨯=-+=--+ ⎪⎝⎭△.∴当2t =时,DAC △面积最大.(21)D ∴,. ··························································· (12分)O xy A BC412-(第26题图)D PM E。